Essence of Thermodynamics in 10 mins. Stefan Bringuier References: Thermodynamics in Materials Science Robert DeHoff

Size: px
Start display at page:

Download "Essence of Thermodynamics in 10 mins. Stefan Bringuier References: Thermodynamics in Materials Science Robert DeHoff"

Transcription

1 Essence of Thermodynamics in 10 mins Stefan Bringuier References: Thermodynamics in Materials Science Robert DeHoff

2 A Material Scientist Viewpoint Given these conditions (i.e. temperature, pressure, composition) what state of matter may exist. Equilibrium maps provide the answer! (e.g. Phase- Diagrams, Predominance-Diagrams, Pourbaix Diagrams etc.) Example Phase-Diagram for single component system. Adapted from the Wikimedia Commons file "Image:Phase-diag2" org/wikipedia/commons/thumb/3/34/phasediag2.svg/200px-phase-diag2.svg.png

3 How To Make Such Maps Use of experimental (or computational) thermochemical/thermophysical data. The Thermodynamics framework takes in this data and outputs what we want. Data Inputs: Heat capacity Melting point Boiling point etc. Thermodynamics Outputs: Free-Energy Curves Phase-Diagrams Gas Composition Maps etc.

4 Phenomenological Thermodynamics We observe and describe. No effort in understanding a more clear description of matter. This means measured properties like temperature, pressure, composition, etc. is sufficient description of materials.

5 Statistical Thermodynamics Matter consist of atoms in different structures having properties like mass and energy. Bonds between atoms also have properties. Statistical Thermodynamics - A statistical approach to describe properties using large ensembles of fundamental building blocks.

6 Quick and Dirty:The Laws 1st Law - Energy of the Universe is conserved. 2nd Law - We define a quantity of the Universe called Entropy and its value is always increasing ( We will clarify later the physical meaning). 3rd Law - There exist a universal scale where temperature is zero and all matter has the same Entropy.

7 Classification of systems We can think of materials as subsystems of the Universe. We then seek to classify these materials to fit into the thermodynamic framework: Single Component vs. Multi-component Single Phase vs. Multi-phase Chemically Permeability vs. Non-Permeability Chemically reactive vs. Non-Reactive External fields vs. No fields

8 Variables of a system A material system can be described by quantities such as temperature, volume, pressure,number of atoms, etc. These types of dependent variables can be described as state variables. State variables only depend current condition of the system. Thus differences in state variable is simple: dt = Tfinal - Tinitial

9 Continue... State variables are further described as intensive or extensive. Intensive refers to that the quantity can have spatial dependence. Ex. Temperature T(x,y,z) Extensive means that the state variable describes the entire system Ex. Volume and Energy It is possible to represent extensive variables as intensive quantities by choosing finite volumes to represent the quantity.

10 Process Variables Quantities that flow, for example heat flow, depend upon the path for a changing system. From basic mechanics we can demostrate this for work: dw = F.dx To observe the amount of mechanical work we must integrate over dx

11 1st Law of Thermodynamics U - Energy Q - Heat flow W - Mechanical work C - Other work du = dq + dw + dc 1st Law This is for infinitesimal change in U with incremental changes in Q,W,and C. However simple it is not very useful because we have a state function defined by only process variables.

12 2nd Law of Thermodynamics ds = ds_transfered + ds_produced 2nd Law: S_produced >= 0 Reversible process S_produced = 0. This is what Thermodynamics is concerned with. Irreversible process S_produced > 0, real processes

13 Continued S_produced can be thought of as a loss or spreading out of information(i.e. energy). A pebble dropped in a pond will never spontaneously reverse its dissipation of energy. See R. DeHoff pg. 40 for a good description

14 Heat Flow From the 1st law we have the process variable dq dq_reversible. Based on the Carnot Cycle arguement it can be shown that: dq_reversible = TdS_transfered We note that for an irreversible process ds_irreversible,transferred < ds, reversible_transferred

15 Useful 1st Law We can now write the 1st law in a useful form: du = TdS - PdV + dc where -PdV comes from mechanical work on a system.

16 3rd Law of Thermodynamics At 0 Kelvin the change in entropy between two states is zero. In other words, entropy is the same for all matter at 0 Kelvin

17

Irreversible Processes

Irreversible Processes Irreversible Processes Examples: Block sliding on table comes to rest due to friction: KE converted to heat. Heat flows from hot object to cold object. Air flows into an evacuated chamber. Reverse process

More information

Adiabatic Expansion (DQ = 0)

Adiabatic Expansion (DQ = 0) Adiabatic Expansion (DQ = 0) Occurs if: change is made sufficiently quickly and/or with good thermal isolation. Governing formula: PV g = constant where g = C P /C V Adiabat P Isotherms V Because PV/T

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

I.D The Second Law Q C

I.D The Second Law Q C I.D he Second Law he historical development of thermodynamics follows the industrial revolution in the 19 th century, and the advent of heat engines. It is interesting to see how such practical considerations

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Chap. 3. The Second Law. Law of Spontaneity, world gets more random

Chap. 3. The Second Law. Law of Spontaneity, world gets more random Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin - No process can transform heat completely into work Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

The Physics of Energy

The Physics of Energy Corso di Laurea in FISICA The Physics of Energy Luca Gammaitoni Corso di Laurea in Fisica, 2017-2018 Corso di Laurea in FISICA II Introduction to thermodynamics Luca Gammaitoni The Physics of Energy Use

More information

Classical thermodynamics

Classical thermodynamics Classical thermodynamics More about irreversibility chap. 6 Isentropic expansion of an ideal gas Sudden expansion of a gas into vacuum cf Kittel and Kroemer end of Cyclic engines cf Kittel and Kroemer

More information

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these Q 1. Q 2. Q 3. Q 4. Q 5. Q 6. Q 7. The incorrect option in the following table is: H S Nature of reaction (a) negative positive spontaneous at all temperatures (b) positive negative non-spontaneous regardless

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year.

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year. CONTENTS 1 0.1 Introduction 0.1.1 Prerequisites Knowledge of di erential equations is required. Some knowledge of probabilities, linear algebra, classical and quantum mechanics is a plus. 0.1.2 Units We

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

Chapter 20 The Second Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics Chapter 20 The Second Law of Thermodynamics When we previously studied the first law of thermodynamics, we observed how conservation of energy provided us with a relationship between U, Q, and W, namely

More information

For more info visit

For more info visit Basic Terminology: Terms System Open System Closed System Isolated system Surroundings Boundary State variables State Functions Intensive properties Extensive properties Process Isothermal process Isobaric

More information

How to please the rulers of NPL-213 the geese

How to please the rulers of NPL-213 the geese http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

Thermodynamics! for Environmentology!

Thermodynamics! for Environmentology! 1 Thermodynamics! for Environmentology! Thermodynamics and kinetics of natural systems Susumu Fukatsu! Applied Quantum Physics Group! The University of Tokyo, Komaba Graduate School of Arts and Sciences

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

Lecture 14. Entropy relationship to heat

Lecture 14. Entropy relationship to heat Lecture 14 Entropy relationship to heat Reading: Lecture 14, today: Chapter 7: 7.20 end Lecture 15, Wednesday: Ref. (2) 2/29/16 1 Hemoglobin and probability Oxygen binding molecule. Its quaternary structure

More information

Chapter 2 Thermodynamics

Chapter 2 Thermodynamics Chapter 2 Thermodynamics 2.1 Introduction The First Law of Thermodynamics is a statement of the existence of a property called Energy which is a state function that is independent of the path and, in the

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

CHEM Introduction to Thermodynamics Fall Entropy and the Second Law of Thermodynamics

CHEM Introduction to Thermodynamics Fall Entropy and the Second Law of Thermodynamics CHEM2011.03 Introduction to Thermodynamics Fall 2003 Entropy and the Second Law of Thermodynamics Introduction It is a matter of everyday observation that things tend to change in a certain direction.

More information

Learning Objectives and Fundamental Questions

Learning Objectives and Fundamental Questions Learning Objectives and Fundamental Questions What is thermodynamics and how are its concepts used in geochemistry? How can heat and mass flux be predicted or interpreted using thermodynamic models? How

More information

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0)

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Key Point: ΔS universe allows us to distinguish between reversible and irreversible

More information

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course BASICS OF THERMODYNAMICS Vikasana - Bridge Course 2012 1 Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course 2012 2 HEAT Heat is

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Physics I Lecture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ 1st & 2nd Laws of Thermodynamics The 1st law specifies that we cannot get more energy

More information

Review of First and Second Law of Thermodynamics

Review of First and Second Law of Thermodynamics Review of First and Second Law of Thermodynamics Reading Problems 4-1 4-4 4-32, 4-36, 4-87, 4-246 5-2 5-4, 5.7 6-1 6-13 6-122, 6-127, 6-130 Definitions SYSTEM: any specified collection of matter under

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations

FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations Analiza cieplna i kalorymetria różnicowa w badaniach materiałów Tomasz Czeppe Lecture

More information

Adiabats and entropy (Hiroshi Matsuoka) In this section, we will define the absolute temperature scale and entropy.

Adiabats and entropy (Hiroshi Matsuoka) In this section, we will define the absolute temperature scale and entropy. 1184 Adiabats and entropy (Hiroshi Matsuoka In this section, we will define the absolute temperature scale and entropy Quasi-static adiabatic processes and adiabats Suppose that we have two equilibrium

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 9 Heat Engines

More information

Lecture 3 Clausius Inequality

Lecture 3 Clausius Inequality Lecture 3 Clausius Inequality Rudolf Julius Emanuel Clausius 2 January 1822 24 August 1888 Defined Entropy Greek, en+tropein content transformative or transformation content The energy of the universe

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Entropy A measure of molecular disorder

Entropy A measure of molecular disorder Entropy A measure of molecular disorder Second Law uses Entropy, S, to identify spontaneous change. Restatement of Second Law: The entropy of the universe tends always towards a maximum (S universe > 0

More information

Thermodynamic Laws, Gibbs Free Energy & pe/ph

Thermodynamic Laws, Gibbs Free Energy & pe/ph Thermodynamic Laws, Gibbs Free Energy & pe/ph or how to predict chemical reactions without doing experiments OCN 623 Chemical Oceanography Definitions Extensive properties Depend on the amount of material

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

First Law Limitations

First Law Limitations First Law Limitations First Law: During any process, the energy of the universe is constant. du du du ZERO!!! universe sys surroundings Any energy transfer between system and surroundings is accomplished

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality Entropy distinguishes between irreversible and reversible processes. irrev S > 0 rev In a spontaneous process, there should be a net increase in the entropy of the system

More information

Thermochemical Properties

Thermochemical Properties Thermochemical Properties Materials respond to Thermal stimuli (temperature) Chemical stimuli (composition or environment) Electromagnetic stimuli (electric or magnetic fields) Mechanical stimuli (mechanical

More information

Chapter 16 The Second Law of Thermodynamics

Chapter 16 The Second Law of Thermodynamics Chapter 16 The Second Law of Thermodynamics To examine the directions of thermodynamic processes. To study heat engines. To understand internal combustion engines and refrigerators. To learn and apply

More information

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 1 Chapter 21 Entropy and the Second Law of hermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 2 21-1 Some One-Way Processes Egg Ok Irreversible process Egg

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

The Laws of Thermodynamics

The Laws of Thermodynamics MME 231: Lecture 06 he Laws of hermodynamics he Second Law of hermodynamics. A. K. M. B. Rashid Professor, Department of MME BUE, Dhaka oday s opics Relation between entropy transfer and heat Entropy change

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality We know: Heat flows from higher temperature to lower temperature. T A V A U A + U B = constant V A, V B constant S = S A + S B T B V B Diathermic The wall insulating, impermeable

More information

S = S(f) S(i) dq rev /T. ds = dq rev /T

S = S(f) S(i) dq rev /T. ds = dq rev /T In 1855, Clausius proved the following (it is actually a corollary to Clausius Theorem ): If a system changes between two equilibrium states, i and f, the integral dq rev /T is the same for any reversible

More information

CHAPTER 6 CHEMICAL EQUILIBRIUM

CHAPTER 6 CHEMICAL EQUILIBRIUM CHAPTER 6 CHEMICAL EQUILIBRIUM Spontaneous process involving a reactive mixture of gases Two new state functions A: criterion for determining if a reaction mixture will evolve towards the reactants or

More information

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 1 Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy 1. Work 1 Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 2 (c)

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics Lecture by Dr. Hebin Li Assignment Due at 11:59pm on Sunday, December 7 HW set on Masteringphysics.com Final exam: Time: 2:15pm~4:15pm, Monday, December 8. Location:

More information

IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

Class 22 - Second Law of Thermodynamics and Entropy

Class 22 - Second Law of Thermodynamics and Entropy Class 22 - Second Law of Thermodynamics and Entropy The second law of thermodynamics The first law relates heat energy, work and the internal thermal energy of a system, and is essentially a statement

More information

Thermodynamics General

Thermodynamics General Thermodynamics General Lecture 5 Second Law and Entropy (Read pages 587-6; 68-63 Physics for Scientists and Engineers (Third Edition) by Serway) Review: The first law of thermodynamics tells us the energy

More information

Problem 4 (a) This process is irreversible because it does not occur though a set of equilibrium states. (b) The heat released by the meteor is Q = mc T. To calculate the entropy of an irreversible process

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

Lecture 03/30 Monday, March 30, :46 AM

Lecture 03/30 Monday, March 30, :46 AM Chem 110A Page 1 Lecture 03/30 Monday, March 30, 2009 9:46 AM Notes 0330 Audio recording started: 10:02 AM Monday, March 30, 2009 Chapter 1: Ideal Gases Macroscopic properties of gases Equation of state

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. he second law deals with direction of thermodynamic processes

More information

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins Expansion Work General Expression for Work Free Expansion Expansion Against Constant Pressure Reversible Expansion

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne McGill University Lehman College City University of New York Thermodynamics Charged Particle and Statistical Correlations Mechanics in Minimum Bias Events at ATLAS Thermodynamics

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Part1B(Advanced Physics) Statistical Physics

Part1B(Advanced Physics) Statistical Physics PartB(Advanced Physics) Statistical Physics Course Overview: 6 Lectures: uesday, hursday only 2 problem sheets, Lecture overheads + handouts. Lent erm (mainly): Brief review of Classical hermodynamics:

More information

Chap. 3 The Second Law. Spontaneous change

Chap. 3 The Second Law. Spontaneous change Chap. 3 The Second Law Spontaneous change Some things happen naturally; some things don t. the spontaneous direction of change, the direction of change that does not require work to be done to bring it

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Thermodynamics 2013/2014, lecturer: Martin Zápotocký

Thermodynamics 2013/2014, lecturer: Martin Zápotocký Thermodynamics 2013/2014, lecturer: Martin Zápotocký 2 lectures: 1. Thermodynamic processes, heat and work, calorimetry, 1 st and 2 nd law of thermodynamics 2. Entropy, thermodynamic potentials, nonequilibrium

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

Chem 75 Winter, 2017 Practice Exam 1

Chem 75 Winter, 2017 Practice Exam 1 This was Exam 1 last year. It is presented here with, first, just the problems and then with the problems and their solutions. YOU WILL BENEFIT MOST if you attempt first just the problems as if you were

More information

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur.

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur. Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Second Law and its Corollaries I Good afternoon, I welcome you all to this

More information

Chapter 4: Partial differentiation

Chapter 4: Partial differentiation Chapter 4: Partial differentiation It is generally the case that derivatives are introduced in terms of functions of a single variable. For example, y = f (x), then dy dx = df dx = f. However, most of

More information

Physics 207 Lecture 27. Lecture 26. Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators

Physics 207 Lecture 27. Lecture 26. Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators Goals: Lecture 26 Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators Reading assignment for Wednesday: Chapter 20. Physics 207: Lecture 27, Pg 1 Entropy A

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

Thermodynamic Variables and Relations

Thermodynamic Variables and Relations MME 231: Lecture 10 Thermodynamic Variables and Relations A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Thermodynamic relations derived from the Laws of Thermodynamics Definitions

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

Dept. of Materials Science & Engineering. Problem Set 2 Solutions

Dept. of Materials Science & Engineering. Problem Set 2 Solutions Problem Set 2 Solutions 1. Using dv and ds as a function of T and P that we derived in class, fully derive the rest of toolbox 3 (i.e., du, dh, df, and dg). See DeHoff pages 73 74, equations 4.41 4.43.

More information

PHYSICS 715 COURSE NOTES WEEK 1

PHYSICS 715 COURSE NOTES WEEK 1 PHYSICS 715 COURSE NOTES WEEK 1 1 Thermodynamics 1.1 Introduction When we start to study physics, we learn about particle motion. First one particle, then two. It is dismaying to learn that the motion

More information

Internal Energy (example)

Internal Energy (example) Internal Energy (example) A bucket of water KEs: translational: rotational: vibrational: PEs: within molecules: between molecules: @ rest on the table molecular bonds dipole-dipole interactions Internal

More information

Details on the Carnot Cycle

Details on the Carnot Cycle Details on the Carnot Cycle he isothermal expansion (ab) and compression (cd): 0 ( is constant and U() is a function U isothermal of only for an Ideal Gas.) V b QH Wab nrh ln Va (ab : isothermal expansion)

More information

VI. Entropy. VI. Entropy

VI. Entropy. VI. Entropy A. Introduction ( is an alternative way of looking at entropy). Observation shows that isolated systems spontaneously change to a state of equilibrium. a. wo blocks of iron with A > B. Bring the blocks

More information

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes I. The concept of work, expansion and additional (useful) work. II. The concept of heat. III. Definition of internal energy and its molecular interpretation. I. Different forms of the first law of thermodynamics..

More information

Summary of last part of lecture 2

Summary of last part of lecture 2 Summary of last part of lecture 2 Because the lecture became somewhat chaotic towards the end, I rederive the expressions for the Helmhlotz and Gibbs free energies from the Clausius inequality: S 0 (1)

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1

Work and heat. Heat Transactions Calorimetry Heat Capacity. Last updated: Sept. 24, 2018, slide 1 Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins (7th, 8th & 9th editions) Section 2.1 of Atkins (10th, 11th editions) Expansion Work General Expression for Work Free

More information

Physics 123 Thermodynamics Review

Physics 123 Thermodynamics Review Physics 3 Thermodynamics Review I. Definitions & Facts thermal equilibrium ideal gas thermal energy internal energy heat flow heat capacity specific heat heat of fusion heat of vaporization phase change

More information