Processing with Block Ciphers. CSC/ECE 574 Computer and Network Security. Issues (Cont d) Issues for Block Chaining Modes. Electronic Code Book (ECB)

Size: px
Start display at page:

Download "Processing with Block Ciphers. CSC/ECE 574 Computer and Network Security. Issues (Cont d) Issues for Block Chaining Modes. Electronic Code Book (ECB)"

Transcription

1 rocessing with Block iphers S/ 574 omputer and Network Security Topic 3.2 Secret ryptography Modes of Operation Most ciphers work on blocks of fixed (small) size How to encrypt long messages? Modes of operation B (lectronic ode Book) B (ipher Block haining) OFB (Output Feedback) FB (ipher Feedback) TR (ounter) S/ 574 r. eng Ning 1 S/ 574 r. eng Ning 2 Issues for Block haining Modes Information leakage oes it reveal info about the plaintext blocks? iphertext manipulation an an attacker modify ciphertext block(s) in a way that will produce a predictable/desired change in the decrypted plaintext block(s)? Note: assume the structure of the plaintext is known, e.g., first block is employee #1 salary, second block is employee #2 salary, etc. Issues (ont d) arallel/sequential an blocks of plaintext (ciphertext) be encrypted (decrypted) in parallel? rror propagation If there is an error in a plaintext (ciphertext) block, will there be an encryption (decryption) error in more than one ciphertext (plaintext) block? S/ 574 r. eng Ning 3 S/ 574 r. eng Ning 4 lectronic ode Book (B) B ecryption laintext iphertext The easiest mode of operation; each block is independently encrypted S/ 574 r. eng Ning 5 ach block is independently decrypted S/ 574 r. eng Ning 6

2 B roperties oes information leak? an ciphertext be manipulated profitably? arallel processing possible? o ciphertext errors propagate? M 1 M 24 M 3 M S/ 574 r. eng Ning 7 ipher Block haining (B) Initialization Vector haining dependency: each ciphertext block depends on all preceding plaintext blocks S/ 574 r. eng Ning 8 Initialization Vectors Initialization Vector () Used along with the key; not secret For a given plaintext, changing either the key, or the, will produce a different ciphertext Why is that useful? generation and sharing Random; may transmit with the ciphertext Incremental; predictable by receivers S/ 574 r. eng Ning 9 B ecryption Initialization Vector How many ciphertext blocks does each plaintext block depend on? S/ 574 r. eng Ning 10 B roperties oes information leak? Identical plaintext blocks will produce different ciphertext blocks an ciphertext be manipulated profitably? arallel processing possible? no (encryption), yes (decryption) o ciphertext errors propagate? yes (encryption), a little (decryption) Output Feedback Mode (OFB) Initialization Vector seudo-random Number Generator one-time pad S/ 574 r. eng Ning 11 S/ 574 r. eng Ning 12

3 OFB ecryption one-time pad No block decryption required! S/ 574 r. eng Ning 13 OFB roperties oes information leak? identical plaintext blocks produce different ciphertext blocks an ciphertext be manipulated profitably? arallel processing possible? no (generating pad), yes (XORing with blocks) o ciphertext errors propagate? S/ 574 r. eng Ning 14 OFB (ont d) ipher Feedback Mode (FB) If you know one plaintext/ciphertext pair, can easily derive the one-time pad that was used i.e., should not reuse a one-time pad! onclusion: must be different every time iphertext block j depends on all preceding plaintext blocks S/ 574 r. eng Ning 15 S/ 574 r. eng Ning 16 FB ecryption FB roperties No block decryption required! oes information leak? Identical plaintext blocks produce different ciphertext blocks an ciphertext be manipulated profitably? arallel processing possible? no (encryption), yes (decryption) o ciphertext errors propagate? S/ 574 r. eng Ning 17 S/ 574 r. eng Ning 18

4 ounter Mode (TR) M 1 M 2 M 3 TR Mode roperties oes information leak? Identical plaintext block produce different ciphertext blocks an ciphertext be manipulated profitably arallel processing possible Yes (both generating pad and XORing) o ciphertext errors propagate? Allow decryption the ciphertext at any location Ideal for random access to ciphertext S/ 574 r. eng Ning 19 S 474 r. eng Ning 20 Stronger S S/ 574 omputer and Network Security Major limitation of S length is too short an we apply S multiple times to increase the strength of encryption? Topic 3.3 Secret ryptography Triple S S/ 574 r. eng Ning 21 S/ 574 r. eng Ning 22 ouble ncryption with S ncrypt the plaintext twice, using two different S keys Total key material increases to 112 bits is that the same as key strength of 112 bits? ncryption ecryption X 1 2 X Observation: X= 1 {}= {} oncerns About ouble S Wasn t clear at the time if S was a group (it s not) If it were, then k2 (k1()) k3 (), for all Not good? ossible attack (better than brute force): meet-in-the-middle A chosen plaintext attack S/ 574 r. eng Ning 23 S/ 574 r. eng Ning 24

5 The Meet-in-the-Middle Attack 1. hoose a plaintext and generate ciphertext, using double-s with + 2. Then a. encrypt using single-s for all possible 2 56 values 1 to generate all possible single-s ciphertexts for : X 1,X 2,,X 2 56 ; store these in a table indexed by ciphertex values b. decrypt using single-s for all possible 2 56 values 2 to generate all possible single-s plaintexts for : Y 1,Y 2,,Y 2 56 ; for each value, check the table Steps (ont d) 3. Meet-in-the-middle: each match (X i = Y j ) reveals a candidate keypair i + j there should be approx. (2 112 / 2 ) = 2 48 such pairs for one value of (,) possible keys, but there are only 2 X s 4. Repeat the above, for a second plaintext/ciphertext pair (, ), and find those 2 48 candidate keypairs i + j Why 2 48 (another view)? The table contains only 2 56 /2 = 1/2 8 of all possible -bit values there are 2 56 entries X i for each X i, there is only 1/2 8 chance there is a matching Y i S/ 574 r. eng Ning 25 S/ 574 r. eng Ning 26 Steps (ont d) 5. Look for an identical candidate keypair that produces collisions for both (,) and (, ) the probability the same candidate keypair occurs for both plaintexts, but is not the keypair used in the double-s encryption: 2 48 / 2 = 2-16! An expensive attack (computation + storage) still, enough of a threat to discourage use of double-s Why 2-16? there are about 2 48 candidate keypairs i + j at most one is +, the rest are imposters if i + j is an imposter, the probability using i + j that ( ) = ( ) is 1/2 S/ 574 r. eng Ning 27 Triple ncryption (Triple S-) ncryption ecryption Why not --? again, wasn t clear if S was a group Apply S encryption/decryption three times why not 3 different keys? why not the same key 3 times? 1 2 S/ 574 r. eng Ning 28 1 Triple S (ont d) 3S-: Outside haining Mode Widely used equivalent strength to using a 112 bit key strength about against M-I-T-M attack However: inefficient / expensive to compute one third as fast as S on the same platform, and S is already designed to be slow in software Next question: how is block chaining used with triple-s? S/ 574 r. eng Ning 29 What basic chaining mode is this? S/ 574 r. eng Ning 30

6 3S-: OM ecryption OM roperties S/ 574 r. eng Ning 31 oes information leak? identical plaintext blocks produce different ciphertext blocks an ciphertext be manipulated profitably? arallel processing possible? no (encryption), yes (decryption) o ciphertext errors propagate? S/ 574 r. eng Ning 32 3S-: Inside haining Mode 3S-: IM ecryption S/ 574 r. eng Ning 33 S/ 574 r. eng Ning 34 3S-: Inside haining Mode 3-S : IM ecryption S/ 574 r. eng Ning 35 S/ 574 r. eng Ning 36

7 Message Authentication S/ 574 omputer and Network Security Topic 3.4 Secret ryptography MA with Secret iphers ncryption easily provides confidentiality of messages only the party sharing the key (the key partner ) can decrypt the ciphertext How to use encryption to authenticate messages? That is, prove the message was created by the key partner prove the message wasn t modified by someone other than the key partner S/ 574 r. eng Ning 37 S/ 574 r. eng Ning 38 Approach #1 The quick and dirty approach If the decrypted plaintext looks plausible, then conclude ciphertext was produced by the key partner i.e., illegally modified ciphertext, or ciphertext encrypted with the wrong key, will probably decrypt to random-looking data But, is it easy to verify data is plausiblelooking? What if all data is plausible? S/ 574 r. eng Ning 39 Approach #2: laintext+iphertext Sender Send plaintext and ciphertext receiver encrypts plaintext, and compares result with received ciphertext forgeries / modifications easily detected any problems / drawbacks? Receiver S/ 574 r. eng Ning 40 ompare Accept /Reject Approach #3: Use Residue ncrypt plaintext using S B mode, with set to zero the last (final) ciphertext output block is called the residue = RSIU S/ 574 r. eng Ning 41 Approach #3 (ont d) Sender Transmit the plaintext and this residue receiver computes same residue, compares to the received residue forgeries / modifications highly likely to be detected Residue only Receiver ompare Residue only S/ 574 r. eng Ning 42

8 Message Authentication odes MA: a small fixed-size block (i.e., independent of message size) generated from a message using secret key cryptography also known as cryptographic checksum Requirements for MA 1. Given M and MA(M), it should be computationally infeasible (expensive) to construct (or find) another message M such that MA(M ) = MA(M) 2. MA(M) should be uniformly distributed in terms of M for randomly chosen messages M and M, ( MA(M)=MA(M ) ) = 2 -k, where k is the number of bits in the MA S/ 574 r. eng Ning 43 S/ 574 r. eng Ning 44 Requirements (cont d) 3. nowing MA(M1), MA(M2),... of some (known or chosen) messages M1, M2,..., it should be computationally infeasible for an attacker to find the MA of some other message M S.. rypto for onfidentiality AN Authenticity? So far we ve got confidentiality (encryption), or authenticity (MAs) an we get both at the same time with one cryptographic operation? S/ 574 r. eng Ning 45 S/ 574 r. eng Ning 46 Attempt #1 Attempt #1 (ont d) 1. Sender computes an error-correcting code or Frame-heck Sequence (FS) F() of the plaintext 2. Sender concatenates and F() and encrypts i.e., = ( F() ) 3. Receiver decrypts received ciphertext using, to get F 4. Receiver computes F( ) and compares to F to authenticate received message = How does this authenticate? Sender F() oncatenate FS F() { F()} The order (1) FS, then (2) encryption is critical why not (2), then (1)? Subtle weaknesses known in this approach, so not preferred Receiver F FS ompare F( ) S/ 574 r. eng Ning 47 S/ 574 r. eng Ning 48

9 Attempt #2 1. ompute residue (MA) using key 2. ncrypt plaintext message M using key to produce 3. Transmit MA to receiver 4. Receiver decrypts received with to get 5. Receiver computes MA( ) using, compares to received MA S/ 574 r. eng Ning 49 Attempt #2 (cont d) Sender Residue only Good (cryptographic) quality, but xpensive! Two separate, full encryptions with different keys are required Receiver Residue MA only ompare S/ 574 r. eng Ning 50 Summary 1. B mode is not secure B most commonly used mode of operation 2. Triple-S (with 2 keys) is much stronger than S usually uses in Outer haining Mode 3. MAs use crypto to authenticate messages at a small cost of additional storage / bandwidth but at a high computational cost S/ 574 r. eng Ning 51

A block cipher enciphers each block with the same key.

A block cipher enciphers each block with the same key. Ciphers are classified as block or stream ciphers. All ciphers split long messages into blocks and encipher each block separately. Block sizes range from one bit to thousands of bits per block. A block

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES CS355: Cryptography Lecture 9: Encryption modes. AES Encryption modes: ECB } Message is broken into independent blocks of block_size bits; } Electronic Code Book (ECB): each block encrypted separately.

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

Public Key Cryptography

Public Key Cryptography T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Public Key Cryptography EECE 412 1 What is it? Two keys Sender uses recipient s public key to encrypt Receiver uses his private key to decrypt

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Stream ciphers I. Thomas Johansson. May 16, Dept. of EIT, Lund University, P.O. Box 118, Lund, Sweden

Stream ciphers I. Thomas Johansson. May 16, Dept. of EIT, Lund University, P.O. Box 118, Lund, Sweden Dept. of EIT, Lund University, P.O. Box 118, 221 00 Lund, Sweden thomas@eit.lth.se May 16, 2011 Outline: Introduction to stream ciphers Distinguishers Basic constructions of distinguishers Various types

More information

Computational security & Private key encryption

Computational security & Private key encryption Computational security & Private key encryption Emma Arfelt Stud. BSc. Software Development Frederik Madsen Stud. MSc. Software Development March 2017 Recap Perfect Secrecy Perfect indistinguishability

More information

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography CS 7880 Graduate Cryptography September 10, 2015 Lecture 1: Perfect Secrecy and Statistical Authentication Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Definition of perfect secrecy One-time

More information

Lecture 4: DES and block ciphers

Lecture 4: DES and block ciphers Lecture 4: DES and block ciphers Johan Håstad, transcribed by Ernir Erlingsson 2006-01-25 1 DES DES is a 64 bit block cipher with a 56 bit key. It selects a 64 bit block and modifies it depending on the

More information

Attacks on hash functions. Birthday attacks and Multicollisions

Attacks on hash functions. Birthday attacks and Multicollisions Attacks on hash functions Birthday attacks and Multicollisions Birthday Attack Basics In a group of 23 people, the probability that there are at least two persons on the same day in the same month is greater

More information

ACORN: A Lightweight Authenticated Cipher (v3)

ACORN: A Lightweight Authenticated Cipher (v3) ACORN: A Lightweight Authenticated Cipher (v3) Designer and Submitter: Hongjun Wu Division of Mathematical Sciences Nanyang Technological University wuhongjun@gmail.com 2016.09.15 Contents 1 Specification

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

8.1 Principles of Public-Key Cryptosystems

8.1 Principles of Public-Key Cryptosystems Public-key cryptography is a radical departure from all that has gone before. Right up to modern times all cryptographic systems have been based on the elementary tools of substitution and permutation.

More information

Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod. Assignment #2

Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod. Assignment #2 0368.3049.01 Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod Assignment #2 Published Sunday, February 17, 2008 and very slightly revised Feb. 18. Due Tues., March 4, in Rani Hod

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

Symmetric Ciphers. Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5)

Symmetric Ciphers. Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5) Symmetric Ciphers Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5) Symmetric Cryptography C = E(P,K) P = D(C,K) Requirements Given C, the only way to obtain P should be with the knowledge of K Any

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

ENEE 459-C Computer Security. Message authentication (continue from previous lecture)

ENEE 459-C Computer Security. Message authentication (continue from previous lecture) ENEE 459-C Computer Security Message authentication (continue from previous lecture) Last lecture Hash function Cryptographic hash function Message authentication with hash function (attack?) with cryptographic

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

Codes and Cryptography. Jorge L. Villar. MAMME, Fall 2015 PART XII

Codes and Cryptography. Jorge L. Villar. MAMME, Fall 2015 PART XII Codes and Cryptography MAMME, Fall 2015 PART XII Outline 1 Symmetric Encryption (II) 2 Construction Strategies Construction Strategies Stream ciphers: For arbitrarily long messages (e.g., data streams).

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Appendix A: Symmetric Techniques Block Ciphers A block cipher f of block-size

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Computer and Network Security Topic 3.1 Secret Key Cryptography Algorithms CSC/ECE 574 Dr. Peng Ning 1 Outline Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Dr. Peng Ning 2 Introduction

More information

Introduction to Cryptography Lecture 4

Introduction to Cryptography Lecture 4 Data Integrity, Message Authentication Introduction to Cryptography Lecture 4 Message authentication Hash functions Benny Pinas Ris: an active adversary might change messages exchanged between and M M

More information

Modern Cryptography Lecture 4

Modern Cryptography Lecture 4 Modern Cryptography Lecture 4 Pseudorandom Functions Block-Ciphers Modes of Operation Chosen-Ciphertext Security 1 October 30th, 2018 2 Webpage Page for first part, Homeworks, Slides http://pub.ist.ac.at/crypto/moderncrypto18.html

More information

Block ciphers And modes of operation. Table of contents

Block ciphers And modes of operation. Table of contents Block ciphers And modes of operation Foundations of Cryptography Computer Science Department Wellesley College Table of contents Introduction Pseudorandom permutations Block Ciphers Modes of Operation

More information

Scribe for Lecture #5

Scribe for Lecture #5 CSA E0 235: Cryptography 28 January 2016 Scribe for Lecture #5 Instructor: Dr. Arpita Patra Submitted by: Nidhi Rathi 1 Pseudo-randomness and PRG s We saw that computational security introduces two relaxations

More information

Security Implications of Quantum Technologies

Security Implications of Quantum Technologies Security Implications of Quantum Technologies Jim Alves-Foss Center for Secure and Dependable Software Department of Computer Science University of Idaho Moscow, ID 83844-1010 email: jimaf@cs.uidaho.edu

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

CRC Press has granted the following specific permissions for the electronic version of this book:

CRC Press has granted the following specific permissions for the electronic version of this book: This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has

More information

All-Or-Nothing Transforms Using Quasigroups

All-Or-Nothing Transforms Using Quasigroups All-Or-Nothing Transforms Using Quasigroups Stelios I Marnas, Lefteris Angelis, and George L Bleris Department of Informatics, Aristotle University 54124 Thessaloniki, Greece Email: {marnas,lef,bleris}@csdauthgr

More information

Symmetric Crypto Systems

Symmetric Crypto Systems T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Symmetric Crypto Systems EECE 412 Copyright 2004-2008 Konstantin Beznosov 09/16/08 Module Outline Stream ciphers under the hood Block ciphers

More information

Lecture 9 - Symmetric Encryption

Lecture 9 - Symmetric Encryption 0368.4162: Introduction to Cryptography Ran Canetti Lecture 9 - Symmetric Encryption 29 December 2008 Fall 2008 Scribes: R. Levi, M. Rosen 1 Introduction Encryption, or guaranteeing secrecy of information,

More information

New Preimage Attack on MDC-4

New Preimage Attack on MDC-4 New Preimage Attack on MDC-4 Deukjo Hong and Daesung Kwon Abstract In this paper, we provide some cryptanalytic results for double-blocklength (DBL) hash modes of block ciphers, MDC-4. Our preimage attacks

More information

Secret Key: stream ciphers & block ciphers

Secret Key: stream ciphers & block ciphers Secret Key: stream ciphers & block ciphers Stream Ciphers Idea: try to simulate one-time pad define a secret key ( seed ) Using the seed generates a byte stream (Keystream): i-th byte is function only

More information

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

6.080 / Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lecture 28: Public-key Cryptography. Public-key Cryptography

Lecture 28: Public-key Cryptography. Public-key Cryptography Lecture 28: Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access

More information

Lecture 7: CPA Security, MACs, OWFs

Lecture 7: CPA Security, MACs, OWFs CS 7810 Graduate Cryptography September 27, 2017 Lecturer: Daniel Wichs Lecture 7: CPA Security, MACs, OWFs Scribe: Eysa Lee 1 Topic Covered Chosen Plaintext Attack (CPA) MACs One Way Functions (OWFs)

More information

Historical cryptography. cryptography encryption main applications: military and diplomacy

Historical cryptography. cryptography encryption main applications: military and diplomacy Historical cryptography cryptography encryption main applications: military and diplomacy ancient times world war II Historical cryptography All historical cryptosystems badly broken! No clear understanding

More information

Cryptography Lecture 4 Block ciphers, DES, breaking DES

Cryptography Lecture 4 Block ciphers, DES, breaking DES Cryptography Lecture 4 Block ciphers, DES, breaking DES Breaking a cipher Eavesdropper recieves n cryptograms created from n plaintexts in sequence, using the same key Redundancy exists in the messages

More information

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6 U.C. Berkeley CS276: Cryptography Handout N6 Luca Trevisan February 5, 2009 Notes for Lecture 6 Scribed by Ian Haken, posted February 8, 2009 Summary The encryption scheme we saw last time, based on pseudorandom

More information

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks 1 Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks Michael Albert michael.albert@cs.otago.ac.nz 2 This week Arithmetic Knapsack cryptosystems Attacks on knapsacks Some

More information

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed Problem 1 n bits k zero bits IV Block Block Block Block removed January 27, 2011 Practical Aspects of Modern Cryptography 2 Problem 1 IV Inverse Inverse Inverse Inverse Missing bits January 27, 2011 Practical

More information

Exercise Sheet Cryptography 1, 2011

Exercise Sheet Cryptography 1, 2011 Cryptography 1 http://www.cs.ut.ee/~unruh/crypto1-11/ Exercise Sheet Cryptography 1, 2011 Exercise 1 DES The Data Encryption Standard (DES) is a very famous and widely used block cipher. It maps 64-bit

More information

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08:

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08: CHALMERS GÖTEBORGS UNIVERSITET EXAM IN CRYPTOGRAPHY TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08:30 12.30 Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande

More information

Attacks on DES , K 2. ) L 3 = R 2 = L 1 f ( R 1, K 2 ) R 4 R 2. f (R 1 = L 1 ) = L 1. ) f ( R 3 , K 4. f (R 3 = L 3

Attacks on DES , K 2. ) L 3 = R 2 = L 1 f ( R 1, K 2 ) R 4 R 2. f (R 1 = L 1 ) = L 1. ) f ( R 3 , K 4. f (R 3 = L 3 Attacks on DES 1 Attacks on DES Differential cryptanalysis is an attack on DES that compares the differences (that is, XOR values between ciphertexts of certain chosen plaintexts to discover information

More information

Cryptography 2017 Lecture 2

Cryptography 2017 Lecture 2 Cryptography 2017 Lecture 2 One Time Pad - Perfect Secrecy Stream Ciphers November 3, 2017 1 / 39 What have seen? What are we discussing today? Lecture 1 Course Intro Historical Ciphers Lecture 2 One Time

More information

ORYX. ORYX not an acronym, but upper case Designed for use with cell phones. Standard developed by. Cipher design process not open

ORYX. ORYX not an acronym, but upper case Designed for use with cell phones. Standard developed by. Cipher design process not open ORYX ORYX 1 ORYX ORYX not an acronym, but upper case Designed for use with cell phones o To protect confidentiality of voice/data o For data channel, not control channel o Control channel encrypted with

More information

Exam Security January 19, :30 11:30

Exam Security January 19, :30 11:30 Exam Security January 19, 2016. 8:30 11:30 You can score a maximum of 100. Each question indicates how many it is worth. You are NOT allowed to use books or notes, or a (smart) phone. You may answer in

More information

Cryptanalysis on An ElGamal-Like Cryptosystem for Encrypting Large Messages

Cryptanalysis on An ElGamal-Like Cryptosystem for Encrypting Large Messages Cryptanalysis on An ElGamal-Like Cryptosystem for Encrypting Large Messages MEI-NA WANG Institute for Information Industry Networks and Multimedia Institute TAIWAN, R.O.C. myrawang@iii.org.tw SUNG-MING

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Alternative Approaches: Bounded Storage Model

Alternative Approaches: Bounded Storage Model Alternative Approaches: Bounded Storage Model A. Würfl 17th April 2005 1 Motivation Description of the Randomized Cipher 2 Motivation Motivation Description of the Randomized Cipher Common practice in

More information

First-Order DPA Attack Against AES in Counter Mode w/ Unknown Counter. DPA Attack, typical structure

First-Order DPA Attack Against AES in Counter Mode w/ Unknown Counter. DPA Attack, typical structure Josh Jaffe CHES 2007 Cryptography Research, Inc. www.cryptography.com 575 Market St., 21 st Floor, San Francisco, CA 94105 1998-2007 Cryptography Research, Inc. Protected under issued and/or pending US

More information

Cryptanalysis of the Light-Weight Cipher A2U2 First Draft version

Cryptanalysis of the Light-Weight Cipher A2U2 First Draft version Cryptanalysis of the Light-Weight Cipher A2U2 First Draft version Mohamed Ahmed Abdelraheem, Julia Borghoff, Erik Zenner Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark {M.A.Abdelraheem,J.Borghoff,E.Zenner}@mat.dtu.dk

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor RSA: Review and Properties Factoring Algorithms Trapdoor One Way Functions PKC Based on Discrete Logs (Elgamal) Signature Schemes Lecture 8 Tel-Aviv University

More information

Menu. Lecture 5: DES Use and Analysis. DES Structure Plaintext Initial Permutation. DES s F. S-Boxes 48 bits Expansion/Permutation

Menu. Lecture 5: DES Use and Analysis. DES Structure Plaintext Initial Permutation. DES s F. S-Boxes 48 bits Expansion/Permutation Lecture : Use and nalysis Menu Today s manifest: on line only Review Modes of Operation ttacks CS: Security and rivacy University of Virginia Computer Science David Evans http://www.cs.virginia.edu/~evans

More information

A Pseudo-Random Encryption Mode

A Pseudo-Random Encryption Mode A Pseudo-Random Encryption Mode Moni Naor Omer Reingold Block ciphers are length-preserving private-key encryption schemes. I.e., the private key of a block-cipher determines a permutation on strings of

More information

CS 6260 Applied Cryptography

CS 6260 Applied Cryptography CS 6260 Applied Cryptography Symmetric encryption schemes A scheme is specified by a key generation algorithm K, an encryption algorithm E, and a decryption algorithm D. K K =(K,E,D) MsgSp-message space

More information

Question: Total Points: Score:

Question: Total Points: Score: University of California, Irvine COMPSCI 134: Elements of Cryptography and Computer and Network Security Midterm Exam (Fall 2016) Duration: 90 minutes November 2, 2016, 7pm-8:30pm Name (First, Last): Please

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Hans Delfs & Helmut Knebl: Kryptographie und Informationssicherheit WS 2008/2009. References. References

Hans Delfs & Helmut Knebl: Kryptographie und Informationssicherheit WS 2008/2009. References. References Hans Delfs & Helmut Knebl: Kryptographie und Informationssicherheit WS 2008/2009 Die Unterlagen sind ausschliesslich zum persoenlichen Gebrauch der Vorlesungshoerer bestimmt. Die Herstellung von elektronischen

More information

CSA E0 235: Cryptography March 16, (Extra) Lecture 3

CSA E0 235: Cryptography March 16, (Extra) Lecture 3 CSA E0 235: Cryptography March 16, 2015 Instructor: Arpita Patra (Extra) Lecture 3 Submitted by: Ajith S 1 Chosen Plaintext Attack A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which

More information

Chosen Plaintext Attacks (CPA)

Chosen Plaintext Attacks (CPA) Chosen Plaintext Attacks (CPA) Goals New Attacks! Chosen Plaintext Attacks (often CPA) is when Eve can choose to see some messages encoded. Formally she has Black Box for ENC k. We will: 1. Define Chosen

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 15 October 20, 2014 CPSC 467, Lecture 15 1/37 Common Hash Functions SHA-2 MD5 Birthday Attack on Hash Functions Constructing New

More information

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography Lecture 19: (Diffie-Hellman Key Exchange & ElGamal Encryption) Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information

Hashes and Message Digests Alex X. Liu & Haipeng Dai

Hashes and Message Digests Alex X. Liu & Haipeng Dai Hashes and Message Digests Alex X. Liu & Haipeng Dai haipengdai@nju.edu.cn 313 CS Building Department of Computer Science and Technology Nanjing University Integrity vs. Secrecy Integrity: attacker cannot

More information

Symmetric Crypto Systems

Symmetric Crypto Systems T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Symmetric Crypto Systems EECE 412 Copyright 2004-2012 Konstantin Beznosov 1 Module Outline! Stream ciphers under the hood Block ciphers under

More information

STREAM CIPHER. Chapter - 3

STREAM CIPHER. Chapter - 3 STREAM CIPHER Chapter - 3 S t r e a m C i p h e r P a g e 38 S t r e a m C i p h e r P a g e 39 STREAM CIPHERS Stream cipher is a class of symmetric key algorithm that operates on individual bits or bytes.

More information

SOBER Cryptanalysis. Daniel Bleichenbacher and Sarvar Patel Bell Laboratories Lucent Technologies

SOBER Cryptanalysis. Daniel Bleichenbacher and Sarvar Patel Bell Laboratories Lucent Technologies SOBER Cryptanalysis Daniel Bleichenbacher and Sarvar Patel {bleichen,sarvar}@lucent.com Bell Laboratories Lucent Technologies Abstract. SOBER is a new stream cipher that has recently been developed by

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Private-key Systems. Block ciphers. Stream ciphers

Private-key Systems. Block ciphers. Stream ciphers Chapter 2 Stream Ciphers Further Reading: [Sim92, Chapter 2] 21 Introduction Remember classication: Private-key Systems Block ciphers Stream ciphers Figure 21: Private-key cipher classication Block Cipher:

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: 10-1 Overview 1. How to exchange

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

Chapter 2 Balanced Feistel Ciphers, First Properties

Chapter 2 Balanced Feistel Ciphers, First Properties Chapter 2 Balanced Feistel Ciphers, First Properties Abstract Feistel ciphers are named after Horst Feistel who studied these schemes in the 1960s. In this chapter, we will only present classical Feistel

More information

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30 CHALMERS GÖTEBORGS UNIVERSITET CRYPTOGRAPHY TDA35 (Chalmers) - DIT50 (GU) 11 April 017, 8:30-1:30 No extra material is allowed during the exam except for pens and a simple calculator (not smartphones).

More information

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions ENEE 457: Computer Systems Security 09/19/16 Lecture 6 Message Authentication Codes and Hash Functions Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

CSc 466/566. Computer Security. 5 : Cryptography Basics

CSc 466/566. Computer Security. 5 : Cryptography Basics 1/84 CSc 466/566 Computer Security 5 : Cryptography Basics Version: 2012/03/03 10:44:26 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian Collberg Christian

More information

CIS 6930/4930 Computer and Network Security. Topic 4. Cryptographic Hash Functions

CIS 6930/4930 Computer and Network Security. Topic 4. Cryptographic Hash Functions CIS 6930/4930 Computer and Network Security Topic 4. Cryptographic Hash Functions 1 The SHA-1 Hash Function 2 Secure Hash Algorithm (SHA) Developed by NIST, specified in the Secure Hash Standard, 1993

More information

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis Daniel Genkin, Adi Shamir, Eran Tromer Mathematical Attacks Input Crypto Algorithm Key Output Goal: recover the key given access to the inputs

More information

COMS W4995 Introduction to Cryptography October 12, Lecture 12: RSA, and a summary of One Way Function Candidates.

COMS W4995 Introduction to Cryptography October 12, Lecture 12: RSA, and a summary of One Way Function Candidates. COMS W4995 Introduction to Cryptography October 12, 2005 Lecture 12: RSA, and a summary of One Way Function Candidates. Lecturer: Tal Malkin Scribes: Justin Cranshaw and Mike Verbalis 1 Introduction In

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

Introduction to Modern Cryptography Lecture 4

Introduction to Modern Cryptography Lecture 4 Introduction to Modern Cryptography Lecture 4 November 22, 2016 Instructor: Benny Chor Teaching Assistant: Orit Moskovich School of Computer Science Tel-Aviv University Fall Semester, 2016 17 Tuesday 12:00

More information

CSCI3381-Cryptography

CSCI3381-Cryptography CSCI3381-Cryptography Lecture 2: Classical Cryptosystems September 3, 2014 This describes some cryptographic systems in use before the advent of computers. All of these methods are quite insecure, from

More information

Introduction to Modern Cryptography Lecture 5

Introduction to Modern Cryptography Lecture 5 Introduction to Modern Cryptography Lecture 5 November 29, 2016 Instructor: Benny Chor Teaching Assistant: Orit Moskovich School of Computer Science Tel-Aviv University Fall Semester, 2016 17 Tuesday 12:00

More information

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 7 Cryptanalysis Cryptanalysis Attacks such as exhaustive key-search do not exploit any properties of the encryption algorithm or implementation. Structural attacks

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

arxiv:cs/ v1 [cs.cr] 20 Aug 2004

arxiv:cs/ v1 [cs.cr] 20 Aug 2004 Authenticated tree parity machine key exchange arxiv:cs/0408046v1 [cs.cr] 20 Aug 2004 Markus Volkmer and André Schaumburg Hamburg University of Science and Technology Department of Computer Engineering

More information

1 Indistinguishability for multiple encryptions

1 Indistinguishability for multiple encryptions CSCI 5440: Cryptography Lecture 3 The Chinese University of Hong Kong 26 September 2012 1 Indistinguishability for multiple encryptions We now have a reasonable encryption scheme, which we proved is message

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 16 October 30, 2017 CPSC 467, Lecture 16 1/52 Properties of Hash Functions Hash functions do not always look random Relations among

More information

Chapter 2. A Look Back. 2.1 Substitution ciphers

Chapter 2. A Look Back. 2.1 Substitution ciphers Chapter 2 A Look Back In this chapter we take a quick look at some classical encryption techniques, illustrating their weakness and using these examples to initiate questions about how to define privacy.

More information

Block ciphers. Block ciphers. Data Encryption Standard (DES) DES: encryption circuit

Block ciphers. Block ciphers. Data Encryption Standard (DES) DES: encryption circuit Block ciphers Block ciphers Myrto Arapinis School o Inormatics University o Edinburgh January 22, 2015 A block cipher with parameters k and l is a pair o deterministic algorithms (E, D) such that Encryption

More information

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ongxing Lu and Zhenfu Cao Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.. China {cao-zf,

More information

CTR mode of operation

CTR mode of operation CSA E0 235: Cryptography 13 March, 2015 Dr Arpita Patra CTR mode of operation Divya and Sabareesh 1 Overview In this lecture, we formally prove that the counter mode of operation is secure against chosen-plaintext

More information

Lecture 5: Pseudorandom functions from pseudorandom generators

Lecture 5: Pseudorandom functions from pseudorandom generators Lecture 5: Pseudorandom functions from pseudorandom generators Boaz Barak We have seen that PRF s (pseudorandom functions) are extremely useful, and we ll see some more applications of them later on. But

More information

Cryptanalysis of a Message Authentication Code due to Cary and Venkatesan

Cryptanalysis of a Message Authentication Code due to Cary and Venkatesan Cryptanalysis of a Message Authentication Code due to Cary and Venkatesan Simon R. Blackburn and Kenneth G. Paterson Department of Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX,

More information