Limit shapes outside the percolation cone

Size: px
Start display at page:

Download "Limit shapes outside the percolation cone"

Transcription

1 jointly with Tuca Auffinger and Mike Hochman Princeton University July 14, 2011

2 Definitions We consider first-passage percolation on the square lattice Z 2. x γ - We place i.i.d. non-negative passage times (τ e ) on the edges of the square lattice. - The passage time of a path γ is τ(γ) = τ e. e γ y

3 Definitions We consider first-passage percolation on the square lattice Z 2. x - The passage time between two vertices x and y is γ τ(x, y) = min γ:x y τ(γ). y - If τ e 0 then τ is a metric.

4 Definitions We consider first-passage percolation on the square lattice Z 2. B(t) - The ball B(t) = {x : τ(0, x) t} grows as t increases. - Richardson and Cox-Durrett proved a (very strong) law of large numbers for B(t).

5 Shape theorem Theorem (Cox-Durrett) Let µ have finite mean and be such that µ({0}) < p c, the critical probability for bond percolation on Z 2. There exists a deterministic compact, convex set B µ with non-empty interior such that for each ε > 0, ( P (1 ε)b µ 1 ) t B(t) (1 + ε)b µ for all large t = 1.

6 FPP questions QUESTIONS: (1) Which convex, compact sets B are realizable as B µ s? - Solved by Häggstrom-Meester in the case of stationary FPP. - Some insight in i.i.d. case by Durrett-Liggett, Marchand.

7 FPP questions QUESTIONS: (1) Which convex, compact sets B are realizable as B µ s? - Solved by Häggstrom-Meester in the case of stationary FPP. - Some insight in i.i.d. case by Durrett-Liggett, Marchand. (2) What is the relationship between µ and B µ? How exactly does B µ depend on µ? - Unlike in other lattice models, the lattice matters!

8 FPP questions QUESTIONS: (1) Which convex, compact sets B are realizable as B µ s? - Solved by Häggstrom-Meester in the case of stationary FPP. - Some insight in i.i.d. case by Durrett-Liggett, Marchand. (2) What is the relationship between µ and B µ? How exactly does B µ depend on µ? - Unlike in other lattice models, the lattice matters! (3) What are the fluctuations of B(t) about tb µ? We will focus on questions 1 and 3, though our technique sheds some light on question 2.

9 Possible limit shapes To study question 1, let sides(c) be the number of extreme points of a compact convex set C. - One might think that B µ is a disk (forgets the lattice). This is not true. - It is believed that at least sides(b µ ) = for all but the most degenerate cases (e.g., µ = δ a for a > 0).

10 Possible limit shapes - Previous results: - By symmetry, sides(b µ ) 4. - Marchand (2002) proved that for a class of µ s, sides(b µ ) 8. - With M. Hochman, we showed there are µ s such that sides(b µ ) =. (Proof in Examples of non-polygonal limit shapes for i.i.d. first-passage percolation and infinite coexistence in spatial growth models on arxiv.)

11 Flat edges We consider a subclass M p of measures µ such that µ({1}) = p > 0 and supp(µ) [1, ). p 1 - In 1981, Durrett and Liggett showed that for µ M p (for p large), B µ has some flat edges. - In 2002, Marchand found the exact location of these edges.

12 Flat edges Imagine that p is large: there are many 1-edges (e s with τ e = 1). - For n large, consider the line segment P x+y=n L n = {(x, y) Z 2 : x+y = n} [0, ) 2 in the first quadrant. - If z L n then we want to estimate the passage time τ(0, z).

13 Flat edges Imagine that p is large: there are many 1-edges (e s with τ e = 1). - Every path P from 0 to z has at least n edges, so P x+y=n τ(p) [inf supp(µ)] P = P n. Therefore τ(0, z) n.

14 Oriented percolation To examine the other inequality, we consider oriented percolation. For p [0, 1] called each edge e open with probability p and closed with probability 1 p, independently. - Two vertices x and y are connected (x y) if there is an oriented path from x to y. - An oriented path only moves up or right.

15 Oriented percolation To examine the other inequality, we consider oriented percolation. For p [0, 1] called each edge e open with probability p and closed with probability 1 p, independently. - For p = 0, the origin cannot be part of an infinite open path; when p = 1 it always is. - There is a critical probability: p c = sup{p : P p (0 ) = 0}.

16 Supercritical phase When p > p c, not only does {0 } have positive probability, on that event we have many more connections. - If P = 0, x 1, x 2,... is a path of vertices, P has direction θ if arg x n θ as n.

17 Supercritical phase When p > p c, not only does {0 } have positive probability, on that event we have many more connections. - For p > p c, there exists an interval I p = (π/4 a(p), π/4 + a(p)) such that for all θ I p, there is an infinite oriented path from 0 with direction θ. - This is true with conditional probability 1. - This forms the percolation cone.

18 Back to FPP If µ M p and p > p c then with positive probability, 1-edges percolate. - For any θ in the percolation cone, take an oriented path P with only 1-edges. - It intersects L n after only using n edges. - If z is the intersection point, then τ(0, z) τ(p) = n.

19 Back to FPP If µ M p and p > p c then with positive probability, 1-edges percolate. - Therefore τ(0, z) = n. - Using these ideas, Durrett and Liggett showed B µ has a flat edge in the percolation cone. - Marchand made this more explicit:

20 Marchand s theorem Let p c be the critical value for oriented bond percolation. Let B 1 be the closed l 1 unit ball and Q 1 the first quadrant. Let µ M p. w p(1) Theorem (Marchand) w p(2) 1. B µ B 1 2. If p = p c, then B µ B 1 Q 1 = {(1/2, 1/2)}. 3. If p > p c, then B µ B 1 Q 1 = [w p (1), w p (2)]

21 Differentiability What happens at the corner of the flat edge? - For 0 θ < θ p the point v θ B µ (in direction θ) is strictly inside B µ. - Two possibilities can occur at w p (2): wp(2) wp(2) θp θp Both derivatives are different. They are the same.

22 Main Theorem Theorem (Auffinger, D.) Let µ M p for p p c with finite mean. The boundary B µ is differentiable at w p (2). - Proof is given in. on arxiv.

23 Consequences (1) From Marchand s theorem, all B µ s for µ M p are non-polygonal. (2) Solves questions of Häggstrom-Pemantle about growth models: - Infinite coexistence for Richardson-type growth models. - Graph of infection has infinitely many ends. (3) Verifies predictions of Newman-Piza and Zhang: - New logarithmic lower bounds for fluctuations of passage time outside the percolation cone. - Completes the picture of convergence/divergence of shape fluctuations in 2d.

First Passage Percolation

First Passage Percolation First Passage Percolation (and other local modifications of the metric) on Random Planar Maps (well... actually on triangulations only!) N. Curien and J.F. Le Gall (Université Paris-Sud Orsay, IUF) Journées

More information

The two-type Richardson model in the half-plane

The two-type Richardson model in the half-plane The two-type Richardson model in the half-plane Daniel Ahlberg Maria Deijfen Christopher Hoffman August 2018 arxiv:1808.10796v1 [math.pr] 31 Aug 2018 Abstract The two-type Richardson model describes the

More information

Geodesics in First Passage Percolation

Geodesics in First Passage Percolation Geodesics in First Passage Percolation Christopher Hoffman arxiv:math/0508114v1 [math.pr] 5 Aug 2005 Abstract We consider a wide class of ergodic first passage percolation processes on Z 2 and prove that

More information

A TWO-SPECIES COMPETITION MODEL ON Z D

A TWO-SPECIES COMPETITION MODEL ON Z D A TWO-SPECIES COMPETITION MODEL ON Z D GEORGE KORDZAKHIA AND STEVEN P. LALLEY Abstract. We consider a two-type stochastic competition model on the integer lattice Z d. The model describes the space evolution

More information

Stochastic domination in space-time for the supercritical contact process

Stochastic domination in space-time for the supercritical contact process Stochastic domination in space-time for the supercritical contact process Stein Andreas Bethuelsen joint work with Rob van den Berg (CWI and VU Amsterdam) Workshop on Genealogies of Interacting Particle

More information

Finite Connections for Supercritical Bernoulli Bond Percolation in 2D

Finite Connections for Supercritical Bernoulli Bond Percolation in 2D Finite Connections for Supercritical Bernoulli Bond Percolation in 2D M. Campanino 1 D. Ioffe 2 O. Louidor 3 1 Università di Bologna (Italy) 2 Technion (Israel) 3 Courant (New York University) Courant

More information

Probability Models of Information Exchange on Networks Lecture 6

Probability Models of Information Exchange on Networks Lecture 6 Probability Models of Information Exchange on Networks Lecture 6 UC Berkeley Many Other Models There are many models of information exchange on networks. Q: Which model to chose? My answer good features

More information

4: The Pandemic process

4: The Pandemic process 4: The Pandemic process David Aldous July 12, 2012 (repeat of previous slide) Background meeting model with rates ν. Model: Pandemic Initially one agent is infected. Whenever an infected agent meets another

More information

Geodesics in First Passage Percolation

Geodesics in First Passage Percolation Geodesics in First Passage Percolation Christopher Hoffman arxiv:math/0508114v2 [math.pr] 17 Nov 2007 Abstract We consider a wide class of ergodic first passage percolation processes on Z 2 and prove that

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

March 25, 2010 CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN EUCLIDEAN SPACE

March 25, 2010 CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN EUCLIDEAN SPACE March 25, 2010 CHAPTER 2: LIMIT AND CONTINUITY OF FUNCTION IN EUCLIDEAN PACE 1. calar product in R n Definition 1.1. Given x = (x 1,..., x n ), y = (y 1,..., y n ) R n,we define their scalar product as

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

QLE. Jason Miller and Scott Sheffield. August 1, 2013 MIT. Jason Miller and Scott Sheffield (MIT) QLE August 1, / 37

QLE. Jason Miller and Scott Sheffield. August 1, 2013 MIT. Jason Miller and Scott Sheffield (MIT) QLE August 1, / 37 QLE Jason Miller and Scott Sheffield MIT August 1, 2013 Jason Miller and Scott Sheffield (MIT) QLE August 1, 2013 1 / 37 Surfaces, curves, metric balls: how are they related? FPP: first passage percolation.

More information

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that.

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that. 2 Percolation There is a vast literature on percolation. For the reader who wants more than we give here, there is an entire book: Percolation, by Geoffrey Grimmett. A good account of the recent spectacular

More information

CONSTRAINED PERCOLATION ON Z 2

CONSTRAINED PERCOLATION ON Z 2 CONSTRAINED PERCOLATION ON Z 2 ZHONGYANG LI Abstract. We study a constrained percolation process on Z 2, and prove the almost sure nonexistence of infinite clusters and contours for a large class of probability

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Cornell Probability Summer School 2011: Short Talk Abstracts

Cornell Probability Summer School 2011: Short Talk Abstracts Cornell Probability Summer School 2011: Short Talk Abstracts July 11 22, 2011 Omar Abuzzahab (Penn) Perfect squares in random sequences A problem related to modern methods of prime factorization is finding

More information

The wave model of metric spaces

The wave model of metric spaces arxiv:1901.04317v1 [math.fa] 10 Jan 019 The wave model of metric spaces M. I. Belishev, S. A. Simonov Abstract Let Ω be a metric space, A t denote the metric neighborhood of the set A Ω of the radius t;

More information

Finite-Dimensional Cones 1

Finite-Dimensional Cones 1 John Nachbar Washington University March 28, 2018 1 Basic Definitions. Finite-Dimensional Cones 1 Definition 1. A set A R N is a cone iff it is not empty and for any a A and any γ 0, γa A. Definition 2.

More information

Lecture 7 Monotonicity. September 21, 2008

Lecture 7 Monotonicity. September 21, 2008 Lecture 7 Monotonicity September 21, 2008 Outline Introduce several monotonicity properties of vector functions Are satisfied immediately by gradient maps of convex functions In a sense, role of monotonicity

More information

The strictly 1/2-stable example

The strictly 1/2-stable example The strictly 1/2-stable example 1 Direct approach: building a Lévy pure jump process on R Bert Fristedt provided key mathematical facts for this example. A pure jump Lévy process X is a Lévy process such

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Uniformity of hitting times of the contact process

Uniformity of hitting times of the contact process ALEA, Lat. Am. J. Probab. Math. Stat. 15, 233 245 2018) DOI: 10.30757/ALEA.v15-11 Uniformity of hitting times of the contact process Markus Heydenreich, Christian Hirsch and Daniel Valesin Mathematisches

More information

Uniqueness of the critical probability for percolation in the two dimensional Sierpiński carpet lattice

Uniqueness of the critical probability for percolation in the two dimensional Sierpiński carpet lattice Uniqueness of the critical probability for percolation in the two dimensional Sierpiński carpet lattice Yasunari Higuchi 1, Xian-Yuan Wu 2, 1 Department of Mathematics, Faculty of Science, Kobe University,

More information

Consensus formation in the Deuant model

Consensus formation in the Deuant model Consensus formation in the Deuant model Timo Hirscher Chalmers University of Technology Seminarium i matematisk statistik, KTH October 29, 2014 Outline The seminar is structured as follows: Introduction:

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

Stationary cocycles and Busemann functions for the corner growth model

Stationary cocycles and Busemann functions for the corner growth model Probab. Theory Relat. Fields (2017) 169:177 222 DOI 10.1007/s00440-016-0729-x Stationary cocycles and Busemann functions for the corner growth model Nicos Georgiou 1 Firas Rassoul-Agha 2 Timo Seppäläinen

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

Division of the Humanities and Social Sciences. Supergradients. KC Border Fall 2001 v ::15.45

Division of the Humanities and Social Sciences. Supergradients. KC Border Fall 2001 v ::15.45 Division of the Humanities and Social Sciences Supergradients KC Border Fall 2001 1 The supergradient of a concave function There is a useful way to characterize the concavity of differentiable functions.

More information

Introduction to Convex Analysis Microeconomics II - Tutoring Class

Introduction to Convex Analysis Microeconomics II - Tutoring Class Introduction to Convex Analysis Microeconomics II - Tutoring Class Professor: V. Filipe Martins-da-Rocha TA: Cinthia Konichi April 2010 1 Basic Concepts and Results This is a first glance on basic convex

More information

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012 Discrete Geometry Austin Mohr April 26, 2012 Problem 1 Theorem 1 (Linear Programming Duality). Suppose x, y, b, c R n and A R n n, Ax b, x 0, A T y c, and y 0. If x maximizes c T x and y minimizes b T

More information

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Instructions: Answer all of the problems. Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Definitions (2 points each) 1. State the definition of a metric space. A metric space (X, d) is set

More information

We will outline two proofs of the main theorem:

We will outline two proofs of the main theorem: Chapter 4 Higher Genus Surfaces 4.1 The Main Result We will outline two proofs of the main theorem: Theorem 4.1.1. Let Σ be a closed oriented surface of genus g > 1. Then every homotopy class of homeomorphisms

More information

Brownian Bridge and Self-Avoiding Random Walk.

Brownian Bridge and Self-Avoiding Random Walk. Brownian Bridge and Self-Avoiding Random Walk. arxiv:math/02050v [math.pr] 9 May 2002 Yevgeniy Kovchegov Email: yevgeniy@math.stanford.edu Fax: -650-725-4066 November 2, 208 Abstract We derive the Brownian

More information

An Introduction to Percolation

An Introduction to Percolation An Introduction to Percolation Michael J. Kozdron University of Regina http://stat.math.uregina.ca/ kozdron/ Colloquium Department of Mathematics & Statistics September 28, 2007 Abstract Percolation was

More information

arxiv: v1 [math.mg] 4 Jan 2013

arxiv: v1 [math.mg] 4 Jan 2013 On the boundary of closed convex sets in E n arxiv:1301.0688v1 [math.mg] 4 Jan 2013 January 7, 2013 M. Beltagy Faculty of Science, Tanta University, Tanta, Egypt E-mail: beltagy50@yahoo.com. S. Shenawy

More information

Chapter 4.1 Introduction to Relations

Chapter 4.1 Introduction to Relations Chapter 4.1 Introduction to Relations The example at the top of page 94 describes a boy playing a computer game. In the game he has to get 3 or more shapes of the same color to be adjacent to each other.

More information

Optimality Conditions for Nonsmooth Convex Optimization

Optimality Conditions for Nonsmooth Convex Optimization Optimality Conditions for Nonsmooth Convex Optimization Sangkyun Lee Oct 22, 2014 Let us consider a convex function f : R n R, where R is the extended real field, R := R {, + }, which is proper (f never

More information

A mathematical model for a copolymer in an emulsion

A mathematical model for a copolymer in an emulsion J Math Chem (2010) 48:83 94 DOI 10.1007/s10910-009-9564-y ORIGINAL PAPER A mathematical model for a copolymer in an emulsion F. den Hollander N. Pétrélis Received: 3 June 2007 / Accepted: 22 April 2009

More information

arxiv: v1 [math.pr] 1 Jan 2013

arxiv: v1 [math.pr] 1 Jan 2013 The role of dispersal in interacting patches subject to an Allee effect arxiv:1301.0125v1 [math.pr] 1 Jan 2013 1. Introduction N. Lanchier Abstract This article is concerned with a stochastic multi-patch

More information

The Minesweeper game: Percolation and Complexity

The Minesweeper game: Percolation and Complexity The Minesweeper game: Percolation and Complexity Elchanan Mossel Hebrew University of Jerusalem and Microsoft Research March 15, 2002 Abstract We study a model motivated by the minesweeper game In this

More information

CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities

CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities No. 1 of 10 1. What are the methods to solve a system of equations? (A) Graphing, replacing, substitution and matrix techniques.

More information

Math 53 Spring 2018 Practice Midterm 2

Math 53 Spring 2018 Practice Midterm 2 Math 53 Spring 218 Practice Midterm 2 Nikhil Srivastava 8 minutes, closed book, closed notes 1. alculate 1 y 2 (x 2 + y 2 ) 218 dxdy Solution. Since the type 2 region D = { y 1, x 1 y 2 } is a quarter

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past.

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past. 1 Markov chain: definition Lecture 5 Definition 1.1 Markov chain] A sequence of random variables (X n ) n 0 taking values in a measurable state space (S, S) is called a (discrete time) Markov chain, if

More information

Stochastic Dynamic Programming: The One Sector Growth Model

Stochastic Dynamic Programming: The One Sector Growth Model Stochastic Dynamic Programming: The One Sector Growth Model Esteban Rossi-Hansberg Princeton University March 26, 2012 Esteban Rossi-Hansberg () Stochastic Dynamic Programming March 26, 2012 1 / 31 References

More information

ECARES Université Libre de Bruxelles MATH CAMP Basic Topology

ECARES Université Libre de Bruxelles MATH CAMP Basic Topology ECARES Université Libre de Bruxelles MATH CAMP 03 Basic Topology Marjorie Gassner Contents: - Subsets, Cartesian products, de Morgan laws - Ordered sets, bounds, supremum, infimum - Functions, image, preimage,

More information

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Alessandro Rinaldo Carnegie Mellon University joint work with Mei Yin, Sukhada Fadnavis, Stephen E. Fienberg and

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Economics 204 Fall 2012 Problem Set 3 Suggested Solutions

Economics 204 Fall 2012 Problem Set 3 Suggested Solutions Economics 204 Fall 2012 Problem Set 3 Suggested Solutions 1. Give an example of each of the following (and prove that your example indeed works): (a) A complete metric space that is bounded but not compact.

More information

ECON 5111 Mathematical Economics

ECON 5111 Mathematical Economics Test 1 October 1, 2010 1. Construct a truth table for the following statement: [p (p q)] q. 2. A prime number is a natural number that is divisible by 1 and itself only. Let P be the set of all prime numbers

More information

MATH Green s Theorem Fall 2016

MATH Green s Theorem Fall 2016 MATH 55 Green s Theorem Fall 16 Here is a statement of Green s Theorem. It involves regions and their boundaries. In order have any hope of doing calculations, you must see the region as the set of points

More information

Variational Problems with Percolation

Variational Problems with Percolation ANDREA BRAIDES (Università di Roma Tor Vergata ) Variational Problems with Percolation Gradient Random Fields May 31, 2011 BIRS, Banff From discrete to continuous energies Discrete system: with discrete

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu February

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Universal Behavior of Connectivity Properties in Fractal Percolation Models

Universal Behavior of Connectivity Properties in Fractal Percolation Models Universal Behavior of Connectivity Properties in Fractal Percolation Models Erik I. Broman Federico Camia Abstract Partially motivated by the desire to better understand the connectivity phase transition

More information

A PLANAR SOBOLEV EXTENSION THEOREM FOR PIECEWISE LINEAR HOMEOMORPHISMS

A PLANAR SOBOLEV EXTENSION THEOREM FOR PIECEWISE LINEAR HOMEOMORPHISMS A PLANAR SOBOLEV EXTENSION THEOREM FOR PIECEWISE LINEAR HOMEOMORPHISMS EMANUELA RADICI Abstract. We prove that a planar piecewise linear homeomorphism ϕ defined on the boundary of the square can be extended

More information

We will begin our study of topology from a set-theoretic point of view. As the subject

We will begin our study of topology from a set-theoretic point of view. As the subject p. 1 Math 490-01 Notes 5 Topology We will begin our study of topology from a set-theoretic point of view. As the subject expands, we will encounter various notions from analysis such as compactness, continuity,

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

The Coordinate Plane; Graphs of Equations of Two Variables. A graph of an equation is the set of all points which are solutions to the equation.

The Coordinate Plane; Graphs of Equations of Two Variables. A graph of an equation is the set of all points which are solutions to the equation. Hartfield College Algebra (Version 2015b - Thomas Hartfield) Unit TWO Page 1 of 30 Topic 9: The Coordinate Plane; Graphs of Equations of Two Variables A graph of an equation is the set of all points which

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

MAS331: Metric Spaces Problems on Chapter 1

MAS331: Metric Spaces Problems on Chapter 1 MAS331: Metric Spaces Problems on Chapter 1 1. In R 3, find d 1 ((3, 1, 4), (2, 7, 1)), d 2 ((3, 1, 4), (2, 7, 1)) and d ((3, 1, 4), (2, 7, 1)). 2. In R 4, show that d 1 ((4, 4, 4, 6), (0, 0, 0, 0)) =

More information

Asymptotic Shape of Equivariant Random Metrics on Nilpotent Groups

Asymptotic Shape of Equivariant Random Metrics on Nilpotent Groups Asymptotic Shape of Equivariant Random Metrics on Nilpotent Groups Michael Cantrell Alex Furman University of Illinois Chicago NCGOA 2015, Vanderbilt University First Passage Percolation Cayley Graph Cay(Γ,

More information

PERCOLATION ON THE NON-P.C.F. SIERPIŃSKI GASKET AND HEXACARPET

PERCOLATION ON THE NON-P.C.F. SIERPIŃSKI GASKET AND HEXACARPET PERCOLATION ON THE NON-P.C.F. SIERPIŃSKI GASKET AND HEXACARPET DEREK LOUGEE Abstract. We investigate bond percolation on the non-p.c.f. Sierpiński gasket and the hexacarpet. With the use of the diamond

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

INTRINSIC ISOPERIMETRY OF THE GIANT COMPONENT OF SUPERCRITICAL BOND PERCOLATION IN DIMENSION TWO

INTRINSIC ISOPERIMETRY OF THE GIANT COMPONENT OF SUPERCRITICAL BOND PERCOLATION IN DIMENSION TWO INTRINSIC ISOPERIMETRY OF THE GIANT COMPONENT OF SUPERCRITICAL BOND PERCOLATION IN DIMENSION TWO JULIAN GOLD Abstract. We study the isoperimetric subgraphs of the giant component C n of supercritical bond

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

Faculteit Bètawetenschappen. Percolation. Bachelor Thesis TWIN. Martijn Bouman. Wiskunde. Supervisor: Dr. Karma Dajani Mathematical Institute

Faculteit Bètawetenschappen. Percolation. Bachelor Thesis TWIN. Martijn Bouman. Wiskunde. Supervisor: Dr. Karma Dajani Mathematical Institute Faculteit Bètawetenschappen Percolation Bachelor Thesis TWIN Martijn Bouman Wiskunde Supervisor: Dr. Karma Dajani Mathematical Institute June 14, 2017 CONTENTS 1 Contents 1 Introduction 2 2 Some definitions

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

Mathematics for Economists

Mathematics for Economists Mathematics for Economists Victor Filipe Sao Paulo School of Economics FGV Metric Spaces: Basic Definitions Victor Filipe (EESP/FGV) Mathematics for Economists Jan.-Feb. 2017 1 / 34 Definitions and Examples

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

List of Publications. Roberto H. Schonmann

List of Publications. Roberto H. Schonmann List of Publications Roberto H. Schonmann (1) J.F.Perez, R.H.Schonmann: On the global character of some local equilibrium conditions - a remark on metastability. Journal of Statistical Physics 28, 479-485

More information

Stable Process. 2. Multivariate Stable Distributions. July, 2006

Stable Process. 2. Multivariate Stable Distributions. July, 2006 Stable Process 2. Multivariate Stable Distributions July, 2006 1. Stable random vectors. 2. Characteristic functions. 3. Strictly stable and symmetric stable random vectors. 4. Sub-Gaussian random vectors.

More information

Economics 204 Summer/Fall 2017 Lecture 7 Tuesday July 25, 2017

Economics 204 Summer/Fall 2017 Lecture 7 Tuesday July 25, 2017 Economics 204 Summer/Fall 2017 Lecture 7 Tuesday July 25, 2017 Section 2.9. Connected Sets Definition 1 Two sets A, B in a metric space are separated if Ā B = A B = A set in a metric space is connected

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Lower Tail Probabilities and Related Problems

Lower Tail Probabilities and Related Problems Lower Tail Probabilities and Related Problems Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu . Lower Tail Probabilities Let {X t, t T } be a real valued

More information

arxiv: v1 [math.pr] 1 Jan 2013

arxiv: v1 [math.pr] 1 Jan 2013 Stochastic spatial model of producer-consumer systems on the lattice arxiv:1301.0119v1 [math.pr] 1 Jan 2013 1. Introduction N. Lanchier Abstract The objective of this paper is to give a rigorous analysis

More information

Hyperuniform and rigid stable matchings

Hyperuniform and rigid stable matchings Hyperuniform and rigid stable matchings M.A. Klatt, G. Last and D. Yogeshwaran October 2, 2018 arxiv:1810.00265v1 [math.pr] 29 Sep 2018 Abstract We study a stable partial matching τ of the (possibly randomized)

More information

Open problems from Random walks on graphs and potential theory

Open problems from Random walks on graphs and potential theory Open problems from Random walks on graphs and potential theory edited by John Sylvester University of Warwick, 18-22 May 2015 Abstract The following open problems were posed by attendees (or non attendees

More information

Percolation and Random walks on graphs

Percolation and Random walks on graphs Percolation and Random walks on graphs Perla Sousi May 14, 2018 Contents 1 Percolation 2 1.1 Definition of the model................................... 2 1.2 Coupling of percolation processes.............................

More information

First Passage Percolation Has Sublinear Distance Variance

First Passage Percolation Has Sublinear Distance Variance arxiv:math/23262v5 [math.pr 25 May 27 First Passage Percolation Has Sublinear Distance Variance Itai Benjamini Gil Kalai Oded Schramm October 21, 22 Abstract Let < a < b

More information

MODEL ANSWERS TO HWK #1

MODEL ANSWERS TO HWK #1 MODEL ANSWERS TO HWK # Part B (a The four vertices are (,,, (,,, (,, and (,, The distance between the first two vertices is, since two coordinates differ by There are six edges, corresponding to the choice

More information

Biased random walk on percolation clusters. Noam Berger, Nina Gantert and Yuval Peres

Biased random walk on percolation clusters. Noam Berger, Nina Gantert and Yuval Peres Biased random walk on percolation clusters Noam Berger, Nina Gantert and Yuval Peres Related paper: [Berger, Gantert & Peres] (Prob. Theory related fields, Vol 126,2, 221 242) 1 The Model Percolation on

More information

Lecture 6: April 25, 2006

Lecture 6: April 25, 2006 Computational Game Theory Spring Semester, 2005/06 Lecture 6: April 25, 2006 Lecturer: Yishay Mansour Scribe: Lior Gavish, Andrey Stolyarenko, Asaph Arnon Partially based on scribe by Nataly Sharkov and

More information

Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7

Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7 Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7 Question 1: The goal of this exercise is to give some equivalent characterizations for the interior of a set. Let X be a topological

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Resistance Growth of Branching Random Networks

Resistance Growth of Branching Random Networks Peking University Oct.25, 2018, Chengdu Joint work with Yueyun Hu (U. Paris 13) and Shen Lin (U. Paris 6), supported by NSFC Grant No. 11528101 (2016-2017) for Research Cooperation with Oversea Investigators

More information

L n = l n (π n ) = length of a longest increasing subsequence of π n.

L n = l n (π n ) = length of a longest increasing subsequence of π n. Longest increasing subsequences π n : permutation of 1,2,...,n. L n = l n (π n ) = length of a longest increasing subsequence of π n. Example: π n = (π n (1),..., π n (n)) = (7, 2, 8, 1, 3, 4, 10, 6, 9,

More information

TORIC REDUCTION AND TROPICAL GEOMETRY A.

TORIC REDUCTION AND TROPICAL GEOMETRY A. Mathematisches Institut, Seminars, (Y. Tschinkel, ed.), p. 109 115 Universität Göttingen, 2004-05 TORIC REDUCTION AND TROPICAL GEOMETRY A. Szenes ME Institute of Mathematics, Geometry Department, Egry

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EECS 227A Fall 2009 Midterm Tuesday, Ocotober 20, 11:10-12:30pm DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the midterm. The midterm consists

More information

Propp-Wilson Algorithm (and sampling the Ising model)

Propp-Wilson Algorithm (and sampling the Ising model) Propp-Wilson Algorithm (and sampling the Ising model) Danny Leshem, Nov 2009 References: Haggstrom, O. (2002) Finite Markov Chains and Algorithmic Applications, ch. 10-11 Propp, J. & Wilson, D. (1996)

More information

Percolation on Transitive Graphs as a Coalescent Process: Relentless Merging Followed by Simultaneous Uniqueness

Percolation on Transitive Graphs as a Coalescent Process: Relentless Merging Followed by Simultaneous Uniqueness Percolation on Transitive Graphs as a Coalescent Process: Relentless Merging Followed by Simultaneous Uniqueness Olle Häggström Yuval Peres Roberto H. Schonmann July 8, 1999 Abstract Consider i.i.d. percolation

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and Estimation I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 22, 2015

More information

PERCOLATION. Course: Spring 2013 Lecture notes updated: June 19, Contents

PERCOLATION. Course: Spring 2013 Lecture notes updated: June 19, Contents PERCOLATION ARIEL YADIN Course: 201.2.0101 Spring 2013 Lecture notes updated: June 19, 2013 Contents Lecture 1. Introduction 4 1.1. History 4 1.2. Preliminaries - Graphs 4 1.3. Percolation 7 1.4. Kolmogorov

More information

Brownian Web and Net, part II

Brownian Web and Net, part II Brownian Web and Net, part II Nic Freeman & Sandra Palau Institute of Mathematical Sciences, NUS 2 nd August 2017 References in [magenta] from: E. Schertzer, R. Sun and J.M. Swart. The Brownian web, the

More information