Clustering High Dimensional Data

Size: px
Start display at page:

Download "Clustering High Dimensional Data"

Transcription

1 Clustering High Dimensional Data Roland Winkler Frank Klawonn, Rudolf Kruse July 11, 2011 German Aerospace Center Braunschweig Institute of Flight Guidance

2 2 / 33 1 S.O.D.A. 2 Introduction to high dimensional spaces 3 Distance Concentration and its Implications on Clustering 4 Distance Function modifications

3 3 / 33 Current Section 1 S.O.D.A. 2 Introduction to high dimensional spaces 3 Distance Concentration and its Implications on Clustering 4 Distance Function modifications

4 S.O.D.A.: Frankfurt Airport 4 / 33

5 S.O.D.A.: 3 Aircraft transitions 5 / 33

6 S.O.D.A.: Aircraft transitions 6 / 33

7 S.O.D.A.: Characteristic Positions 7 / 33

8 8 / 33 Current Section 1 S.O.D.A. 2 Introduction to high dimensional spaces 3 Distance Concentration and its Implications on Clustering 4 Distance Function modifications

9 9 / 33 Challenges with high dim data sets in clustering Huge space that is very thin populated (for comparison: the m-dimensional hypercube has 2 m corners) The intrinsic dimensionality might be lower and form a complex geometry Dimension reduction is not necessarily helpful Occurrence of hubs (data objects that are part of the k-nn of a large portion of other data objects) Distance concentration

10 Distance concentration Data set: X = {x 1,..., x n } R m with n data objects Query point: Q R m Metric: : R m R Set of distance: D Q (X) = { x i Q : x i X} Sample mean: Ê(D Q(X)) and sample variance V (D Q (X)) Relative variance of distances: V (D Q (X)) Ê(D Q (X)) 2 = RV (D Q (X))) lim RV (D Q (X)) = 0 lim P ((1 + ε) min(d Q (X)) > max(d Q (X))) = 1 m m (1) 10 / 33

11 2 dimensions normal distribution 11 / 33

12 5 dimensions normal distribution 12 / 33

13 20 dimensions normal distribution 13 / 33

14 50 dimensions normal distribution 14 / 33

15 100 dimensions normal distribution 15 / 33

16 200 dimensions normal distribution 16 / 33

17 S.O.D.A.: Characteristic vector data set 17 / 33

18 18 / 33 Current Section 1 S.O.D.A. 2 Introduction to high dimensional spaces 3 Distance Concentration and its Implications on Clustering 4 Distance Function modifications

19 19 / 33 Objective function for HCM, FCM and PFCM Data set X = {x 1,..., x n } R m with n data objects Prototype set: Y = {y 1,..., y c } R m Distance function: d ij = d(y i, x j ) = y i x j Membership values: u ij [0, 1] Fuzzifier function: f fuzzy : [0, 1] [0, 1] Objective function c n f fuzzy (u ij )dij 2 i=1 j=1

20 20 / 33 Test Data set m = 2 m = 50

21 21 / 33 HCM f fuzzy (u) = u found clusters: 47 m = 2 m = 50

22 22 / 33 FCM f fuzzy (u) = u ω (here: ω = 2) found clusters: 0 m = 2 m = 50

23 23 / 33 FCM with distance concentration Suppose d(y i, x j ) = d ij d All membership values tend to become equal All prototypes tend to become equal u ij y i ( 1 ) 2 d ω 1 c ( 1 ) 2 d ω 1 k=1 n ( 1 ) ω c xj j=1 n j=1 = = ( 1 ) ω c ( 1 ) 2 d ω 1 c ( ) 2 1 d ω 1 n j=1 ( 1 ) ω c xj = 1 c n ( ) 1 ω = 1 n c n j=1 x j

24 24 / 33 PFCM f fuzzy (u) = α u + (1 α)u 2 found clusters: 92 m = 2 m = 50

25 25 / 33 EM Gaussian Mixture Model Covariance matrix = δe m found clusters: 68 m = 2 m = 50

26 26 / 33 Current Section 1 S.O.D.A. 2 Introduction to high dimensional spaces 3 Distance Concentration and its Implications on Clustering 4 Distance Function modifications

27 27 / 33 Alternative Distance Function D Q (X) = { x Q : x X} a > 0 δ = max (Ê(D Q(X)) a V (D Q (X)), 0) d ij = d δ (y i, x j ) = max ( y i x j δ, 0 ) with Q = y i a = 3 implies: for less than 10% of data objects, d δ (y i, x j ) = 0 Objective function c n f fuzzy (u ij )dδ 2(y i, x j ) does not work i=1 j=1 well with d δ Use d δ only for calculating Membership values

28 28 / 33 FCM with Alternative Distance Function Example f fuzzy (u) = u ω, d = d δ found clusters: 99 m = 2 m = 50

29 Thank you for your attention 29 / 33

30 30 / 33 Bibliography Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is nearest neighbor meaningful? In Database Theory - ICDT 99, volume 1540 of Lecture Notes in Computer Science, pages Springer Berlin / Heidelberg. Durrant, R. J. and Kabán, A. (2008). When is nearest neighbour meaningful: A converse theorem and implications. Journal of Complexity, 25(4): Hsu, C.-M. and Chen, M.-S. (2009). On the design and applicability of distance functions in high-dimensional data space. Knowledge and Data Engineering, IEEE Transactions on, 21(4): Kabán, A. (2011). Non-parametric detection of meaningless distances in high dimensional data. Statistics and Computing. status: accepted.

31 31 / 33 S.O.D.A. S.O.D.A (Surveillance Data Analysis System) is developed by the Fraport AG, the organization operating the international airport in Frankfurt It is based on the open source data base system PostGre SQL, the visualizations are done using PostGIS DLR (German Aerospace Center) Braunschweig and Fraport are working as partners in the S.O.D.A. project to increase data usage and quality

32 32 / 33 Distance concentration F (m), m N be a sequence of random variables X (m) = {x (m) 1,..., x (m) n } F (m) be a sample of n data objects Q (m) dom(f (m) ) a query point : dom(f (m) ) R be a distance function and p > 0 D (m) = D Q (m)(x (m) ) = { x (m) i Q (m) p : x (m) i X (m) } Ê(D (m) ) and V (D (m) ) be finite, Ê(D(m) ) > 0 V (D (m) ) Ê(D (m) ) 2 = RV (D (m) )) lim RV (D (m) ) = 0 lim P ( (1 + ε) min(d (m) ) > max(d (m) ) ) = 1 (2) m m

33 33 / 33 Distance concentration Let be one of the L p norms and in all cases Q (m) F (m) When are the conditions in (1) true? F (m) is i.i.d. in all dimensions (see the following example) F (m) is correlations in all dimensions: U 1,..., U m so that U k U[0, k], define F (m) 1 = U 1 F (m) k = U k F (m) k 1 F (m) is the uniform distribution on a m-dimensional hyperqube surface: F (m) = U([0, 1] m \ (0, 1) m ) F (m) with σ m 0: define F (m) k N(0, 1 k ), k = 1... m Open question: What are the satisfying conditions for distance concentration?

Problems of Fuzzy c-means and similar algorithms with high dimensional data sets Roland Winkler Frank Klawonn, Rudolf Kruse

Problems of Fuzzy c-means and similar algorithms with high dimensional data sets Roland Winkler Frank Klawonn, Rudolf Kruse Problems of Fuzzy c-means and similar algorithms with high dimensional data sets Roland Winkler (roland.winkler@dlr.de), Frank Klawonn, Rudolf Kruse July 20, 2010 2 / 44 Outline 1 FCM (and similar) Algorithms

More information

Distance concentration and detection of meaningless distances

Distance concentration and detection of meaningless distances Distance concentration and detection of meaningless distances Ata Kabán School of Computer Science The University of Birmingham Birmingham B15 2TT, UK http://www.cs.bham.ac.uk/ axk Dagstuhl Seminar 12081

More information

Clustering with Repulsive Prototypes

Clustering with Repulsive Prototypes Clustering with Repulsive Prototypes R. Winkler, F. Rehm, R. Kruse roland.winkler@dlr.de, frank.rehm@dlr.de, kruse@iws.cs.uni-magdeburg.de Clustering with Repulsive Prototypes GfKl 2008 Contents 1 Introduction

More information

Notion of Distance. Metric Distance Binary Vector Distances Tangent Distance

Notion of Distance. Metric Distance Binary Vector Distances Tangent Distance Notion of Distance Metric Distance Binary Vector Distances Tangent Distance Distance Measures Many pattern recognition/data mining techniques are based on similarity measures between objects e.g., nearest-neighbor

More information

A Modified Incremental Principal Component Analysis for On-Line Learning of Feature Space and Classifier

A Modified Incremental Principal Component Analysis for On-Line Learning of Feature Space and Classifier A Modified Incremental Principal Component Analysis for On-Line Learning of Feature Space and Classifier Seiichi Ozawa 1, Shaoning Pang 2, and Nikola Kasabov 2 1 Graduate School of Science and Technology,

More information

P leiades: Subspace Clustering and Evaluation

P leiades: Subspace Clustering and Evaluation P leiades: Subspace Clustering and Evaluation Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, and Thomas Seidl Data management and exploration group, RWTH Aachen University, Germany {assent,mueller,krieger,jansen,seidl}@cs.rwth-aachen.de

More information

When Is Nearest Neighbor Meaningful: A Converse Theorem and Implications

When Is Nearest Neighbor Meaningful: A Converse Theorem and Implications When Is Nearest Neighbor Meaningful: A Converse Theorem and Implications Robert J. Durrant and Ata Kabán 1 School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier

A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier Seiichi Ozawa, Shaoning Pang, and Nikola Kasabov Graduate School of Science and Technology, Kobe

More information

Gaussian Mixture Distance for Information Retrieval

Gaussian Mixture Distance for Information Retrieval Gaussian Mixture Distance for Information Retrieval X.Q. Li and I. King fxqli, ingg@cse.cuh.edu.h Department of omputer Science & Engineering The hinese University of Hong Kong Shatin, New Territories,

More information

(Refer Slide Time: 0:36)

(Refer Slide Time: 0:36) Probability and Random Variables/Processes for Wireless Communications. Professor Aditya K Jagannatham. Department of Electrical Engineering. Indian Institute of Technology Kanpur. Lecture -15. Special

More information

An Analytic Distance Metric for Gaussian Mixture Models with Application in Image Retrieval

An Analytic Distance Metric for Gaussian Mixture Models with Application in Image Retrieval An Analytic Distance Metric for Gaussian Mixture Models with Application in Image Retrieval G. Sfikas, C. Constantinopoulos *, A. Likas, and N.P. Galatsanos Department of Computer Science, University of

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

Handling imprecise and uncertain class labels in classification and clustering

Handling imprecise and uncertain class labels in classification and clustering Handling imprecise and uncertain class labels in classification and clustering Thierry Denœux 1 1 Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) COST Action IC 0702 Working group C, Mallorca,

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Approximation Bound for Fuzzy-Neural Networks with Bell Membership Function

Approximation Bound for Fuzzy-Neural Networks with Bell Membership Function Approximation Bound for Fuzzy-Neural Networks with Bell Membership Function Weimin Ma, and Guoqing Chen School of Economics and Management, Tsinghua University, Beijing, 00084, P.R. China {mawm, chengq}@em.tsinghua.edu.cn

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

Covariance to PCA. CS 510 Lecture #8 February 17, 2014

Covariance to PCA. CS 510 Lecture #8 February 17, 2014 Covariance to PCA CS 510 Lecture 8 February 17, 2014 Status Update Programming Assignment 2 is due March 7 th Expect questions about your progress at the start of class I still owe you Assignment 1 back

More information

Tools of stochastic calculus

Tools of stochastic calculus slides for the course Interest rate theory, University of Ljubljana, 212-13/I, part III József Gáll University of Debrecen Nov. 212 Jan. 213, Ljubljana Itô integral, summary of main facts Notations, basic

More information

Multivariate class labeling in Robust Soft LVQ

Multivariate class labeling in Robust Soft LVQ Multivariate class labeling in Robust Soft LVQ Petra Schneider, Tina Geweniger 2, Frank-Michael Schleif 3, Michael Biehl 4 and Thomas Villmann 2 - School of Clinical and Experimental Medicine - University

More information

Statistical Learning. Dong Liu. Dept. EEIS, USTC

Statistical Learning. Dong Liu. Dept. EEIS, USTC Statistical Learning Dong Liu Dept. EEIS, USTC Chapter 6. Unsupervised and Semi-Supervised Learning 1. Unsupervised learning 2. k-means 3. Gaussian mixture model 4. Other approaches to clustering 5. Principle

More information

Lecture 15: Random Projections

Lecture 15: Random Projections Lecture 15: Random Projections Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 15 1 / 11 Review of PCA Unsupervised learning technique Performs dimensionality reduction

More information

Lecture 7: Chapter 7. Sums of Random Variables and Long-Term Averages

Lecture 7: Chapter 7. Sums of Random Variables and Long-Term Averages Lecture 7: Chapter 7. Sums of Random Variables and Long-Term Averages ELEC206 Probability and Random Processes, Fall 2014 Gil-Jin Jang gjang@knu.ac.kr School of EE, KNU page 1 / 15 Chapter 7. Sums of Random

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

Non-parametric Residual Variance Estimation in Supervised Learning

Non-parametric Residual Variance Estimation in Supervised Learning Non-parametric Residual Variance Estimation in Supervised Learning Elia Liitiäinen, Amaury Lendasse, and Francesco Corona Helsinki University of Technology - Lab. of Computer and Information Science P.O.

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

The Curse of Dimensionality in Data Mining and Time Series Prediction

The Curse of Dimensionality in Data Mining and Time Series Prediction The Curse of Dimensionality in Data Mining and Time Series Prediction Michel Verleysen 1 and Damien François 2, Universit e catholique de Louvain, Machine Learning Group, 1 Place du Levant, 3, 1380 Louvain-la-Neuve,

More information

On Tuning OWA Operators in a Flexible Querying Interface

On Tuning OWA Operators in a Flexible Querying Interface On Tuning OWA Operators in a Flexible Querying Interface Sławomir Zadrożny 1 and Janusz Kacprzyk 2 1 Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland 2 Systems Research Institute

More information

Nonparametric Methods Lecture 5

Nonparametric Methods Lecture 5 Nonparametric Methods Lecture 5 Jason Corso SUNY at Buffalo 17 Feb. 29 J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 5 17 Feb. 29 1 / 49 Nonparametric Methods Lecture 5 Overview Previously,

More information

Solution. Daozheng Chen. Challenge 1

Solution. Daozheng Chen. Challenge 1 Solution Daozheng Chen 1 For all the scatter plots and 2D histogram plots within this solution, the x axis is for the saturation component, and the y axis is the value component. Through out the solution,

More information

Probability Models for Bayesian Recognition

Probability Models for Bayesian Recognition Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIAG / osig Second Semester 06/07 Lesson 9 0 arch 07 Probability odels for Bayesian Recognition Notation... Supervised Learning for Bayesian

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Suppose again we have n sample points x,..., x n R p. The data-point x i R p can be thought of as the i-th row X i of an n p-dimensional

More information

m p -dissimilarity: A data dependent dissimilarity measure

m p -dissimilarity: A data dependent dissimilarity measure m p -dissimilarity: A data dependent dissimilarity measure Sunil Aryal, Kai Ming Ting, Gholamreza Haffari and Takashi Washio Clayton School of Information Technology, Monash University, Australia Email:

More information

Fuzzy Geographically Weighted Clustering

Fuzzy Geographically Weighted Clustering Fuzzy Geographically Weighted Clustering G. A. Mason 1, R. D. Jacobson 2 1 University of Calgary, Dept. of Geography 2500 University Drive NW Calgary, AB, T2N 1N4 Telephone: +1 403 210 9723 Fax: +1 403

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Classification: The rest of the story

Classification: The rest of the story U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598 Machine Learning for Signal Processing Classification: The rest of the story 3 October 2017 Today s lecture Important things we haven t covered yet Fisher

More information

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

Fuzzy Local Trend Transform based Fuzzy Time Series Forecasting Model

Fuzzy Local Trend Transform based Fuzzy Time Series Forecasting Model Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 4 (December), pp. 603-614 Fuzzy Local Trend Transform based Fuzzy Time Series Forecasting Model J. Dan,

More information

Nearest Neighbor Searching Under Uncertainty. Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University

Nearest Neighbor Searching Under Uncertainty. Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University Nearest Neighbor Searching Under Uncertainty Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University Nearest Neighbor Searching (NNS) S: a set of n points in R. q: any

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

Classification on Pairwise Proximity Data

Classification on Pairwise Proximity Data Classification on Pairwise Proximity Data Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra y and Klaus Obermayer yy This paper is a submission to the Neural Information Processing Systems 1998. Technical

More information

Fuzzy Subspace Clustering

Fuzzy Subspace Clustering Fuzzy Subspace Clustering Christian Borgelt Abstract In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not

More information

Using the Delta Test for Variable Selection

Using the Delta Test for Variable Selection Using the Delta Test for Variable Selection Emil Eirola 1, Elia Liitiäinen 1, Amaury Lendasse 1, Francesco Corona 1, and Michel Verleysen 2 1 Helsinki University of Technology Lab. of Computer and Information

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Adaptive Sampling Under Low Noise Conditions 1

Adaptive Sampling Under Low Noise Conditions 1 Manuscrit auteur, publié dans "41èmes Journées de Statistique, SFdS, Bordeaux (2009)" Adaptive Sampling Under Low Noise Conditions 1 Nicolò Cesa-Bianchi Dipartimento di Scienze dell Informazione Università

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Combining Non-probability and Probability Survey Samples Through Mass Imputation

Combining Non-probability and Probability Survey Samples Through Mass Imputation Combining Non-probability and Probability Survey Samples Through Mass Imputation Jae-Kwang Kim 1 Iowa State University & KAIST October 27, 2018 1 Joint work with Seho Park, Yilin Chen, and Changbao Wu

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Probability Models of Information Exchange on Networks Lecture 3

Probability Models of Information Exchange on Networks Lecture 3 Probability Models of Information Exchange on Networks Lecture 3 Elchanan Mossel UC Berkeley All Right Reserved The Bayesian View of the Jury Theorem Recall: we assume 0/1 with prior probability (0.5,0.5).

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Measurement and Data. Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality

Measurement and Data. Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality Measurement and Data Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality Importance of Measurement Aim of mining structured data is to discover relationships that

More information

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space Robert Jenssen, Deniz Erdogmus 2, Jose Principe 2, Torbjørn Eltoft Department of Physics, University of Tromsø, Norway

More information

Information Dimension

Information Dimension Information Dimension Mina Karzand Massachusetts Institute of Technology November 16, 2011 1 / 26 2 / 26 Let X would be a real-valued random variable. For m N, the m point uniform quantized version of

More information

More on Unsupervised Learning

More on Unsupervised Learning More on Unsupervised Learning Two types of problems are to find association rules for occurrences in common in observations (market basket analysis), and finding the groups of values of observational data

More information

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

Supervised Learning: Non-parametric Estimation

Supervised Learning: Non-parametric Estimation Supervised Learning: Non-parametric Estimation Edmondo Trentin March 18, 2018 Non-parametric Estimates No assumptions are made on the form of the pdfs 1. There are 3 major instances of non-parametric estimates:

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

12 - Nonparametric Density Estimation

12 - Nonparametric Density Estimation ST 697 Fall 2017 1/49 12 - Nonparametric Density Estimation ST 697 Fall 2017 University of Alabama Density Review ST 697 Fall 2017 2/49 Continuous Random Variables ST 697 Fall 2017 3/49 1.0 0.8 F(x) 0.6

More information

A Rough-fuzzy C-means Using Information Entropy for Discretized Violent Crimes Data

A Rough-fuzzy C-means Using Information Entropy for Discretized Violent Crimes Data A Rough-fuzzy C-means Using Information Entropy for Discretized Violent Crimes Data Chao Yang, Shiyuan Che, Xueting Cao, Yeqing Sun, Ajith Abraham School of Information Science and Technology, Dalian Maritime

More information

Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig

Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig Multimedia Databases Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 14 Indexes for Multimedia Data 14 Indexes for Multimedia

More information

Distance Metric Learning

Distance Metric Learning Distance Metric Learning Technical University of Munich Department of Informatics Computer Vision Group November 11, 2016 M.Sc. John Chiotellis: Distance Metric Learning 1 / 36 Outline Computer Vision

More information

Fuzzy Systems. Fuzzy Control

Fuzzy Systems. Fuzzy Control Fuzzy Systems Fuzzy Control Prof. Dr. Rudolf Kruse Christoph Doell {kruse,doell}@ovgu.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science Institute for Intelligent Cooperating Systems

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 5 Topic Overview 1) Introduction/Unvariate Statistics 2) Bootstrapping/Monte Carlo Simulation/Kernel

More information

Interpreting Deep Classifiers

Interpreting Deep Classifiers Ruprecht-Karls-University Heidelberg Faculty of Mathematics and Computer Science Seminar: Explainable Machine Learning Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge Author: Daniela

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Lecture 16: Compressed Sensing

Lecture 16: Compressed Sensing Lecture 16: Compressed Sensing Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 16 1 / 12 Review of Johnson-Lindenstrauss Unsupervised learning technique key insight:

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Least-Squares Performance of Analog Product Codes

Least-Squares Performance of Analog Product Codes Copyright 004 IEEE Published in the Proceedings of the Asilomar Conference on Signals, Systems and Computers, 7-0 ovember 004, Pacific Grove, California, USA Least-Squares Performance of Analog Product

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig

Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig Multimedia Databases Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 13 Indexes for Multimedia Data 13 Indexes for Multimedia

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman January 27, 2015 MVA 2014/2015

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh Lecture 06 Object Recognition Objectives To understand the concept of image based object recognition To learn how to match images

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

Sensitivity of the Elucidative Fusion System to the Choice of the Underlying Similarity Metric

Sensitivity of the Elucidative Fusion System to the Choice of the Underlying Similarity Metric Sensitivity of the Elucidative Fusion System to the Choice of the Underlying Similarity Metric Belur V. Dasarathy Dynetics, Inc., P. O. Box 5500 Huntsville, AL. 35814-5500, USA Belur.d@dynetics.com Abstract

More information

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello Artificial Intelligence Module 2 Feature Selection Andrea Torsello We have seen that high dimensional data is hard to classify (curse of dimensionality) Often however, the data does not fill all the space

More information

Making Nearest Neighbors Easier. Restrictions on Input Algorithms for Nearest Neighbor Search: Lecture 4. Outline. Chapter XI

Making Nearest Neighbors Easier. Restrictions on Input Algorithms for Nearest Neighbor Search: Lecture 4. Outline. Chapter XI Restrictions on Input Algorithms for Nearest Neighbor Search: Lecture 4 Yury Lifshits http://yury.name Steklov Institute of Mathematics at St.Petersburg California Institute of Technology Making Nearest

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Kuangyu Wen & Ximing Wu Texas A&M University Info-Metrics Institute Conference: Recent Innovations in Info-Metrics October

More information

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data 0. Notations Myungjun Choi, Yonghyun Ro, Han Lee N = number of states in the model T = length of observation sequence

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

A Railway Simulation Landscape Creation Tool Chain Considering OpenStreetMap Geo Data

A Railway Simulation Landscape Creation Tool Chain Considering OpenStreetMap Geo Data A Railway Simulation Landscape Creation Tool Chain Considering OpenStreetMap Geo Data Christian Rahmig, Andreas Richter DLR Institute of Transportation Systems Braunschweig, Germany SUMO Conference 2014

More information