Solution. Daozheng Chen. Challenge 1

Size: px
Start display at page:

Download "Solution. Daozheng Chen. Challenge 1"

Transcription

1 Solution Daozheng Chen 1 For all the scatter plots and 2D histogram plots within this solution, the x axis is for the saturation component, and the y axis is the value component. Through out the solution, we will denote k-means clustering method as K-means, and Expectation-Maximization method as EM. The four leaf images in this project come from the real leaf images in the EFG project [1]. Challenge 1 Please refer to Chall 1.m for the MATLAB program. Figure 1 shows the segmentation results for the four images. Figure 2 displays scatter plots and 2D histograms for leaf1.jpg. (a) From the 2D histogram plot of all data points in figure 2, we can see this it has two clusters. One is at the upper left corner, whose data points are concentrated. The other is at the middle right part, whose data points seem to be less densely packed. (b) The shape of the boundary that separates two clusters is approximately a straight line segment. The reason is the following. Let p = (x, y) by a point on the boundary, c 1 = (c 11, c 12 ) be the center of the first cluster and c 2 = (c 21, c 22 ) be the center of the second cluster. Because the distance between p and c 1 and distance between p and c 2 are the same for points on boundary, and we are using euclidean distance, then we have Thus (x c 11 ) 2 + (y c 12 ) 2 = (x c 21 ) 2 + (y c 22 ) 2. 2(c 21 c 11 )x + 2(c 22 c 12 )y + c c 2 12 c 2 21 c 2 22 = 0. Since in general, we do not expect both (c 21 c 11 ) and (c 22 c 12 ) to be zero, so this equation defines a line in our 2D space. (c) On one hand, using scatter plots, we can see the range of data points clearly. For example, according to the middle left plot in figure 2, we clearly see that the range of saturation value for cluster 1 data is approximately [0, 0.4]. However, in the corresponding 2D histogram (the middle left plot), it seems that there is no data point having saturation value greater than 0.2. The reason is that the amount of data having saturation greater than 0.2 is very small compare with the amount of those that are smaller than 0.2. On the other, we can clearly tell density of the data points using 2D histograms. For example, from the top right plot in figure 2, it indicates that we have two clusters. The one on the upper left corner is more concentrated and there are much less data in between two clusters. However, from the corresponding scatter plot (the top left) plot in figure 2, it seems that only one cluster exists.

2 2 Figure 1. Original and segmentation images for leaf4.jpg, leaf2.jpg, leaf3.jpg, and leaf4.jpg Challenge 2 The solution in this problem closely follows the derivation in [2].

3 3 Figure 2. Scatter and 2D histogram plots for leaf1.jpg using K-means (a) N N log(p(x, Y Θ)) = log( p(x i, y i Θ)) = log( p(x i y i, Θ)p(y i Θ)) = log w yi p(x i θ i ) (b) p(y i x i, Θ old ) = p(y i, x i Θ old ) p(x i Θ old ) = p(x i y i, Θ old )p(y i Θ old ) K j=1 p(y j, x i Θ old )

4 4 = = p(x i y i, Θ old )p(y i Θ old ) K j=1 p(x i y j, Θ old )p(y j Θ old ) wy old i p(x i θy old i ) K j=1 wold j p(x i θy old j ) (c) For each y i in a y, it is value can be 1, 2,..., K. Since y is vector of length N. We have in total K N different ys in Q. This number grows exponentially as N grows, so it is not very practical to directly use this formula to do the evaluation unless N is small. Challenge 3 To find w new 1 and w new 2 that maximize E(Θ, Θ old ) = 2 j=1 log(w j )p(j x i, Θ old ) + 2 j=1 log(p(x i θ j ))p(j x i, Θ old ), (1) we only need to optmize the terms having w 1 and w 2. Using the fact that w 1 +w 2 = 1, we know 2 j=1 log(w j )p(j x i, Θ old ) = log w 1 G 1 + log(1 w 2 )G 2, (2) where G 1 = p(1 x i, Θ old ) and G 2 = p(2 x i, Θ old ). Assuming 0 < w 1 < 1, let us take the derivative with respect to w 1 in ( 2), and set it to 0. We get G 1 w 1 G 2 1 w 1 = 0, Thus w 1 = G1 G 1+G 2. Then w 2 = 1 w 1 = G2 G 1+G 2. Since p(1 x i, Θ old ) + p(2 x i, Θ old ) = 1 for K = 2, we have G 1 + G 2 = N. This verifies the formula for weight in the assignment. For µ new 1, we only need to optimize terms having µ 1 in (1), which is log(p(x i θ 1 ))p(1 x i, Θ old ) (3) Since p(x i θ 1 ) is 1-dimensional Gaussian distribution, we have log(p(x i θ 1 ))p(1 x i, Θ old 1 ) = log( )p(1 x i, Θ old ) 2πσ1 + ( (x i µ 1 ) 2 2σ1 2 p(1 x i, Θ old ))

5 5 Taking the derivative with respect to µ 1 and set it to be 0, we get Then we have Thus ( (x i µ 1 ) σ1 2 p(1 x i, Θ old )) = 0 x i p(1 x i, Θ old ) µ 1 N p(1 x i, Θ old ) = 0 µ 1 = x ip(1 x i, Θ old ) p(1 x i, Θ old ) This verifies the formula for µ 1. For Σ new 1 = (σ1 new ) 2, since σ 1 0, we only need to optimize terms having σ 1 in (1), which is also (3). Taking the derivative with respect to σ 1 and set it to 0, we get, 1 2π p(1 x i, Θ old ) + 2 2πσ1 σ1 3 Times both sides by σ 1, we have ( (x i µ 1 ) 2 p(1 x i, Θ old )) = 0 2 Thus p(1 x i, Θ old ) 1 σ 2 1 ((x i µ 1 ) 2 p(1 x i, Θ old )) = 0 σ 2 1 = ((x i µ 1 ) 2 p(1 x i, Θ old )) p(1 x. i, Θ old ) This verifies the formula for Σ new 1. Similarly, we can verify the formulas for µ new 2 and Σ new 2. Challenge 4 Please refer to Chall 4.m for the MATLAB program. Table 1 shows the loglikelihood for each iteration, getting rid of the decimal part of the numbers. Figure 3 shows the segmentation results for the four images by EM. Figure 4 compares the segmentation by K-means and EM. Figure 5, 6, and 7 display scatter plots and 2D histograms for leaf1.jpg, leaf2.jpg, and leaf3.jpg respectively using both K-means and EM. The graphs on the left columns are results from K-means, and those on the right columns are from EM. (a) According to table 1, the log-likelihood increases in each iteration. This is consistent with assignment description.

6 6 (b) According to the scatter plots in Figure 5, the right part of cluster 1 by K-means is given to cluster 2 in EM. The 2D histograms for two clusters do not have much difference using both methods, and the segmentation result looks quite similar too. This implies that amount of data exchange between these two clusters is relatively small compared with the main part of the clusters. So the clusterings by K-means and EM are very similar. However, K-means fails to put some very small region inside the leaf body to white pixels, while EM does (Figure 4). Note that in this case, the two clusters are well separated. (c) First, for leaf2.jpg, similar to part (b), the right part of cluster 1 by K- means is given to cluster 2 in EM (Figure 6). However, different from part (b), the 2D histogram of EM also clearly shows that cluster 2 adds another top left region compared with the cluster 2 by K-means. This means that the amount of new data points to cluster 2 is significant compared to cluster 2 s original size. Note that the two clusters are not well separated in this case. One cluster is concentrated in one region. The other spreads widely, and it looks like a tail attaching to the dense cluster. K-means gives the dense cluster a small tail, while EM gets rid of the tail completely. The segmentation images (Figure 4) also look very different. K-means segmentation has a big leaf region missing, while EM algorithm segments out the whole leaf region and put some lower right corner of the image as leaf region. Second, for leaf3.jpg, we have a very similar situation as that in leaf2.jpg. The right portion of cluster 1 by K-means is put into cluster 2 by EM (Figure 7). EM s 2D histogram for cluster 2 also shows this adding, which is a light blue area (like a tail) on the left of the main region for cluster 2. Similarly, the two clusters are not well separated, and there is a set of sparsely distributed data connecting the two clusters. K-means gives some of this data to the upper left dense cluster, while EM gets rid of all this data. In the resulting segmentation (Figure 4), the stem of the leaf, which is missed by K-means, shows up by EM. (d) Comparing two segmentation images (Figure 4) for leaf4.jpg, K-means Table 1. Log-likelihood per iteration Iteration leaf1.jpg leaf2.jpg leaf3.jpg leaf4.jpg

7 7 Figure 3. Original and segmentation images for leaf1.jpg, leaf2.jpg, leaf3.jpg, and leaf4.jpg using EM produces fewer white dots outside the leaf region. This happens for leaf2.jpg too. Furthermore, the stem produced by EM is too big compared with the original image. This also happens in leaf3.jpg. Although EM algorithm successfully makes the stem show up, but the segmented leaf is bigger compared with the leaf in the original image.

8 8 Figure 4. segmentation images for leaf1.jpg, leaf2.jpg, leaf3.jpg, and leaf4.jpg using K-means (left) and EM (right) (e) Based on the discussion in part (b), (c), and (d). In general, K-means produces less white dots outside the leaf region, and the shape of leaf is more closely tight to the shape of actual leaf. However, it tends to miss some part of the leaf and makes the resulting segmentation incorrect. EM is more capable of producing the whole leaf and showing more details of the leaf, such as the stem in leaf4.jpg.

9 9 However, the segmented leaf region tends to be bigger than the actual leaf. For the four images, EM is in general better than K-means in term of segmentation quality. Challenge 5 (a) The idea of this problem is based a paper by Roberts [3]. Using ˆp, the three formulas for wj new, µ new j, and Σ new j in the assignment description becomes w new j = 1 N ˆp(j x i, Θ old ) µ new j = x i ˆp(j x i, Θ old ) ˆp(j x i, Θ old ) Σ new j = ˆp(j x i, Θ old )(x i µ new j )(x i µ new j ˆp(j x i, Θ old ) For all the summation in these formulas, it only sums over those elements whose ˆp function value is 1. If we say that p(s x i, Θ old ) is the highest at s = j means that we assign the data point to cluster C j, then C j will contains and only contains those elements whose ˆp is 1. Therefore, C j = ˆp(j x i, Θ old ), where C j is the size of C j. And we can write the summation over i = 1,..., N as the summation of over all elements in C j. Then these three formulas become Σ new j = w new j = 1 N C j (4) µ new j = x i C j x i C j x i C j (x i µ new j C j )(x i µ new j ) T This means that formula (4) becomes the fraction of data points which are in C j. Formula (5) becomes the mean of the data points in C j. Formula (6) computes the covariance matrix for the data points in C j. (b) We can say that within one iteration of EM algorithm, first, we assign each data point to a cluster whose posterior probability is the highest; ) T (5) (6) then for each cluster, we update its distribution parameter according to the data points assigned to it from the first step.

10 10 Figure 5. Scatter plots and 2D histograms for leaf1.jpg using K-means (left) and EM (right)

11 11 Figure 6. Scatter plots and 2D histograms for leaf2.jpg using K-means (left) and EM (right)

12 12 Figure 7. Scatter plos and 2D histograms for leaf3.jpg using K-means (left) and EM (right)

13 Bibliography [1] Peter N. Belhumeur, Daozheng Chen, Steven Feiner, David W. Jacobs, W. John Kress, Haibin Ling, Ida Lopez, Ravi Ramamoorthi, Sameer Sheorey, Sean White, and Ling Zhang. Searching the world s herbaria: A system for visual identification of plant species. In David A. Forsyth, Philip H. S. Torr, and Andrew Zisserman, editors, ECCV (4), volume 5305 of Lecture Notes in Computer Science, pages Springer, [2] Jeff A. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Technical report, [3] Stephen J. Roberts. Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition, 30: ,

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Aaron C. Courville Université de Montréal Note: Material for the slides is taken directly from a presentation prepared by Christopher M. Bishop Learning in DAGs Two things could

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Clustering, K-Means, EM Tutorial

Clustering, K-Means, EM Tutorial Clustering, K-Means, EM Tutorial Kamyar Ghasemipour Parts taken from Shikhar Sharma, Wenjie Luo, and Boris Ivanovic s tutorial slides, as well as lecture notes Organization: Clustering Motivation K-Means

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Expectation-Maximization (EM) algorithm

Expectation-Maximization (EM) algorithm I529: Machine Learning in Bioinformatics (Spring 2017) Expectation-Maximization (EM) algorithm Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Contents Introduce

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

EM for Spherical Gaussians

EM for Spherical Gaussians EM for Spherical Gaussians Karthekeyan Chandrasekaran Hassan Kingravi December 4, 2007 1 Introduction In this project, we examine two aspects of the behavior of the EM algorithm for mixtures of spherical

More information

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543 K-Means, Expectation Maximization and Segmentation D.A. Forsyth, CS543 K-Means Choose a fixed number of clusters Choose cluster centers and point-cluster allocations to minimize error can t do this by

More information

1 Expectation Maximization

1 Expectation Maximization Introduction Expectation-Maximization Bibliographical notes 1 Expectation Maximization Daniel Khashabi 1 khashab2@illinois.edu 1.1 Introduction Consider the problem of parameter learning by maximizing

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Mixture Models and Expectation-Maximization

Mixture Models and Expectation-Maximization Mixture Models and Expectation-Maximiation David M. Blei March 9, 2012 EM for mixtures of multinomials The graphical model for a mixture of multinomials π d x dn N D θ k K How should we fit the parameters?

More information

Latent Variable View of EM. Sargur Srihari

Latent Variable View of EM. Sargur Srihari Latent Variable View of EM Sargur srihari@cedar.buffalo.edu 1 Examples of latent variables 1. Mixture Model Joint distribution is p(x,z) We don t have values for z 2. Hidden Markov Model A single time

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

MIXTURE MODELS AND EM

MIXTURE MODELS AND EM Last updated: November 6, 212 MIXTURE MODELS AND EM Credits 2 Some of these slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Simon Prince, University College London Sergios Theodoridis,

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Computing the MLE and the EM Algorithm

Computing the MLE and the EM Algorithm ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Computing the MLE and the EM Algorithm If X p(x θ), θ Θ, then the MLE is the solution to the equations logp(x θ) θ 0. Sometimes these equations

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

Weighted Finite-State Transducers in Computational Biology

Weighted Finite-State Transducers in Computational Biology Weighted Finite-State Transducers in Computational Biology Mehryar Mohri Courant Institute of Mathematical Sciences mohri@cims.nyu.edu Joint work with Corinna Cortes (Google Research). 1 This Tutorial

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Object Recognition 2017-2018 Jakob Verbeek Clustering Finding a group structure in the data Data in one cluster similar to

More information

Robert Collins CSE586 CSE 586, Spring 2015 Computer Vision II

Robert Collins CSE586 CSE 586, Spring 2015 Computer Vision II CSE 586, Spring 2015 Computer Vision II Hidden Markov Model and Kalman Filter Recall: Modeling Time Series State-Space Model: You have a Markov chain of latent (unobserved) states Each state generates

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

The Expectation Maximization or EM algorithm

The Expectation Maximization or EM algorithm The Expectation Maximization or EM algorithm Carl Edward Rasmussen November 15th, 2017 Carl Edward Rasmussen The EM algorithm November 15th, 2017 1 / 11 Contents notation, objective the lower bound functional,

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Unsupervised learning (part 1) Lecture 19

Unsupervised learning (part 1) Lecture 19 Unsupervised learning (part 1) Lecture 19 David Sontag New York University Slides adapted from Carlos Guestrin, Dan Klein, Luke Ze@lemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore Bayesian networks enable

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 Discriminative vs Generative Models Discriminative: Just learn a decision boundary between your

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

1 EM Primer. CS4786/5786: Machine Learning for Data Science, Spring /24/2015: Assignment 3: EM, graphical models

1 EM Primer. CS4786/5786: Machine Learning for Data Science, Spring /24/2015: Assignment 3: EM, graphical models CS4786/5786: Machine Learning for Data Science, Spring 2015 4/24/2015: Assignment 3: EM, graphical models Due Tuesday May 5th at 11:59pm on CMS. Submit what you have at least once by an hour before that

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

Outline of Today s Lecture

Outline of Today s Lecture University of Washington Department of Electrical Engineering Computer Speech Processing EE516 Winter 2005 Jeff A. Bilmes Lecture 12 Slides Feb 23 rd, 2005 Outline of Today s

More information

Estimating Gaussian Mixture Densities with EM A Tutorial

Estimating Gaussian Mixture Densities with EM A Tutorial Estimating Gaussian Mixture Densities with EM A Tutorial Carlo Tomasi Due University Expectation Maximization (EM) [4, 3, 6] is a numerical algorithm for the maximization of functions of several variables

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

A minimalist s exposition of EM

A minimalist s exposition of EM A minimalist s exposition of EM Karl Stratos 1 What EM optimizes Let O, H be a random variables representing the space of samples. Let be the parameter of a generative model with an associated probability

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models Jeff A. Bilmes (bilmes@cs.berkeley.edu) International Computer Science Institute

More information

Hidden Markov Models Part 1: Introduction

Hidden Markov Models Part 1: Introduction Hidden Markov Models Part 1: Introduction CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Modeling Sequential Data Suppose that

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 9: Expectation Maximiation (EM) Algorithm, Learning in Undirected Graphical Models Some figures courtesy

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2014-2015 Jakob Verbeek, ovember 21, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

Mixture Models & EM algorithm Lecture 21

Mixture Models & EM algorithm Lecture 21 Mixture Models & EM algorithm Lecture 21 David Sontag New York University Slides adapted from Carlos Guestrin, Dan Klein, Luke Ze@lemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore The Evils of Hard Assignments?

More information

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models Advanced Machine Learning Lecture 10 Mixture Models II 30.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ Announcement Exercise sheet 2 online Sampling Rejection Sampling Importance

More information

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart 1 Motivation and Problem In Lecture 1 we briefly saw how histograms

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Chapter 1 Markov Chains and Hidden Markov Models In this chapter, we will introduce the concept of Markov chains, and show how Markov chains can be used to model signals using structures such as hidden

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

But if z is conditioned on, we need to model it:

But if z is conditioned on, we need to model it: Partially Unobserved Variables Lecture 8: Unsupervised Learning & EM Algorithm Sam Roweis October 28, 2003 Certain variables q in our models may be unobserved, either at training time or at test time or

More information

Technical Details about the Expectation Maximization (EM) Algorithm

Technical Details about the Expectation Maximization (EM) Algorithm Technical Details about the Expectation Maximization (EM Algorithm Dawen Liang Columbia University dliang@ee.columbia.edu February 25, 2015 1 Introduction Maximum Lielihood Estimation (MLE is widely used

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Lecture 6: April 19, 2002

Lecture 6: April 19, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2002 Lecturer: Jeff Bilmes Lecture 6: April 19, 2002 University of Washington Dept. of Electrical Engineering Scribe: Huaning Niu,Özgür Çetin

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Chapter 08: Direct Maximum Likelihood/MAP Estimation and Incomplete Data Problems

Chapter 08: Direct Maximum Likelihood/MAP Estimation and Incomplete Data Problems LEARNING AND INFERENCE IN GRAPHICAL MODELS Chapter 08: Direct Maximum Likelihood/MAP Estimation and Incomplete Data Problems Dr. Martin Lauer University of Freiburg Machine Learning Lab Karlsruhe Institute

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

A Note on the Expectation-Maximization (EM) Algorithm

A Note on the Expectation-Maximization (EM) Algorithm A Note on the Expectation-Maximization (EM) Algorithm ChengXiang Zhai Department of Computer Science University of Illinois at Urbana-Champaign March 11, 2007 1 Introduction The Expectation-Maximization

More information

STATS 306B: Unsupervised Learning Spring Lecture 5 April 14

STATS 306B: Unsupervised Learning Spring Lecture 5 April 14 STATS 306B: Unsupervised Learning Spring 2014 Lecture 5 April 14 Lecturer: Lester Mackey Scribe: Brian Do and Robin Jia 5.1 Discrete Hidden Markov Models 5.1.1 Recap In the last lecture, we introduced

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2017

Cheng Soon Ong & Christian Walder. Canberra February June 2017 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2017 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 679 Part XIX

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management

Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management Toward Probabilistic Forecasts of Convective Storm Activity for En Route Air Traffic Management P. Barry Liu Prof. Mark Hansen University of California, Berkeley September 25th, 2003 1 Background Weather

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2 STATS 306B: Unsupervised Learning Spring 2014 Lecture 2 April 2 Lecturer: Lester Mackey Scribe: Junyang Qian, Minzhe Wang 2.1 Recap In the last lecture, we formulated our working definition of unsupervised

More information

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Lecture 2: GMM and EM

Lecture 2: GMM and EM 2: GMM and EM-1 Machine Learning Lecture 2: GMM and EM Lecturer: Haim Permuter Scribe: Ron Shoham I. INTRODUCTION This lecture comprises introduction to the Gaussian Mixture Model (GMM) and the Expectation-Maximization

More information

Data Analyzing and Daily Activity Learning with Hidden Markov Model

Data Analyzing and Daily Activity Learning with Hidden Markov Model Data Analyzing and Daily Activity Learning with Hidden Markov Model GuoQing Yin and Dietmar Bruckner Institute of Computer Technology Vienna University of Technology, Austria, Europe {yin, bruckner}@ict.tuwien.ac.at

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information