PHYS 172: Modern Mechanics. Fall Lecture 6 Fundamental Forces, Reciprocity Read

Size: px
Start display at page:

Download "PHYS 172: Modern Mechanics. Fall Lecture 6 Fundamental Forces, Reciprocity Read"

Transcription

1 PHYS 172: Moden Mechanics Fall 2009 Lectue 6 Fundamental Foces, Recipocity Read

2 Exam 1 - Tuesday Septembe 15, 8:00-10:00 PM Elliott Hall of Music 1. The exam will be witten as a standad 1 hou exam, but you will have 2 hous to complete it. 2. Absences must be excused in advance, if at all possible, by filing an Absentee Repot fom in Rm 144 PHYS. (See the syllabus.) Fo emegencies, contact you instucto by as soon as possible. 3. Students appoved fo sepaate test envionments must contact thei instucto by ASAP. 4. You may NOT bing equations sheets, books, etc. It is a closed book exam. A few equations and constants may be povided. DO bing pencils and a calculato (of any standad type). Gaphing Calculato is ok. 5. You must show you Pudue Student ID cad when tuning in you completed exam.

3 Exam 1 Announcements, cont: 6. The exam coves all assigned mateial in this couse though the end of Chapte 3, including labs, ecitations, and homewok. 7. The fist exam fom last semeste can be downloaded fom the PHYS 172 web page; click on Pevious Exams.

4 CLICKER QUESTION #1 Reading Question (Sections ) (This is a closed-book quiz, no consulting with neighbos, etc.) Choose the coect statement: A. Newton was able to explain whee gavity comes fom. B. Newton poved that the gavitational foce fom a unifom sphee is the exactly the same as if it wee a point at the cente. C. Today s Global Positioning System (GPS) expeimentally poves the complete coectness of Newton s theoy of gavity. D. Newton s theoy of gavity is not quite coect because it leaves out the Heisenbeg Uncetainty Pinciple.

5 Today s Lectue Unifom Cicula Motion The Electic Foce and Recipocity Pedicting Motion When Foces Change

6 Unifom Cicula Motion: Have one foce that pulls towads cente causes a change in velocity even though the magnitude of velocity is constant

7 Unifom Cicula Motion: By definition, the speed is constant, and the velocity always points tangent to the cicula path. In what diection does the change in velocity point? The change in momentum? v f! v i y v i v f v i v f R!! R x v i =!vcos",vsin",0 v f =!vcos",!vsin",0 v f! v i = 0,!2vsin",0

8 This is the change in velocity going though an abitay angle 2θ centeed on the y-axis. The distance taveled is 2θR (the ac length), so the time inteval is:!t = 2"R / v. v f! v i v i v f y v i! p!t = m! v!t "2mvsin# mv2 = 0,,0 = 0," 2#R / v R sin# #,0 v f R!! R! p lim!t"0!t # d p dt = mv2 0,$ R,0 x dp dt = F ext = mv2 R adially inwad, fo unifom cicula motion.

9 CLICKER QUESTION #2 At time t=0, a sta is at position 1e11,0,0 m and a planet is located at 2e11,0,0 m. M sta = 1e30 kg, M planet = 5e24 kg; G=6.7e-11 Nm 2 /kg 2. What is the magnitude of the gavitational foce the sta exets on the planet? A. 5.0e32 N B. 3.4e33 N C. 3.4e22 N D. 1.7e22 N E. 0.84e22 N

10 CLICKER QUESTION #3 At time t=0, the planet s velocity is 100,-300,0 m/s. Conside the planet s velocity 3 hous late. Choose the most coect answe: A. The change in the planet s velocity will point towads the sta. B. The change in the planet s velocity will point away fom the sta. C. The change in the planet s velocity will have both adial and tangential components.

11 CLICKER QUESTION #4 At time t=0, the planet s velocity is 100,-300,0 m/s. Use the momentum pinciple to detemine the magnitude of the change in the planet s velocity 3 hous late? (Remembe M planet = 5e24 kg, F =3.4e22N ). A. 73 m/s B. 128 m/s C. 28 m/s D. 0 m/s E. 100 m/s

12 The Electic Foce physical objects = many atoms. atomic bonds = electic foces ( + quantum mechanics) Thus, electic foces descibe almost all eveyday foces othe than gavity!

13 Fo the magnitude only: F gavity = G mm R 2 Cavendish (1798) F electic = 1 Qq 4!" o R 2 Coulomb (1795)

14 The Gavitational Foce and the Electostatic Foce have almost identical foms: uv m m F =! G v ˆ 2 1 gav on2 by1 2 2! 1 The Electic Foce 2! 1 uv F = 1 q q ˆ 2 1 elec on2 by v #!" 0 2 # 1 G = 6.7x10 N m 2 kg! 11 " 2 Note that fo both thee is ecipocity: Switch 1 and 2: ˆ " ˆ =! ˆ 2! 1 1! 2 2! whee is a univesal constant: = 9x10 4!" 4!" 0 0 uv F # m m $ # m m $ # m m $ %! G & " %! G & = %! G & % & % 2 1 & %! 1! 2 & ' v ( '! v ( ' v 2! 1 ( on uv =! F 1 by 2 on 2 by 1 same mag., opposite diection 9 N # m 2 C 2

15 The Electic Foce Both gavity and the electic foce ae invese squae laws. Note, howeve, the minus sign is only thee fo gavity: Gavity is always attactive, but Electic foces can be attactive o epulsive. uv F = 1 q q ˆ 2 1 elec on2 by v #!" 0 2 # 1

16 Non-Constant Foces m m F ˆ gav =! G v 2 1 on 2by1 2 2! 1 F sping = 2! 1 k s s these foces change as the object s positions change How do we deal with foces that change? We apply momentum update (etc.) epeatedly, known as iteatively pedicting the motion (by hand o by compute). NOTE: The mathematical limit of this iteative pocedue employs integal and diffeential equations fom calculus.

17 Iteative Pediction of Motion Fist divide the total time inteval into many smalle time intevals (so that F is oughly constant ove the inteval). Then Calculate the (vecto) foces acting on the system Update system momentum: Update position: Repeat p f = pi + Fnet! t x = x + v! t f i ave You ll do this many times in lab this semeste.

18 Sample code fom last week s Vpython lab, bouncingball.py: deltat = 0.01 t = 0 while t<4.0: ball.p=ball.p+deltat*fgav ball.pos = ball.pos+ball.p/ball.m*deltat t=t+deltat if ball.pos.y <-0.95: ball.p.y=-ball.p.y Note that this is fo a constant foce, due to gavity.

19 Iteative Pediction of Motion Constant Foce (mg) + Momentum Pinciple = Pojectile Motion (cuved path) But, can also add ai esistance = non-constant foce

20 Iteation: Moon Landing (Lab #3) Ship z y x S, E = S S, M Eath Moon F = F + F net Eath moon! m m "! m m " = # % G ˆ $ + # % G ˆ $ E S M S 2 S, E 2 S, M # $ # S, E $ & ' & S, M ' We assume Eath and moon don t move. Why is this okay? Thei positions and masses ae known.

21 Iteation: Moon Landing (Lab #3) You know momentum and position of ship at some instant t 1 : Find net foce at this instant:! m m "! m m " F t = # % G ˆ t $ + # % G ˆ t $ ( ) ( ) ( ) E S M S net 1 2 S, E 1 2 S, M 1 # S, E ( t1 ) $ # S, M ( t1 ) $ & ' & ' Update momentum: p t +! t = p t + F t! t Update position: ( ) ( ) ( ) S 1 S 1 net 1 ( ) ( ) p t t p t ( +! ) + ( ) S 1 S 1 S t1 +! t = S t1 +! t 2" ms Knowing new position, find new foce and go back to step 1.

22 Impotance of Choosing The Time Step Δt < F < 6.4 (not vey constant!) Δt < F < 5.6 (bette)

23 Why Not Just Use Calculus? Fist Answe: When you iteatively update motion with small time intevals, you ARE doing calculus: you e pefoming numeical integations. % = $ i! i #! xi " 0 i f x dx lim f x x ( ) ( ) f ( x)

24 Why Not Just Use Calculus? Second Answe: We can always do " ( ) but we can t usually evaluate i f x! x i! i by compute, f x dx ( ) by hand. The thee-body gavitational poblem: with only 3 bodies (!!), no exact solution.

25 Deteminism and Chaos We neve know initial conditions exactly. Two vey simila initial values give wildly diffeent behavios: chaos.

26 A Famous Non-linea System dx dt dy dt dz dt =! y $ x ( ) = x " $ z $ y ( ) = xy $ # z The Loenz attacto: A simple (!?) weathe simulation using deteministic, non-linea diffeential equations. It s a chaotic system with some sot of stuctue (a factal).

PHYS 172: Modern Mechanics. Summer Lecture 4 The Momentum Principle & Predicting Motion Read

PHYS 172: Modern Mechanics. Summer Lecture 4 The Momentum Principle & Predicting Motion Read PHYS 172: Moden Mechanics Summe 2010 Δp sys = F net Δt ΔE = W + Q sys su su ΔL sys = τ net Δt Lectue 4 The Momentum Pinciple & Pedicting Motion Read 2.6-2.9 READING QUESTION #1 Reading Question Which of

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

PHYSICS 272 Electric & Magnetic Interactions. Prof. Andrew Hirsch Room: 178, Phone: 42218

PHYSICS 272 Electric & Magnetic Interactions. Prof. Andrew Hirsch Room: 178, Phone: 42218 PHYSICS 7 Electic & Magnetic Inteactions Pof. Andew Hisch Hisch@pudue.edu Room: 78, Phone: 48 Couse Content This couse deals with electic and magnetic inteactions, which ae cental to the stuctue of matte,

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

13.10 Worked Examples

13.10 Worked Examples 13.10 Woked Examples Example 13.11 Wok Done in a Constant Gavitation Field The wok done in a unifom gavitation field is a faily staightfowad calculation when the body moves in the diection of the field.

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

PHYS 1441 Section 002. Lecture #3

PHYS 1441 Section 002. Lecture #3 PHYS 1441 Section 00 Chapte 1 Lectue #3 Wednesday, Sept. 6, 017 Coulomb s Law The Electic Field & Field Lines Electic Fields and Conductos Motion of a Chaged Paticle in an Electic Field Electic Dipoles

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

PHYSICS 272H Electric & Magnetic Interactions

PHYSICS 272H Electric & Magnetic Interactions PHYSICS 7H Electic & Magnetic Inteactions Physics couse home page: http://www.physics.pudue.edu/academic-pogams/couses/all_couses.php Blackboad Lean: https://mycouses.pudue.edu/webapps/login/ Couse Content

More information

AP Physics - Coulomb's Law

AP Physics - Coulomb's Law AP Physics - oulomb's Law We ve leaned that electons have a minus one chage and potons have a positive one chage. This plus and minus one business doesn t wok vey well when we go in and ty to do the old

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

PHYSICS 272 Electric & Magnetic Interactions. Prof. Andrew Hirsch Room: 178, Phone: 42218

PHYSICS 272 Electric & Magnetic Interactions. Prof. Andrew Hirsch Room: 178, Phone: 42218 PHYSICS 7 Electic & Magnetic Inteactions Pof. Andew Hisch Hisch@pudue.edu Room: 78, Phone: 48 Couse Content This couse deals with electic and magnetic inteactions, which ae cental to the stuctue of matte,

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

Lecture 19 Angular momentum. Chapter

Lecture 19 Angular momentum. Chapter PHYS 172H: Moden Mechanics Fall 2010 Lectue 19 ngula momentum Chapte 11.4 11.7 The angula momentum pinciple dp = F dl =? net d ( p ) d dp = p+ = v γ mv = = 0 The angula momentum pinciple fo a point paticle

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Today. Homework Problem Traveling Car. Announcements:

Today. Homework Problem Traveling Car. Announcements: nnouncements: Today HW#3 due by 8:00 am Wednesday Exam #1 on Thusday /11 No class on Thusday /4 Taveling a Poblem fom HW# Gavity The Newtonian Woldview Vectos (Hints fo the boat poblem) ISP09s10 Lectue

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Electric Forces: Coulomb s Law

Electric Forces: Coulomb s Law Electic Foces: Coulomb s Law All the matte aound you contains chaged paticles, and it is the electic foces between these chaged paticles that detemine the stength of the mateials and the popeties of the

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and (). An atom consists of a heavy (+) chaged nucleus suounded

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Spring 2001 Physics 2048 Test 3 solutions

Spring 2001 Physics 2048 Test 3 solutions Sping 001 Physics 048 Test 3 solutions Poblem 1. (Shot Answe: 15 points) a. 1 b. 3 c. 4* d. 9 e. 8 f. 9 *emembe that since KE = ½ mv, KE must be positive Poblem (Estimation Poblem: 15 points) Use momentum-impulse

More information

Teachers notes. Beyond the Thrills excursions. Worksheets in this book. Completing the worksheets

Teachers notes. Beyond the Thrills excursions. Worksheets in this book. Completing the worksheets Beyond the Thills excusions Teaches notes Physics is the science of how the wold (and Univese) woks. Luna Pak Sydney is a lage hands-on physics laboatoy full of fee falling objects, otating systems and

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Physics 201 Homework 4

Physics 201 Homework 4 Physics 201 Homewok 4 Jan 30, 2013 1. Thee is a cleve kitchen gadget fo dying lettuce leaves afte you wash them. 19 m/s 2 It consists of a cylindical containe mounted so that it can be otated about its

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Introduction: Vectors and Integrals

Introduction: Vectors and Integrals Intoduction: Vectos and Integals Vectos a Vectos ae chaacteized by two paametes: length (magnitude) diection a These vectos ae the same Sum of the vectos: a b a a b b a b a b a Vectos Sum of the vectos:

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis Conflict Exam Issue. Soy, Can t do it I was told that: Students can only be excused fom the scheduled final fo illness, death in the family o eligious holiday. No exceptions. Please see Kevin Pitts if

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

Mark answers in spaces on the answer sheet

Mark answers in spaces on the answer sheet Mak answes in spaces 31-43 on the answe sheet PHYSICS 1 Summe 005 EXAM 3: July 5 005 9:50pm 10:50pm Name (pinted): ID Numbe: Section Numbe: INSTRUCTIONS: Some questions ae one point, othes ae two points,

More information

Physics 202, Lecture 2

Physics 202, Lecture 2 Physics 202, Lectue 2 Todays Topics Electic Foce and Electic Fields Electic Chages and Electic Foces Coulomb's Law Physical Field The Electic Field Electic Field Lines Motion of Chaged Paticle in Electic

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687 Chapte 4 Newton s Laws of Motion 1 Newton s Law of Motion Si Isaac Newton (1642 1727) published in 1687 2 1 Kinematics vs. Dynamics So fa, we discussed kinematics (chaptes 2 and 3) The discussion, was

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r>

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r> Electic Field Point chage: E " ˆ Unifomly chaged sphee: E sphee E sphee " Q ˆ fo >R (outside) fo >s : E " s 3,, at z y s + x Dipole moment: p s E E s "#,, 3 s "#,, 3 at

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

Physics 2001 Problem Set 5 Solutions

Physics 2001 Problem Set 5 Solutions Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,

More information

Our Universe: GRAVITATION

Our Universe: GRAVITATION Ou Univese: GRAVITATION Fom Ancient times many scientists had shown geat inteest towads the sky. Most of the scientist studied the motion of celestial bodies. One of the most influential geek astonomes

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is Section : Newton s Law of Gavitation In 1686 Isaac Newton published his Univesal Law of Gavitation. This explained avity as a foce of attaction between all atte in the Univese, causin e.. apples to fall

More information