REVISION SHEET FP2 (Edx) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

Size: px
Start display at page:

Download "REVISION SHEET FP2 (Edx) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +"

Transcription

1 the Further Mathematis netwk V 07 REVISION SHEET FP (Ed) CLCULUS The main ideas are: Calulus using inverse trig funtions & hperboli trig funtions and their inverses. Malaurin series Differentiating the Inverse Trig Funtions Befe the eam ou should know: That ou an differentiate the trig funtions, the hperboli trig funtions and their inverses. That ou an appl the standard rules f differentiation (produt rule, quotient rule and hain rule) to funtions whih involve the above. That ou an integrate, arsin(), aros(), artan(), arot(), arsinh(), arosh() et using integration b parts. Your trig identities and hperboli funtion identities and how to use them in integration problems. Partiularl get familiar with useful substitutions to make. How to onstrut and use redution fmulae How to alulate ar length and area of surfae of revolution..5 3 aros( ) d d artan( ) d d arsin( ) d d It is imptant to be aware of what the range is f eah of these, namel: π π π π arsin, 0 aros π, artan Standard Calulus of Inverse Trig and Hperboli Trig Funtions arsin( ) d d aros( ) d d artan( ) d d arsinh( ) d d + + ar osh( ) d d artan + + a a a a arsin + a a ar osh + a + a ar sinh + a Dislaimer: Ever efft has gone into ensuring the aura of this doument. However, the FM Netwk an aept no responsibilit f its ontent mathing eah speifiation eatl.

2 the Further Mathematis netwk V 07 Calulus using these funtions The eamples below are ver tpial and show most of the ommon triks. Note details of all substitutions have been omitted, make sure ou understand how to do them in this ase and also in the ase of a definite integral. + d arsinh d ( + ) d d d arsin arsin d d arosh ( ) 6 d arosh( ) d Some useful integration triks Splitting up an integration: e.g. (to see this use the hain rule, set z d d + d and then d d dz ). d dz d B inspetion: e.g. Sine ln( + ) gives + when differentiated, we have d ln( + ) + + sine ( + ) gives ( + ) when differentiated, we have d Using lever substitutions: e.g. the substitution u sinh( ) will help ou with + d. Redution Fmulae You should be able to derive and use redution fmulae f the evaluation of definite integrals in simple ases. i.e. to alulate ed.you should be able to find numerous eamples in our tet and ou should pratie 0 these to be omftable with the proedure involved. r Length and rea The length of an ar between points and B on a urve an be alulated b: B d + d d B d t B d d + d. In parametri fm this is: d t + dt dt The area of the surfae fmed when ar B is rotated ompletel about O is: B d π + d d B d π + d d (in parametri fm) π tb t dt d d + dt dt You should review eamples of how this tpe of question and how to solve them. This obviousl involves differentiation, algebrai manipulation and integration (often b substitution). dt Dislaimer: Ever efft has gone into ensuring the aura of this doument. However, the FM Netwk an aept no responsibilit f its ontent mathing eah speifiation eatl.

3 the Further Mathematis netwk V 07 REVISION SHEET FP (Ed) CO-ORDINTE SYSTEMS The main ideas are: Parametri and Cartesian Equations of the parabola, ellipse, hperbola and retangular hperbola Equations of tangents and nmals to the above Intrinsi odinates and radius of urvature Befe the eam ou should know: The parabola, ellipse and hperbola are eah loi of a point P whih moves so that its distane from the fied point (the fous) is in a onstant ration (e, the eentriit) to its distane from a fied line (the diretri). If the length of the ar P on a urve is s, and the tangent to the urve at P makes an angle of ψ with the positive -ais, then (s, ψ) are alled the intrinsi odinates of the point P. How to alulate the radius of urvature, ρ at a point P on a urve. The Parabola The parabola with equation a has fous at (a, 0) and diretri a. Parametriall the parabola with equation a is given b at, at. The tangent at (h, k) to the parabola has the equation k a( + h) and the tangent at (at, at) has the equation t + at. The responding nmal has the equation + t at + at 3. Eample Find the equation of the tangent to the parabola with equation a at the point T(at, at). If S is the fous find the equation of the hd QSR whih is parallel to the tangent at T. Prove that QR TS. Solution d d dt The gradient of the tangent at T is a. d dt d at t The tangent passes through T(at, at) and therefe has equation at ( at ) t + at. t The hd QSR is parallel to this tangent and so has the same gradient. Sine the hd passes through the fous (a, 0) the equation of hd QSR is 0 ( a) t a. t The distane from T(at, at) to S(a, 0) is ( ) ( ) at a + at 0 a t a t + a + a t at + at + a a t + t + a( t + ) Q and R are where t a intersets a. Using a + t in a gives a(a + t) at ± 6a t + 6a at a 0. The fmula f the roots of a quadrati gives at ± a t +. Dislaimer: Ever efft has gone into ensuring the aura of this doument. However, the FM Netwk an aept no responsibilit f its ontent mathing eah speifiation eatl.

4 The responding odinates are the Further Mathematis netwk V 07 a at at t + ± +. The distane between the two points ( a+ at + at t +,at+ a t + ) and ( a at at t,at a t ) is ( + ) + ( + ) ( + )( + ) at ( + ) 6at t 6a t a t t So the distane from T to S is four times the distane from Q to R. The Ellipse The ellipse with equation + where b a ( e ) has foi at ( ± ae,0) and diretries with a equations ±. Parametriall the ellipse with equation + is given b aost, bsint, e h k 0 t < π. The tangent to this ellipse at (h, k) has equation +. The tangent to this ellipse at (aost,bsint) is ost+ sin t. The Hperbola The hperbola with equation where b a ( e ) has foi at ( ± ae,0) and diretries with a equations ±. Parametriall the hperbola with equation is given b aset, btant, e h k 0 t < π (where these are defined). The tangent to this hperbola at (h, k) has equation. The tangent to this ellipse at (aost,bsint) is set+ tan t. Note: The parabola, ellipse and hperbola are eah loi of a point P whih moves so that it s distane from a fied point (the fous) is in a onstant ration (e, the eentriit) to its distane from a fied line (the diretri). This fous-diretri propert is suh that e f the parabola, 0 < e < f the ellipse and e > f the hperbola. The Retangular Hperbola The retangular hperbola is a speial ase of a hperbola with e. You should know the Cartesian and parametri equations f a hperbola and the equations of tangents and nmals. Intrinsi Codinates If the length of the ar P on a urve is s, and the tangent to the urve at P makes an angle of ψ with the positive -ais, then (s, ψ) are alled the intrinsi odinates of the point P. In partiular d d d tan ψ, os ψ, sinψ d ds ds The radius of urvature ρ at point P(, ) on the urve is ds dψ 3 d 3 + d +. d d Dislaimer: Ever efft has gone into ensuring the aura of this doument. However, the FM Netwk an aept no responsibilit f its ontent mathing eah speifiation eatl.

5 the Further Mathematis netwk V 07 REVISION SHEET FP (Ed) HYPERBOLIC TRIG FUNCTIONS The main ideas are: Definitions of the hperboli trig funtions and their inverses. Wking with the hperboli trig funtions Identities involving hperboli trig funtions The Hperboli Trig Funtions These are defined as: sinh( ), osh( ), sinh( ) tanh( ). osh( ) ln0 ln0 0 F eample, sinh(ln0) Befe the eam ou should know: The definitions sinh( ), osh( ), sinh( ) tanh( ) osh( ) That ou an prove that arosh( ) ln( + ),arsinh( ) ln( + + ) + artanh( ) ln Your trig identities and hperboli funtion identities, eperiene will tell ou when it is best to wk in the eponential fm when dealing with equations. nd be able to prove hperboli identities from the definitions sinh( ),osh( ), it s wth pratiing indies f this. The Inverse Hperboli Trig Funtions Just as the hperboli trig funtions are defined in terms of e, their inverses an be epressed in term of logs. In + fat arosh( ) ln( + ), arsinh( ) ln( + + ), artanh( ) ln. You should be able to prove (and use) all of these. Here is the proof that arosh( ) ln( ) +. Let ar osh( ), then osh( ). Rearranging this gives 0 e + e. Multipling this b e gives 0 +. This is a quadrati in e and using the fmula f the roots of a quadrati gives ± e ±. Taking logs gives ar osh( ) ln( ± ). Do ou know wh the epression with the minus sign is rejeted here? These epressions an be used to give eat values of the inverse hperboli trig funtions in term of logs. F eample, arosh ln + ln + ln(3) Dislaimer: Ever efft has gone into ensuring the aura of this doument. However, the FM Netwk an aept no responsibilit f its ontent mathing eah speifiation eatl.

6 the Further Mathematis netwk V 07 Graphs of the Hperboli Trig Funtions osh( ) d sinh( ) d 8 tanh( ) d d seh ( ) - - sinh( ) d osh( ) d - Graphs of the Inverse Hperboli Trig Funtions - - You must also know the graphs of the inverse hperboli trig funtions, arsinh, arosh and artanh. s f an funtion these are obtained b refleting the respetive graphs of sinh, osh and tanh in. The eamples of arsinh and arosh are shown here. Notie that arosh() is onl defined f greater than equal to. Identities Involving Hperboli Trig Funtions Identities involving hperboli trig funtions inlude: osh u sinh u, osh( u) osh u+ sinh u, sin( u+ v) sinh( u)osh( v) + osh( u)sinh( v ) The onl differene between a hperboli trig identit and the responding standard trig identit is that the sign is reversed when a produt of two sines is replaed b a produt of two sinhs. This is alled Osbn s Rule. You an prove an hperboli trig identit using their definitions and should be able to do this f the eam. Equations Involving Hperboli Trig Funtions Eample Solve the equation 3 osh + 5sinh 0 giving our answer in terms of natural logarithms. Solution e e 3osh + 5sinh e + 8e 0 0 9e 0e e e 9 ln ln 9 ( )( ) Dislaimer: Ever efft has gone into ensuring the aura of this doument. However, the FM Netwk an aept no responsibilit f its ontent mathing eah speifiation eatl.

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = + the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET FP (MEI) CALCULUS The main ideas are: Calculus using inverse trig functions & hperbolic trig functions and their inverses. Maclaurin

More information

Chapter 2: Solution of First order ODE

Chapter 2: Solution of First order ODE 0 Chapter : Solution of irst order ODE Se. Separable Equations The differential equation of the form that is is alled separable if f = h g; In order to solve it perform the following steps: Rewrite the

More information

Pseudo Spheres. A Sample of Electronic Lecture Notes in Mathematics. Eberhard Malkowsky.

Pseudo Spheres. A Sample of Electronic Lecture Notes in Mathematics. Eberhard Malkowsky. Pseudo Spheres A Sample of Eletroni Leture Notes in Mathematis Eberhard Malkowsky Mathematishes Institut Justus Liebig Universität Gießen Arndtstraße D-3539 Gießen Germany /o Shool of Informatis Computing

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

After the completion of this section the student should recall

After the completion of this section the student should recall Chapter I MTH FUNDMENTLS I. Sets, Numbers, Coordinates, Funtions ugust 30, 08 3 I. SETS, NUMERS, COORDINTES, FUNCTIONS Objetives: fter the ompletion of this setion the student should reall - the definition

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

6675/01 Edexcel GCE Pure Mathematics P5 Further Mathematics FP2 Advanced/Advanced Subsidiary

6675/01 Edexcel GCE Pure Mathematics P5 Further Mathematics FP2 Advanced/Advanced Subsidiary 6675/1 Edecel GCE Pure Mathematics P5 Further Mathematics FP Advanced/Advanced Subsidiary Monday June 5 Morning Time: 1 hour 3 minutes 1 1. (a) Find d. (1 4 ) (b) Find, to 3 decimal places, the value of.3

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 17.3 Introduction In this section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems Edecel GCE A Level Maths Further Maths 3 Coordinate Sstems Edited b: K V Kumaran kumarmaths.weebl.com 1 kumarmaths.weebl.com kumarmaths.weebl.com 3 kumarmaths.weebl.com 4 kumarmaths.weebl.com 5 1. An ellipse

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

Math Review Packet #5 Algebra II (Part 2) Notes

Math Review Packet #5 Algebra II (Part 2) Notes SCIE 0, Spring 0 Miller Math Review Packet #5 Algebra II (Part ) Notes Quadratic Functions (cont.) So far, we have onl looked at quadratic functions in which the term is squared. A more general form of

More information

GLOBAL EDITION. Calculus. Briggs Cochran Gillett SECOND EDITION. William Briggs Lyle Cochran Bernard Gillett

GLOBAL EDITION. Calculus. Briggs Cochran Gillett SECOND EDITION. William Briggs Lyle Cochran Bernard Gillett GOBA EDITION Briggs Cohran Gillett Calulus SECOND EDITION William Briggs le Cohran Bernar Gillett ( (, ) (, ) (, Q ), Q ) (, ) ( Q, ) / 5 /4 5 5 /6 7 /6 ( Q, 5 5 /4 ) 4 4 / 7 / (, ) 9 / (, ) 6 / 5 / (Q,

More information

To derive the other Pythagorean Identities, divide the entire equation by + = θ = sin. sinθ cosθ tanθ = 1

To derive the other Pythagorean Identities, divide the entire equation by + = θ = sin. sinθ cosθ tanθ = 1 Syllabus Objetives: 3.3 The student will simplify trigonometri expressions and prove trigonometri identities (fundamental identities). 3.4 The student will solve trigonometri equations with and without

More information

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 DECEMBER 2013 ROUND 1 TRIG: RIGHT ANGLE PROBLEMS, LAWS OF SINES AND COSINES

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 DECEMBER 2013 ROUND 1 TRIG: RIGHT ANGLE PROBLEMS, LAWS OF SINES AND COSINES CONTEST 3 DECEMBER 03 ROUND TRIG: RIGHT ANGLE PROBLEMS, LAWS OF SINES AND COSINES ANSWERS A) B) C) A) The sides of right ΔABC are, and 7, where < < 7. A is the larger aute angle. Compute the tan( A). B)

More information

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric Trigonometric equations 6 sllabusref eferenceence Topic: Periodic functions and applications In this cha 6A 6B 6C 6D 6E chapter Simple trigonometric equations Equations using radians Further trigonometric

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Solving Right Triangles Using Trigonometry Examples

Solving Right Triangles Using Trigonometry Examples Solving Right Triangles Using Trigonometry Eamples 1. To solve a triangle means to find all the missing measures of the triangle. The trigonometri ratios an be used to solve a triangle. The ratio used

More information

A Numerical Method For Constructing Geo-Location Isograms

A Numerical Method For Constructing Geo-Location Isograms A Numerial Method For Construting Geo-Loation Isograms Mike Grabbe The Johns Hopkins University Applied Physis Laboratory Laurel, MD Memo Number GVW--U- June 9, 2 Introdution Geo-loation is often performed

More information

Pure Further Mathematics 3. Revision Notes

Pure Further Mathematics 3. Revision Notes Pure Further Mathematics Revision Notes June 6 FP JUNE 6 SDB Hyperbolic functions... Definitions and graphs... Addition formulae, double angle formulae etc.... Osborne s rule... Inverse hyperbolic functions...

More information

What is a Function? What is a Function? Mathematical Skills: Functions. The Function Machine. The Function Machine. Examples.

What is a Function? What is a Function? Mathematical Skills: Functions. The Function Machine. The Function Machine. Examples. What is a Function? Mathematical Skills: Functions A mathematical function is a process that converts one set of numbers into another. F example: Doubling Doubling Function Input 3 4 Output 4 6 8 What

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 7.3 Introduction In this Section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity Andrew s handout Trig identities. Fundamental identities These are the most fundamental identities, in the sense that ou should probabl memorize these and use them to derive the rest (or, if ou prefer,

More information

MTH 142 Solution Practice for Exam 2

MTH 142 Solution Practice for Exam 2 MTH 4 Solution Pratie for Eam Updated /7/4, 8: a.m.. (a) = 4/, hene MID() = ( + + ) +/ +6/ +/ ( 4 ) =. ( LEFT = ( 4..). =.7 and RIGHT = (.. ). =.7. Hene TRAP =.7.. (a) MID = (.49 +.48 +.9 +.98). = 4.96.

More information

Parametric Equations for Circles and Ellipses

Parametric Equations for Circles and Ellipses Lesson 5-8 Parametric Equations for Circles and Ellipses BIG IDEA Parametric equations use separate functions to defi ne coordinates and and to produce graphs Vocabular parameter parametric equations equation

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

12 th Maths Way to Success

12 th Maths Way to Success th Maths Quarterly Eam-7-Answer Key Part - A Q.No Option Q.No Option Q.No Option Q.No Option 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 Part B. A adj A A adja..() adja A () A I () From (), (),() we get A adja adja

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus PART I CHAPTER P Preparation for Calulus Setion P. Graphs and Models...................... Setion P. Linear Models and Rates of Change............. 7 Setion P. Funtions and Their Graphs.................

More information

Higher. Functions and Graphs. Functions and Graphs 15

Higher. Functions and Graphs. Functions and Graphs 15 Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 5 Set Theor 5 Functions 6 Inverse Functions 9 4 Eponential Functions 0 5 Introduction to Logarithms 0 6 Radians 7 Eact Values

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

HIGHER SECONDARY FIRST YEAR MATHEMATICS

HIGHER SECONDARY FIRST YEAR MATHEMATICS HIGHER SECONDARY FIRST YEAR MATHEMATICS ANALYTICAL GEOMETRY Creative Questions Time :.5 Hrs Marks : 45 Part - I Choose the orret answer 0 = 0. The angle between the straight lines 4y y 0 is a) 0 30 b)

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions 01 Summer Assignment Theme 1: Linear Functions 1. Write the equation for the line through the point P(, -1) that is perpendicular to the line 5y = 7. (A) + 5y = -1 (B) 5 y = 8 (C) 5 y = 1 (D) 5 + y = 7

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Name Please print your name as it appears on the class roster.

Name Please print your name as it appears on the class roster. Berkele Cit College Practice Problems Math 1 Precalculus - Final Eam Preparation Name Please print our name as it appears on the class roster. SHORT ANSWER. Write the word or phrase that best completes

More information

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS SECTION 7.5 STRATEGY FOR INTEGRATION 483 6. 2 sin 2 2 cos CAS 67. (a) Use a computer algebra sstem to find the partial fraction decomposition of the function 62 63 Find the area of the region under the

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

Scholarship Calculus (93202) 2013 page 1 of 8. ( 6) ± 20 = 3± 5, so x = ln( 3± 5) 2. 1(a) Expression for dy = 0 [1st mark], [2nd mark], width is

Scholarship Calculus (93202) 2013 page 1 of 8. ( 6) ± 20 = 3± 5, so x = ln( 3± 5) 2. 1(a) Expression for dy = 0 [1st mark], [2nd mark], width is Sholarship Calulus 93) 3 page of 8 Assessent Shedule 3 Sholarship Calulus 93) Evidene Stateent Question One a) e x e x Solving dy dx ln x x x ln ϕ e x e x e x e x ϕ, we find e x x e y The drop is widest

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile.

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile. Functions Definition: A function f, defined from a set A to a set B, is a rule that associates with each element of the set A one, and onl one, element of the set B. Eamples: a) Graphs: b) Tables: 0 50

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix Eletromagneti Theory Prof. Ruiz, UNC Asheille, dotorphys on YouTube Chapter B Notes. Speial Relatiity B1. The Rotation Matrix There are two pairs of axes below. The prime axes are rotated with respet to

More information

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP mark schemes from old P, P5, P6 and FP, FP, FP papers (back to June ) Please note that the following pages contain mark schemes for questions from past papers. Where a question reference is marked with

More information

2.6 Absolute Value Equations

2.6 Absolute Value Equations 96 CHAPTER 2 Equations, Inequalities, and Problem Solving 89. 5-8 6 212 + 2 6-211 + 22 90. 1 + 2 6 312 + 2 6 1 + 4 The formula for onverting Fahrenheit temperatures to Celsius temperatures is C = 5 1F

More information

Theory. Coupled Rooms

Theory. Coupled Rooms Theory of Coupled Rooms For: nternal only Report No.: R/50/TCR Prepared by:. N. taey B.., MO Otober 00 .00 Objet.. The objet of this doument is present the theory alulations to estimate the reverberant

More information

Section 9.1 Video Guide Distance and Midpoint Formulas

Section 9.1 Video Guide Distance and Midpoint Formulas Objectives: 1. Use the Distance Formula 2. Use the Midpoint Formula Section 9.1 Video Guide Distance and Midpoint Formulas Section 9.1 Objective 1: Use the Distance Formula Video Length 8:27 1. Eample:

More information

10Circular ONLINE PAGE PROOFS. functions

10Circular ONLINE PAGE PROOFS. functions Cirular funtions. Kik off with CAS. Modelling with trigonometri funtions. Reiproal trigonometri funtions. Graphs of reiproal trigonometri funtions. Trigonometri identities.6 Compound- and doule-angle formulas.7

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

Vector Fields. Field (II) Field (V)

Vector Fields. Field (II) Field (V) Math 1a Vector Fields 1. Match the following vector fields to the pictures, below. Eplain our reasoning. (Notice that in some of the pictures all of the vectors have been uniforml scaled so that the picture

More information

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two 35. Prove the formula A r for the area of a sector of a circle with radius r and central angle. [Hint: Assume 0 and place the center of the circle at the origin so it has the equation. Then is the sum

More information

Worksheet #1. A little review.

Worksheet #1. A little review. Worksheet #1. A little review. I. Set up BUT DO NOT EVALUATE definite integrals for each of the following. 1. The area between the curves = 1 and = 3. Solution. The first thing we should ask ourselves

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

MATH 216T Homework 1 Solutions

MATH 216T Homework 1 Solutions MATH 216T Homew 1 Solutions 1. Find the greatest ommon divis of 5321 and 1235 and write it as a linear omination of 5321 and 1235. Solution : Using our implementation of the Eulidean Algithm, we easily

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Analytical Study of Stability of Systems of ODEs

Analytical Study of Stability of Systems of ODEs D. Keffer, ChE 55,Universit of Tennessee, Ma, 999 Analtial Stud of Stabilit of Sstems of ODEs David Keffer Department of Chemial Engineering Universit of Tennessee, Knoxville date begun: September 999

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

Vector-Valued Functions

Vector-Valued Functions Vector-Valued Functions 1 Parametric curves 8 ' 1 6 1 4 8 1 6 4 1 ' 4 6 8 Figure 1: Which curve is a graph of a function? 1 4 6 8 1 8 1 6 4 1 ' 4 6 8 Figure : A graph of a function: = f() 8 ' 1 6 4 1 1

More information

MATHEMATICS 200 December 2014 Final Exam Solutions

MATHEMATICS 200 December 2014 Final Exam Solutions MATHEMATICS 2 December 214 Final Eam Solutions 1. Suppose that f,, z) is a function of three variables and let u 1 6 1, 1, 2 and v 1 3 1, 1, 1 and w 1 3 1, 1, 1. Suppose that at a point a, b, c), Find

More information

Vertex. March 23, Ch 9 Guided Notes.notebook

Vertex. March 23, Ch 9 Guided Notes.notebook March, 07 9 Quadratic Graphs and Their Properties A quadratic function is a function that can be written in the form: Verte Its graph looks like... which we call a parabola. The simplest quadratic function

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

5.1 Composite Functions

5.1 Composite Functions SECTION. Composite Funtions 7. Composite Funtions PREPARING FOR THIS SECTION Before getting started, review the following: Find the Value of a Funtion (Setion., pp. 9 ) Domain of a Funtion (Setion., pp.

More information

HOW TO FACTOR. Next you reason that if it factors, then the factorization will look something like,

HOW TO FACTOR. Next you reason that if it factors, then the factorization will look something like, HOW TO FACTOR ax bx I now want to talk a bit about how to fator ax bx where all the oeffiients a, b, and are integers. The method that most people are taught these days in high shool (assuming you go to

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

Pure Further Mathematics 3. Revision Notes

Pure Further Mathematics 3. Revision Notes Pure Further Mathematics Revision Notes February 6 FP FEB 6 SDB Hyperbolic functions... Definitions and graphs... Addition formulae, double angle formulae etc.... Osborne s rule... Inverse hyperbolic functions...

More information

Unit 3 Notes Mathematical Methods

Unit 3 Notes Mathematical Methods Unit 3 Notes Mathematical Methods Foundational Knowledge Created b Triumph Tutoring Copright info Copright Triumph Tutoring 07 Triumph Tutoring Pt Ltd ABN 60 607 0 507 First published in 07 All rights

More information

Fiber Optic Cable Transmission Losses with Perturbation Effects

Fiber Optic Cable Transmission Losses with Perturbation Effects Fiber Opti Cable Transmission Losses with Perturbation Effets Kampanat Namngam 1*, Preeha Yupapin 2 and Pakkinee Chitsakul 1 1 Department of Mathematis and Computer Siene, Faulty of Siene, King Mongkut

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

ES.182A Problem Section 11, Fall 2018 Solutions

ES.182A Problem Section 11, Fall 2018 Solutions Problem 25.1. (a) z = 2 2 + 2 (b) z = 2 2 ES.182A Problem Section 11, Fall 2018 Solutions Sketch the following quadratic surfaces. answer: The figure for part (a) (on the left) shows the z trace with =

More information

Higher. Integration 1

Higher. Integration 1 Higher Mathematics Contents Indefinite Integrals RC Preparing to Integrate RC Differential Equations A Definite Integrals RC 7 Geometric Interpretation of A 8 Areas between Curves A 7 Integrating along

More information

Chapter 5 Differentiation

Chapter 5 Differentiation Capter 5 Differentiation Course Title: Real Analsis 1 Course Code: MTH31 Course instrutor: Dr Atiq ur Reman Class: MS-II Course URL: wwwmatitorg/atiq/fa15-mt31 Derivative of a funtion: Let f be defined

More information

REVIEW. cos 4. x x x on (0, x y x y. 1, if x 2

REVIEW. cos 4. x x x on (0, x y x y. 1, if x 2 Math ` Part I: Problems REVIEW Simplif (without the use of calculators). log. ln e. cos. sin (cos ). sin arccos( ). k 7. k log (sec ) 8. cos( )cos 9. ( ) 0. log (log) Solve the following equations/inequalities.

More information

arxiv: v1 [math-ph] 14 Apr 2008

arxiv: v1 [math-ph] 14 Apr 2008 Inverse Vetor Operators Shaon Sahoo arxiv:0804.9v [math-ph] 4 Apr 008 Department of Physis, Indian Institute of Siene, Bangalore 5600, India. Abstrat In different branhes of physis, we frequently deal

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1 Solutions to the Math 0 Sample Final Eam (from Spring 00) Page Part : Multiple Choice Questions. Here ou work out the problems and then select the answer that matches our answer. No partial credit is given

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Differential Equations 8/24/2010

Differential Equations 8/24/2010 Differential Equations A Differential i Equation (DE) is an equation ontaining one or more derivatives of an unknown dependant d variable with respet to (wrt) one or more independent variables. Solution

More information

Quantum Mechanics: Wheeler: Physics 6210

Quantum Mechanics: Wheeler: Physics 6210 Quantum Mehanis: Wheeler: Physis 60 Problems some modified from Sakurai, hapter. W. S..: The Pauli matries, σ i, are a triple of matries, σ, σ i = σ, σ, σ 3 given by σ = σ = σ 3 = i i Let stand for the

More information

Algebra: Basic Operation, Law of Indices

Algebra: Basic Operation, Law of Indices Algera: Basi Operation, Law of Indies MD MARUFUR RAHMAN Ms Sustainale Energy Systems Beng (Hons) Mehanial Engineering Bs (Hons) Computer Siene & Engineering 05-06 Inreasingly, diffiulty in understanding

More information

Solve Quadratics Using the Formula

Solve Quadratics Using the Formula Clip 6 Solve Quadratics Using the Formula a + b + c = 0, = b± b 4 ac a ) Solve the equation + 4 + = 0 Give our answers correct to decimal places. ) Solve the equation + 8 + 6 = 0 ) Solve the equation =

More information

Chapter 12 and 13 Math 125 Practice set Note: the actual test differs. Given f(x) and g(x), find the indicated composition and

Chapter 12 and 13 Math 125 Practice set Note: the actual test differs. Given f(x) and g(x), find the indicated composition and Chapter 1 and 13 Math 1 Practice set Note: the actual test differs. Given f() and g(), find the indicated composition. 1) f() = - ; g() = 3 + Find (f g)(). Determine whether the function is one-to-one.

More information

Trigonometric Functions

Trigonometric Functions TrigonometricReview.nb Trigonometric Functions The trigonometric (or trig) functions are ver important in our stud of calculus because the are periodic (meaning these functions repeat their values in a

More information

Ermakov Equation and Camassa-Holm Waves

Ermakov Equation and Camassa-Holm Waves Publiations 9-06 Ermakov Equation and Camassa-Holm Waves Haret C. Rosu Instituto Potosino de Investigaion Cientifia y Tenologia Stefan C. Manas Embry-Riddle Aeronautial University, manass@erau.edu Follow

More information

12.4. Curvature. Introduction. Prerequisites. Learning Outcomes

12.4. Curvature. Introduction. Prerequisites. Learning Outcomes Curvature 1.4 Introduction Curvature is a measure of how sharpl a curve is turning as it is traversed. At a particular point along the curve a tangent line can be drawn; this line making an angle ψ with

More information

Ordinary Differential Equations of First Order

Ordinary Differential Equations of First Order CHAPTER 1 Ordinar Differential Equations of First Order 1.1 INTRODUCTION Differential equations pla an indispensable role in science technolog because man phsical laws relations can be described mathematicall

More information

2.9 Incomplete Elliptic Integrals

2.9 Incomplete Elliptic Integrals .9 Inomplete Ellipti Integrals A. Purpose An integral of the form R t, P t) 1/) dt 1) in whih Pt) is a polynomial of the third or fourth degree that has no multiple roots, and R is a rational funtion of

More information

dy dy 2 dy d Y 2 dx dx Substituting these into the given differential equation d 2 Y dy 2Y = 2x + 3 ( ) ( 1 + 2b)= 3

dy dy 2 dy d Y 2 dx dx Substituting these into the given differential equation d 2 Y dy 2Y = 2x + 3 ( ) ( 1 + 2b)= 3 Solutions 14() 1 Coplete solutions to Eerise 14() 1. (a) Sine f()= 18 is a onstant so Y = C, differentiating this zero. Substituting for Y into Y = 18 C = 18, hene C = 9 The partiular integral Y = 9. (This

More information

To work algebraically with exponential functions, we need to use the laws of exponents. You should

To work algebraically with exponential functions, we need to use the laws of exponents. You should Prealulus: Exponential and Logisti Funtions Conepts: Exponential Funtions, the base e, logisti funtions, properties. Laws of Exponents memorize these laws. To work algebraially with exponential funtions,

More information

8.3 THE HYPERBOLA OBJECTIVES

8.3 THE HYPERBOLA OBJECTIVES 8.3 THE HYPERBOLA OBJECTIVES 1. Define Hperol. Find the Stndrd Form of the Eqution of Hperol 3. Find the Trnsverse Ais 4. Find the Eentriit of Hperol 5. Find the Asmptotes of Hperol 6. Grph Hperol HPERBOLAS

More information

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames IL 32 /9 ppling the virtual work equations to a frame struture is as simple as separating the frame into a series of beams and summing the virtual work for eah setion. In addition, when evaluating the

More information

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker.

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker. UTC Engineering 329 Proportional Controller Design for Speed System By John Beverly Green Team John Beverly Keith Skiles John Barker 24 Mar 2006 Introdution This experiment is intended test the variable

More information