Stable Adaptive Co-simulation: A Switched Systems Approach. Cláudio Gomes, Benoît Legat, Raphaël M. Jungers, Hans Vangheluwe

Size: px
Start display at page:

Download "Stable Adaptive Co-simulation: A Switched Systems Approach. Cláudio Gomes, Benoît Legat, Raphaël M. Jungers, Hans Vangheluwe"

Transcription

1 Stable Adaptive Co-simulation: A Switched Systems Approach Cláudio Gomes, Benoît Legat, Raphaël M. Jungers, Hans Vangheluwe

2 Agenda 1. Background 2. Adaptive Orchestration 3. Contribution 4. Conclusion 2

3 1. Background Motivation and definition of co-simulation 3

4 Why Co-simulation? Tool interoperability Veitl, A., & Arnold, M. (1999). Coupled simulation of multibody systems and elastic structures. Advances in Computational Multibody Dynamics, Multi-rate Parallelism Newton, A. R., & Sangiovanni-Vincentelli, A. L. (1983). Relaxation-Based Electrical Simulation. SIAM Journal on Scientific and Statistical Computing, 4(3), Gomes, C., Thule, C., Broman, D., Larsen, P. G., & Vangheluwe, H. (2017). Co-simulation: State of the art. Retrieved from 4

5 Running Example Original System Busch, M. (2016). Continuous approximation techniques for co-simulation methods: Analysis of numerical stability and local error. ZAMM - Journal of Applied Mathematics and Mechanics, 96(9),

6 Running Example Co-simulation Orchestrator 6

7 Orchestration Orchestrator getoutput( ) setinput( ) Orchestrator getoutput( ) setinput( ) simulateuntil(t+h, ) simulateuntil(t+h, ) t := t + H t t+h t t+h 7

8 Internal Behavior Orchestrator getoutput( ) setinput( ) Orchestrator getoutput( ) setinput( ) simulateuntil(t+h, ) simulateuntil(t+h, ) t t+h1 t+h t := t + H t t+h2 t+h 8

9 2. Adaptive Orchestration Why? What? And How? 9

10 Simulator Internals Model Solver Input Approximation Orchestrator 10

11 Orchestration Space Inputs Model Solver Input Approximation Busch, M., & Schweizer, B. (2011). Stability of Co-Simulation Methods Using Hermite and Lagrange Approximation Techniques. In ECCOMAS Thematic Conference on Multibody Dynamics (pp. 1 10). Brussels, Belgium. Orchestrator Stettinger, G., Horn, M., Benedikt, M., & Zehetner, J. (2014). Model-based coupling approach for non-iterative real-time co-simulation. In 2014 European Control Conference (ECC) (pp ). Input Approximations Polynomial 0 Extrapolation Interpolation Polynomial 1 Context-aware C 0 Continuous C 1 Continuous Model ID ed Ben Khaled-El Feki, A., Duval, L., Faure, C., Simon, D., & Ben Gaid, M. (2017). CHOPtrey: contextual online polynomial extrapolation for enhanced multicore co-simulation of complex systems. SIMULATION, Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.). Cengage Learning. 11

12 Orchestration Space Solvers Model Solver Input Approximation Orchestrator Numerical Solvers Parallel Sequential Order 0 Order 1 Implicit Semi-Explicit Step size Explicit Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differentialalgebraic problems. 12

13 Orchestration Space Synchronization Arnold, M., Clauß, C., & Schierz, T. (2014). Error Analysis and Error Estimates for Co-simulation in FMI for Model Exchange and Co- Simulation v2.0. In S. Schöps, A. Bartel, M. Günther, W. E. J. ter Maten, & C. P. Müller (Eds.), Progress in Differential-Algebraic Equations (pp ). Berlin, Heidelberg: Springer Berlin Heidelberg. Model Solver Input Approximation Schweizer, B., & Lu, D. (2015). Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 95(9), Orchestrator Orchestration Algorithms Parallel Sequential Jacobi Gauss-Seidel Implicit Semi-Explicit Step size Explicit Gomes, C., Thule, C., Broman, D., Larsen, P. G., & Vangheluwe, H. (2017). Co-simulation: State of the art. Retrieved from 13

14 Capability Interaction Model Solver Input Approximation Orchestrator Input Approximations Polynomial 0 Extrapolation Polynomial 1 Interpolation Orchestration Algorithms C 0 Continuous Parallel Sequential Jacobi Gauss-Seidel Implicit Semi-Explicit Step size Explicit 14

15 Adaptive Orchestration Model Forward Euler: h=0.04 Midpoint: h=0.01 Model Forward Euler: h=0.2 h=0.1 Constant Extrapolation Constant Extrapolation Jacobi: H=0.2 H=0.1 15

16 Adaptive Orchestration Model Forward Euler: h=0.04 Midpoint: h=0.01 Model Forward Euler: h=0.2 h=0.1 Constant Extrapolation Constant Extrapolation Performance Forward Euler: h=0.04 Forward Euler: h=0.2 Jacobi: H=0.2 H=0.1 H=0.2 Research problem: Is this policy stable? Midpoint: h=0.01 Forward Euler: h=0.1 H=0.1 Stability 16

17 3. Contribution Certification of adaptive orchestration algorithms 17

18 Non-adaptive Stability Analysis Model Forward Euler: h=0.04 Model Forward Euler: h=0.2 Constant Extrapolation Constant Extrapolation Jacobi: H=0.2 Busch, M., & Schweizer, B. (2010). Numerical stability and accuracy of different co-simulation techniques: analytical investigations based on a 2-DOF test model. In 1st Joint International Conference on Multibody System Dynamics (pp ). 18

19 Stability definition Non-adaptive: Adaptive: for any permutation 19

20 Non-adaptive Stability Analysis Theys, J. (2005). Joint Spectral Radius: theory and approximations. Hamilton Institute (Ireland) Upper bound: k upper bound

21 Adaptive Cosim Stability Analysis Stability: for any permutation Stable? Upper bound can be computed: Ahmadi, A. A., Jungers, R. M., Parrilo, P. A., & Roozbehani, M. (2014). Joint Spectral Radius and Path-Complete Graph Lyapunov Functions. SIAM Journal on Control and Optimization, 52(1), Parrilo, P. A., & Jadbabaie, A. (2008). Approximation of the joint spectral radius using sum of squares. Linear Algebra and Its Applications, 428(10), Jungers, R. (2009). The joint spectral radius: theory and applications (Vol. 385). Springer Science & Business Media. 21

22 Example Performance Forward Euler: h=0.04 Forward Euler: h=0.2 H=0.2 Midpoint: h=0.01 Forward Euler: h=0.1 H=0.1 Accuracy 22

23 Example Performance Forward Euler: h=0.04 Forward Euler: h=0.2 H=0.2 Legat, B., Jungers, R. M., & Parrilo, P. A. (2016). Generating Unstable Trajectories for Switched Systems via Dual Sum-Of-Squares Techniques. In Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control - HSCC 16 (pp ). New York, New York, USA: ACM Press. Midpoint: h=0.01 Forward Euler: h=0.1 H=0.1 Accuracy 23

24 Example Performance Forward Euler: h=0.04 Forward Euler: h=0.2 H=0.2 Midpoint: h=0.01 Forward Euler: h=0.1 H=0.1 Accuracy 24

25 3. Conclusion Summary, limitations, and future work 25

26 Summary of the Approach 1. Capture possible orchestration decisions IP can be protected if solver is embedded 26

27 Summary of the Approach 1. Capture possible orchestration decisions IP can be protected if solver is embedded 2. Check stability of unrestricted adaptive orchestration 27

28 Summary of the Approach 1. Capture possible orchestration decisions IP can be protected if solver is embedded 2. Check stability of unrestricted adaptive orchestration 3. Restrict if needed 28

29 Limitations & Future Work Scalability How to efficiently restrict the orchestration policy? Optimization of policies, subject to constraints E.g., real-time constraints 29

30 Thank you! Questions? 30

31 Appendix 31

32 Tackling Complexity Scale Heterogeneity Market Pressure Van der Auweraer, H., Anthonis, J., De Bruyne, S., & Leuridan, J. (2013). Virtual engineering at work: the challenges for designing mechatronic products. Engineering with 32 Computers, 29(3),

33 Simulation is not Enough Original System: Tool Specialization: Actuators Actuators Overture Plant Control Plant Control Sensors Sensors Co-simulation 33

34 Simulation is not Enough Tool Specialization: Refinement: Actuators Actuators Plant Control Plant Control Sensors Sensors Co-simulation34

35 Adaptive Cosim Stability Analysis At each co-simulation step: Stability: for any permutation 35

Co-simulation Methods for EPAS and Chassis Systems Development. Master s Thesis in Engineering Mathematics and Computational Science CANHUI WU

Co-simulation Methods for EPAS and Chassis Systems Development. Master s Thesis in Engineering Mathematics and Computational Science CANHUI WU Co-simulation Methods for EPAS and Chassis Systems Development Master s Thesis in Engineering Mathematics and Computational Science CANHUI WU Department of Mathematical Sciences CHALMERS UNIVERSITY OF

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Foundations for Continuous Time Hierarchical Co-simulation

Foundations for Continuous Time Hierarchical Co-simulation Foundations for Continuous Time Hierarchical Co-simulation Cláudio Gomes (claudio.gomes@uantwerpen.be) November 22, 2016 Abstract Complex systems have to decomposed into sub-systems which are developed

More information

MBS/FEM Co-Simulation Approach for Analyzing Fluid/Structure- Interaction Phenomena in Turbine Systems

MBS/FEM Co-Simulation Approach for Analyzing Fluid/Structure- Interaction Phenomena in Turbine Systems Multibody Systems Martin Busch University of Kassel Mechanical Engineering MBS/FEM Co-Simulation Approach for Analyzing Fluid/Structure- Interaction Phenomena in Turbine Systems Martin Busch and Bernhard

More information

Numerical Methods. Scientists. Engineers

Numerical Methods. Scientists. Engineers Third Edition Numerical Methods for Scientists and Engineers K. Sankara Rao Numerical Methods for Scientists and Engineers Numerical Methods for Scientists and Engineers Third Edition K. SANKARA RAO Formerly,

More information

Functional Mockup Interface (FMI)

Functional Mockup Interface (FMI) Functional Mockup Interface (FMI) A framework for coarse-grained parallel time integration in nonlinear system dynamics PinT 2015 4th Workshop on Parallel-in-Time Integration May 2015, Dresden, Germany

More information

Approximated Stability Analysis of Bi-Modal Hybrid Co-simulation Scenarios

Approximated Stability Analysis of Bi-Modal Hybrid Co-simulation Scenarios Approximated Stability Analysis of Bi-Modal Hybrid Co-simulation Scenarios Cláudio Gomes 1, Paschalis Karalis 2, Eva M. Navarro-López 2, and Hans Vangheluwe 134 1 Department of Computer Science and Mathematics,

More information

The Joint Spectral Radius: Theory And Applications (Lecture Notes In Control And Information Sciences) By Raphaël Jungers

The Joint Spectral Radius: Theory And Applications (Lecture Notes In Control And Information Sciences) By Raphaël Jungers The Joint Spectral Radius: Theory And Applications (Lecture Notes In Control And Information Sciences) By Raphaël Jungers If searched for the book The Joint Spectral Radius: Theory and Applications (Lecture

More information

An Implicit Runge Kutta Solver adapted to Flexible Multibody System Simulation

An Implicit Runge Kutta Solver adapted to Flexible Multibody System Simulation An Implicit Runge Kutta Solver adapted to Flexible Multibody System Simulation Johannes Gerstmayr 7. WORKSHOP ÜBER DESKRIPTORSYSTEME 15. - 18. March 2005, Liborianum, Paderborn, Germany Austrian Academy

More information

Computation of the Joint Spectral Radius with Optimization Techniques

Computation of the Joint Spectral Radius with Optimization Techniques Computation of the Joint Spectral Radius with Optimization Techniques Amir Ali Ahmadi Goldstine Fellow, IBM Watson Research Center Joint work with: Raphaël Jungers (UC Louvain) Pablo A. Parrilo (MIT) R.

More information

Path-complete Lyapunov techniques

Path-complete Lyapunov techniques Path-complete Lyapunov techniques Raphaël Jungers (UCLouvain, Belgium) Dysco 17 Leuven, Nov 2017 Outline Switching systems Path-complete methods for switching systems stability Further results and open

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis J. Stoer R. Bulirsch Introduction to Numerical Analysis Second Edition Translated by R. Bartels, W. Gautschi, and C. Witzgall With 35 Illustrations Springer Contents Preface to the Second Edition Preface

More information

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations International Mathematics and Mathematical Sciences Volume 212, Article ID 767328, 8 pages doi:1.1155/212/767328 Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

MATHEMATICAL METHODS INTERPOLATION

MATHEMATICAL METHODS INTERPOLATION MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

Study the Numerical Methods for Solving System of Equation

Study the Numerical Methods for Solving System of Equation Study the Numerical Methods for Solving System of Equation Ravi Kumar 1, Mr. Raj Kumar Duhan 2 1 M. Tech. (M.E), 4 th Semester, UIET MDU Rohtak 2 Assistant Professor, Dept. of Mechanical Engg., UIET MDU

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

Algebraic Techniques for Switching Systems

Algebraic Techniques for Switching Systems Algebraic Techniques for Switching Systems And applications to Wireless Control Neworks Raphaël Jungers (UCL, Belgium) UCLA May 2014 Outline Joint spectral characteristics Application: WCNs and switching

More information

Numerical Data Fitting in Dynamical Systems

Numerical Data Fitting in Dynamical Systems Numerical Data Fitting in Dynamical Systems A Practical Introduction with Applications and Software by Klaus Schittkowski Department of Mathematics, University of Bayreuth, Bayreuth, Germany * * KLUWER

More information

MONOLITHIC AND PARTITIONED L-STABLE ROSENBROCK METHODS FOR DYNAMIC SUBSTRUCTURE TESTS. Oreste S. Bursi, Chuanguo Jia and Zhen Wang

MONOLITHIC AND PARTITIONED L-STABLE ROSENBROCK METHODS FOR DYNAMIC SUBSTRUCTURE TESTS. Oreste S. Bursi, Chuanguo Jia and Zhen Wang MONOLITHIC AND PARTITIONED L-STABLE ROSENBROCK METHODS FOR DYNAMIC SUBSTRUCTURE TESTS Oreste S. Bursi, Chuanguo Jia and Zhen Wang University of Trento/ Department of Mechanical and Structural Engineering,

More information

V&V MURI Overview Caltech, October 2008

V&V MURI Overview Caltech, October 2008 V&V MURI Overview Caltech, October 2008 Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology Goals!! Specification, design, and certification!! Coherent

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis J. Stoer R. Bulirsch Introduction to Numerical Analysis Translated by R. Bartels, W. Gautschi, and C. Witzgall Springer Science+Business Media, LLC J. Stoer R. Bulirsch Institut fiir Angewandte Mathematik

More information

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations MATHEMATICS Subject Code: MA Course Structure Sections/Units Section A Section B Section C Linear Algebra Complex Analysis Real Analysis Topics Section D Section E Section F Section G Section H Section

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

Southern Methodist University.

Southern Methodist University. Title: Continuous extensions Name: Lawrence F. Shampine 1, Laurent O. Jay 2 Affil./Addr. 1: Department of Mathematics Southern Methodist University Dallas, TX 75275 USA Phone: +1 (972) 690-8439 E-mail:

More information

Numerical Data Fitting in Dynamical Systems

Numerical Data Fitting in Dynamical Systems Numerical Data Fitting in Dynamical Systems Applied Optimization Volume 77 Series Editors: Panos M. Pardalos University of Florida, U.S.A. Donald Hearn University of Florida, U.S.A. The titles published

More information

Research Article A Rapid Numerical Algorithm to Compute Matrix Inversion

Research Article A Rapid Numerical Algorithm to Compute Matrix Inversion International Mathematics and Mathematical Sciences Volume 12, Article ID 134653, 11 pages doi:.1155/12/134653 Research Article A Rapid Numerical Algorithm to Compute Matrix Inversion F. Soleymani Department

More information

Joint spectral characteristics

Joint spectral characteristics Joint spectral characteristics A tale of three disciplines Raphaël Jungers (UCL, Belgium) LIDS, MIT, February 2013. Trackable graphs Let be te worst possible number of trajectories compatible with an observation

More information

Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations

Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations Sunyoung Bu University of North Carolina Department of Mathematics CB # 325, Chapel Hill USA agatha@email.unc.edu Jingfang

More information

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF DRAFT SYLLABUS

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF DRAFT SYLLABUS STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF 2017 - DRAFT SYLLABUS Subject :Business Maths Class : XI Unit 1 : TOPIC Matrices and Determinants CONTENT Determinants - Minors; Cofactors; Evaluation

More information

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat.

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat. Numerical Methods for Engineers An Introduction with and Scientists Applications using MATLAB Third Edition Amos Gilat Vish- Subramaniam Department of Mechanical Engineering The Ohio State University Wiley

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Numerical Methods with MATLAB

Numerical Methods with MATLAB Numerical Methods with MATLAB A Resource for Scientists and Engineers G. J. BÖRSE Lehigh University PWS Publishing Company I(T)P AN!NTERNATIONAL THOMSON PUBLISHING COMPANY Boston Albany Bonn Cincinnati

More information

Numerical Integration of Equations of Motion

Numerical Integration of Equations of Motion GraSMech course 2009-2010 Computer-aided analysis of rigid and flexible multibody systems Numerical Integration of Equations of Motion Prof. Olivier Verlinden (FPMs) Olivier.Verlinden@fpms.ac.be Prof.

More information

Discontinuous Galerkin and Finite Difference Methods for the Acoustic Equations with Smooth Coefficients. Mario Bencomo TRIP Review Meeting 2013

Discontinuous Galerkin and Finite Difference Methods for the Acoustic Equations with Smooth Coefficients. Mario Bencomo TRIP Review Meeting 2013 About Me Mario Bencomo Currently 2 nd year graduate student in CAAM department at Rice University. B.S. in Physics and Applied Mathematics (Dec. 2010). Undergraduate University: University of Texas at

More information

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS MATHEMATICAL METHODS PARTIAL DIFFERENTIAL EQUATIONS I YEAR B.Tech By Mr. Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. SYLLABUS OF MATHEMATICAL

More information

Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach

Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach Qiong zhong Chen*, Michel Defourny #, Olivier Brüls* *Department

More information

CAM Ph.D. Qualifying Exam in Numerical Analysis CONTENTS

CAM Ph.D. Qualifying Exam in Numerical Analysis CONTENTS CAM Ph.D. Qualifying Exam in Numerical Analysis CONTENTS Preliminaries Round-off errors and computer arithmetic, algorithms and convergence Solutions of Equations in One Variable Bisection method, fixed-point

More information

Scalable Algorithms for Complex Networks

Scalable Algorithms for Complex Networks Scalable Algorithms for Complex Networks Tuhin Sahai United Technologies Research Center University of Connecticut Outline / Acknowledgements Decentralized Clustering Alberto Speranzon (UTRC) Andrzej Banaszuk

More information

Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method Partial Differential Equations and the Finite Element Method Pavel Solin The University of Texas at El Paso Academy of Sciences ofthe Czech Republic iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC, PUBLICATION

More information

Iterative LP and SOCP-based. approximations to. sum of squares programs. Georgina Hall Princeton University. Joint work with:

Iterative LP and SOCP-based. approximations to. sum of squares programs. Georgina Hall Princeton University. Joint work with: Iterative LP and SOCP-based approximations to sum of squares programs Georgina Hall Princeton University Joint work with: Amir Ali Ahmadi (Princeton University) Sanjeeb Dash (IBM) Sum of squares programs

More information

Interpolation & Polynomial Approximation. Hermite Interpolation I

Interpolation & Polynomial Approximation. Hermite Interpolation I Interpolation & Polynomial Approximation Hermite Interpolation I Numerical Analysis (th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

When is a set of LMIs a sufficient condition for stability?

When is a set of LMIs a sufficient condition for stability? When is a set of LMIs a sufficient condition for stability? arxiv:1201.3227v1 [math.oc] 16 Jan 2012 Amir Ali Ahmadi, Raphaël M. Jungers, Pablo A. Parrilo, and Mardavij Roozbehani November 20, 2018 Abstract

More information

Interpolating Accuracy without underlying f (x)

Interpolating Accuracy without underlying f (x) Example: Tabulated Data The following table x 1.0 1.3 1.6 1.9 2.2 f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623 lists values of a function f at various points. The approximations to f (1.5) obtained

More information

A Gauss Lobatto quadrature method for solving optimal control problems

A Gauss Lobatto quadrature method for solving optimal control problems ANZIAM J. 47 (EMAC2005) pp.c101 C115, 2006 C101 A Gauss Lobatto quadrature method for solving optimal control problems P. Williams (Received 29 August 2005; revised 13 July 2006) Abstract This paper proposes

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA Introduction to Finite and Spectral Element Methods Using MATLAB Second Edition C. Pozrikidis University of Massachusetts Amherst, USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC

More information

STABILIZABILITY AND SOLVABILITY OF DELAY DIFFERENTIAL EQUATIONS USING BACKSTEPPING METHOD. Fadhel S. Fadhel 1, Saja F. Noaman 2

STABILIZABILITY AND SOLVABILITY OF DELAY DIFFERENTIAL EQUATIONS USING BACKSTEPPING METHOD. Fadhel S. Fadhel 1, Saja F. Noaman 2 International Journal of Pure and Applied Mathematics Volume 118 No. 2 2018, 335-349 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v118i2.17

More information

CN - Numerical Computation

CN - Numerical Computation Coordinating unit: 270 - FIB - Barcelona School of Informatics Teaching unit: 749 - MAT - Department of Mathematics Academic year: Degree: 2017 BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010).

More information

ME Computational Fluid Mechanics Lecture 5

ME Computational Fluid Mechanics Lecture 5 ME - 733 Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula

More information

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations Rei-Wei Song and Ming-Gong Lee* d09440@chu.edu.tw, mglee@chu.edu.tw * Department of Applied Mathematics/

More information

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods

Research Article Evaluation of the Capability of the Multigrid Method in Speeding Up the Convergence of Iterative Methods International Scholarly Research Network ISRN Computational Mathematics Volume 212, Article ID 172687, 5 pages doi:1.542/212/172687 Research Article Evaluation of the Capability of the Multigrid Method

More information

COMBINED EXPLICIT-IMPLICIT TAYLOR SERIES METHODS

COMBINED EXPLICIT-IMPLICIT TAYLOR SERIES METHODS COMBINED EXPLICIT-IMPLICIT TAYLOR SERIES METHODS S.N. Dimova 1, I.G. Hristov 1, a, R.D. Hristova 1, I V. Puzynin 2, T.P. Puzynina 2, Z.A. Sharipov 2, b, N.G. Shegunov 1, Z.K. Tukhliev 2 1 Sofia University,

More information

Numerical Mathematics

Numerical Mathematics Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector

More information

NUMERICAL ANALYSIS SYLLABUS MATHEMATICS PAPER IV (A)

NUMERICAL ANALYSIS SYLLABUS MATHEMATICS PAPER IV (A) NUMERICAL ANALYSIS SYLLABUS MATHEMATICS PAPER IV (A) Unit - 1 Errors & Their Accuracy Solutions of Algebraic and Transcendental Equations Bisection Method The method of false position The iteration method

More information

Numerical Methods for Engineers

Numerical Methods for Engineers Numerical Methods for Engineers SEVENTH EDITION Steven C Chopra Berger Chair in Computing and Engineering Tufts University Raymond P. Canal Professor Emeritus of Civil Engineering of Michiaan University

More information

Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method

Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method Applied Mathematics Volume 2012, Article ID 605741, 10 pages doi:10.1155/2012/605741 Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method M. Zarebnia

More information

Computer Aided Design of Thermal Systems (ME648)

Computer Aided Design of Thermal Systems (ME648) Computer Aided Design of Thermal Systems (ME648) PG/Open Elective Credits: 3-0-0-9 Updated Syallabus: Introduction. Basic Considerations in Design. Modelling of Thermal Systems. Numerical Modelling and

More information

Investigation on the Most Efficient Ways to Solve the Implicit Equations for Gauss Methods in the Constant Stepsize Setting

Investigation on the Most Efficient Ways to Solve the Implicit Equations for Gauss Methods in the Constant Stepsize Setting Applied Mathematical Sciences, Vol. 12, 2018, no. 2, 93-103 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.711340 Investigation on the Most Efficient Ways to Solve the Implicit Equations

More information

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

Numerical Solution of partial differential equations

Numerical Solution of partial differential equations G. D. SMITH Brunei University Numerical Solution of partial differential equations FINITE DIFFERENCE METHODS THIRD EDITION CLARENDON PRESS OXFORD Contents NOTATION 1. INTRODUCTION AND FINITE-DIFFERENCE

More information

Iterative Rigid Multibody Dynamics A Comparison of Computational Methods

Iterative Rigid Multibody Dynamics A Comparison of Computational Methods Iterative Rigid Multibody Dynamics A Comparison of Computational Methods Tobias Preclik, Klaus Iglberger, Ulrich Rüde University Erlangen-Nuremberg Chair for System Simulation (LSS) July 1st 2009 T. Preclik

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 05 Ordinary Differential Equations (Refer Slide

More information

1 Number Systems and Errors 1

1 Number Systems and Errors 1 Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floating-point Representation...........

More information

MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS

MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS L. X. Wang 1 M. Willatzen 1 R. V. N. Melnik 1,2 Abstract The dynamics of reciprocal transducer systems is modelled

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

Subbalakshmi Lakshmipathy College of Science. Department of Mathematics

Subbalakshmi Lakshmipathy College of Science. Department of Mathematics ॐ Subbalakshmi Lakshmipathy College of Science Department of Mathematics As are the crests on the hoods of peacocks, As are the gems on the heads of cobras, So is Mathematics, at the top of all Sciences.

More information

Joint spectral characteristics

Joint spectral characteristics Joint spectral characteristics Algorithms, applications, and conjectures on switched dynamics Raphaël Jungers (UCL, Belgium) MFO Feb. 2016 Trackable graphs Let be te worst possible number of trajectories

More information

Numerical Differentiation & Integration. Numerical Differentiation III

Numerical Differentiation & Integration. Numerical Differentiation III Numerical Differentiation & Integration Numerical Differentiation III Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Unit I (Testing of Hypothesis)

Unit I (Testing of Hypothesis) SUBJECT NAME : Statistics and Numerical Methods SUBJECT CODE : MA645 MATERIAL NAME : Part A questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) Unit I (Testing of Hypothesis). State level

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Design of a Nonlinear Observer for a Very Flexible Parallel Robot

Design of a Nonlinear Observer for a Very Flexible Parallel Robot Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry October 11-13, 217 in Stuttgart, Germany Design of a Nonlinear Observer for a Very Flexible

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Iterated Defect Correction with B-Splines for a Class of Strongly Nonlinear Two-Point Boundary Value Problems

Iterated Defect Correction with B-Splines for a Class of Strongly Nonlinear Two-Point Boundary Value Problems American Review of Mathematics and Statistics June 2016, Vol. 4, No. 1, pp. 31-44 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright The Author(s). All Rights Reserved. Published by American Research

More information

Numerical Methods for the Landau-Lifshitz-Gilbert Equation

Numerical Methods for the Landau-Lifshitz-Gilbert Equation Numerical Methods for the Landau-Lifshitz-Gilbert Equation L ubomír Baňas Department of Mathematical Analysis, Ghent University, 9000 Gent, Belgium lubo@cage.ugent.be http://cage.ugent.be/~lubo Abstract.

More information

FROM EQUILIBRIUM TO CHAOS

FROM EQUILIBRIUM TO CHAOS FROM EQUILIBRIUM TO CHAOS Practica! Bifurcation and Stability Analysis RÜDIGER SEYDEL Institut für Angewandte Mathematik und Statistik University of Würzburg Würzburg, Federal Republic of Germany ELSEVIER

More information

Explore Kapitza s Pendulum Behavior via Trajectory Optimization. Yifan Hou

Explore Kapitza s Pendulum Behavior via Trajectory Optimization. Yifan Hou 1 Introduction 12 course Explore Kapitza s Pendulum Behavior via Trajectory Optimization Project for: Mechanics of Manipulation, 16 741 Yifan Hou Andrew id: yifanh houyf11@gmail.com or yifanh@andrew.cmu.edu

More information

A Characterization of Lyapunov Inequalities for Stability of Switched Systems

A Characterization of Lyapunov Inequalities for Stability of Switched Systems A Characterization of Lyapunov Inequalities for Stability of Switched Systems 1 arxiv:1608.08311v1 [math.oc] 30 Aug 2016 Raphaël M. Jungers, Amir Ali Ahmadi, Pablo A. Parrilo and Mardavij Roozbehani Abstract

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Table 1 Principle Matlab operators and functions Name Description Page reference

Table 1 Principle Matlab operators and functions Name Description Page reference Matlab Index Table 1 summarises the Matlab supplied operators and functions to which we have referred. In most cases only a few of the options available to the individual functions have been fully utilised.

More information

School of Sciences Indira Gandhi National Open University Maidan Garhi, New Delhi (For January 2012 cycle)

School of Sciences Indira Gandhi National Open University Maidan Garhi, New Delhi (For January 2012 cycle) MTE-0 ASSIGNMENT BOOKLET Bachelor's Degree Programme Numerical Analysis (MTE-0) (Valid from st January, 0 to st December, 0) School of Sciences Indira Gandhi National Open University Maidan Garhi, New

More information

Learning Goals. 2. To be able to distinguish between a dependent and independent variable.

Learning Goals. 2. To be able to distinguish between a dependent and independent variable. Learning Goals 1. To understand what a linear regression is. 2. To be able to distinguish between a dependent and independent variable. 3. To understand what the correlation coefficient measures. 4. To

More information

Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method

Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method Ilya B. Labutin A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 3, acad. Koptyug Ave., Novosibirsk

More information

MA1023-Methods of Mathematics-15S2 Tutorial 1

MA1023-Methods of Mathematics-15S2 Tutorial 1 Tutorial 1 the week starting from 19/09/2016. Q1. Consider the function = 1. Write down the nth degree Taylor Polynomial near > 0. 2. Show that the remainder satisfies, < if > > 0 if > > 0 3. Show that

More information

SIMULATION OF INDETERMINATE MULTI-POINT IMPACT AND CONTACT WITH FRICTION

SIMULATION OF INDETERMINATE MULTI-POINT IMPACT AND CONTACT WITH FRICTION MULTIBODY DYNAMICS 011, ECCOMAS Thematic Conference J.C. Samin, P. Fisette (eds.) Brussels, Belgium, 4-7 July 011 SIMULATION OF INDETERMINATE MULTI-POINT IMPACT AND CONTACT WITH FRICTION Adrian Rodriguez

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information