Menu. Lecture 5: DES Use and Analysis. DES Structure Plaintext Initial Permutation. DES s F. S-Boxes 48 bits Expansion/Permutation

Size: px
Start display at page:

Download "Menu. Lecture 5: DES Use and Analysis. DES Structure Plaintext Initial Permutation. DES s F. S-Boxes 48 bits Expansion/Permutation"

Transcription

1 Lecture : Use and nalysis Menu Today s manifest: on line only Review Modes of Operation ttacks CS: Security and rivacy University of Virginia Computer Science David Evans Return S Sept University of Virginia CS x Round Substitution ermutation Structure laintext Initial ermutation L R L R Sept University of Virginia CS L = left half of plaintext R = right half of plaintext L i = R i - R i = L i - (R i -, i ) C = R n L n n is number of rounds (undo last permutation) bits bits s Expand and ermute (using E table) n Substitute (using S boxes) bits ermutation Sept University of Virginia CS Expansion/ermutation bits bits Sept University of Virginia CS S-Boxes bits bits 7 more different S-boxes for bits 7- - Nothing secret about the S-Boxes (but they are confusing) Sept University of Virginia CS

2 Modes of Operation Transmitting a long plaintext using : Modes of Operation = N Electronic Codebook Mode: C = E ( ) E ( ) E ( N ) roblems: ny identical blocks encrypted identically bits = SCII characters Lots of ciphertext encrypted with same Sept University of Virginia CS 7 Sept University of Virginia CS IV Cipher Block Chaining C C Cipher Block Chaining C i = E ( i C i - ) C = E ( IV) Decrypt: M i = D (C i ) C i - M = D (C ) IV D (E ( i C i - )) C i = i C i - C i = i Sept University of Virginia CS 9 Sept University of Virginia CS Cipher eedback Mode Output eedback Mode IV shift IV shift C C C C Sept University of Virginia CS Sept University of Virginia CS

3 Cipher/Output eedback -bit transmission error ctive eavesdropper erformance Multiple Encryption Sept University of Virginia CS Sept University of Virginia CS Multiple Encryption C = E (E ()) Does it double the key space? Monoalphabetic cipher C i = [ [ i ]] = [ i ] for some Double-Vigenère C = E (E ()) Vigenère: C i = ( i + i mod N ) mod Z C i = (( i + i mod N mod Z) + i mod N ) mod Z = ( i + i mod N + i mod N ) mod Z if N = N: = ( i + i mod N ) mod Z ( = + ) what if N N? Sept University of Virginia CS Sept University of Virginia CS Double-Vigenère = "BOND" = "JMES" BONDBONDBONDBONDBONDBONDBOND +JMESJMESJMESJMESJMESJM =OZHTXNGWDNSMBRVOZHTXN Effective key length: LCM (N, N) = Double C = E (E ()) Is there a such that C = E ()? There are keys, and! mappings If is good, keys map randomly to mappings. robability that a randomly chosen mapping corresponds to a key: /! << /! Effective key size of Double? = * = WRONG! Sept University of Virginia CS 7 Sept University of Virginia CS

4 nown laintext ttack E E C try all possible keys try all possible keys E X Y X Y X Y One X i = Y j means = i and = j D C Meet-in-the-Middle ttack C = E (E ()) X = E () = D (C) Brute force attack (given one /C pair): calculate E () for all keys ( work) calculate D (C) for all keys ( work) the match gives the keys Total work = * = 7 Sept University of Virginia CS 9 Sept University of Virginia CS -ey Triple C = E (D (E ())) Why D not E? Backwards compatibility with If = : C = E (D (E ())) = E () ctual key size = + bits = bits Meet-in-the-middle? X = E () = D (E (C)) need to try How secure is Triple- Brute force search: keys Best attack: B keys/second.7 * years (compared to hours) years = total lifetime of universe (closed universe theory) Best known attack - reduces to -log n n = number of known -C pairs n =, work is Realistic? Sept University of Virginia CS Sept University of Virginia CS -ey Triple C = E (D (E ())) H() = Used by G, S/MIME How much work to brute-force? Meet-in-the-middle: X = D (C) = D (E ()) + ttacks Last time: brute force Best result: hours But no where near good enough for Differential Cryptanalysis ower Cryptanalysis Sept University of Virginia CS Sept University of Virginia CS

5 Differential Cryptanalysis [Biham & Shamir, 99] Choose plaintext pairs with fixed difference: X = X X Use differences in resulting ciphertext to guess key probabilities With enough work ( 7 ) and enough chosen plaintexts ( 7 ) can find key (compared to brute force work) Takes years of.mbps encrypting chosen plaintext! Sept University of Virginia CS X X bits bits E/ E/ X bits X bits S bits n X X X X X One Round X = X X X i = iff X i = X i E/ preserves values: X i = X ep(i) = X ep(i) S where ep(i) is a function defined by X bits the E table preserves values: X i = X i n X i = X i n X i = X ep(i) = X ep(i) Sept University of Virginia CS X X X S One Round, cont. S X X X i = X ep(i) = X ep(i) X X i = X i X p(i) = X p(i) S-boxes are non-linear! X i = X s(ep(i)) = X s(ep(i)) But, maybe they do probabilistically: X i = p(x s(ep(i)) = X s(ep(i)) ) >.? p(x s(ep(i)) = X s(ep(i)) ) <.? (nown from ciphertext) Its a function of the key: p determined experimentally. Sept University of Virginia CS 7 S-box: S bits: x x x x x x x x x x select column x x 7 9 B C D E E D B C E D C B 9 E D B C 9 7 C 9 7 B E D inputs to S produce :,,, Sept University of Virginia CS artial pair XOR Distribution, S S-box: S Input XOR Output XOR 7 9 B C D E E D 7 E C E D 9 7 B D B 7 9 B C C C B 9 C 9 7 B E D 9 E 7 D Difference in last input bit difference in output bits + = ( XOR = ) + = (B XOR = E) Sept University of Virginia CS 9 Sept University of Virginia CS

6 Differential Cryptanalysis ropagate experimental probabilities for round through rounds fter enough -C pairs, one key becomes most probable Difficulty depends heavily on S-Box choices irst published in 99, but NS knew about it in 97! Differential Cryptanalysis Successful on up to rounds (better than exhaustive search) By th round, characteristics probabilities are - Very successful on variants (breaks G with chosen plaintexts) Very successful on EL (EL-, EL-, EL-N, EL-NX, ) Sept University of Virginia CS Sept University of Virginia CS ower Consumption Current (m) Time (ms) Rounds 7 9 Detail: Round Round rom /technical/index.html Microprocessors use different amount of power depending on what they are doing! Sept University of Virginia CS Sept University of Virginia CS ower nalysis Scenario ttacker has physical device that encrypts and decrypts using a secret key Is this realistic? Smart Cards (Mondex) Sept University of Virginia CS Side Channel Cryptanalysis Regular Cryptanalysis: mathematical ttacker sees inputs, outputs Side Channel Cryptanalysis ttacker sees something else: power consumption, encryption/decryption time, radiation, etc. Depends on implementation of algorithm Sept University of Virginia CS

7 Measuring ower Consumption dd a resistor between power source and device, measure voltage across resistor I = V/R Can sample at over GHz with < % error ower Use Reveals ey Current for a left shift depends on leftmost bit: if, need to set rightmost bit after key schedule uses shifts, can tell bits in key! Current for XOR may depend on number of switches Sept University of Virginia CS 7 Sept University of Virginia CS Defenses Reduce signal hysical shielding, microprocessor design (make all shifts use same power, etc.) Introduce random noise Change execution order, do random computation, etc. Design cryptosystems with D in mind Nonlinear key updates between transactions Charge Continue thinking about project ideas Each project group should send me or talk to me by next week about what you are considering Next time: modern block ciphers Read ES papers before next class Sept University of Virginia CS 9 Sept University of Virginia CS 7

Lecture 12: Block ciphers

Lecture 12: Block ciphers Lecture 12: Block ciphers Thomas Johansson T. Johansson (Lund University) 1 / 19 Block ciphers A block cipher encrypts a block of plaintext bits x to a block of ciphertext bits y. The transformation is

More information

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1

7 Cryptanalysis. 7.1 Structural Attacks CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 CA642: CRYPTOGRAPHY AND NUMBER THEORY 1 7 Cryptanalysis Cryptanalysis Attacks such as exhaustive key-search do not exploit any properties of the encryption algorithm or implementation. Structural attacks

More information

Lecture 4: DES and block ciphers

Lecture 4: DES and block ciphers Lecture 4: DES and block ciphers Johan Håstad, transcribed by Ernir Erlingsson 2006-01-25 1 DES DES is a 64 bit block cipher with a 56 bit key. It selects a 64 bit block and modifies it depending on the

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

Cryptography Lecture 4 Block ciphers, DES, breaking DES

Cryptography Lecture 4 Block ciphers, DES, breaking DES Cryptography Lecture 4 Block ciphers, DES, breaking DES Breaking a cipher Eavesdropper recieves n cryptograms created from n plaintexts in sequence, using the same key Redundancy exists in the messages

More information

Cryptography CS 555. Topic 2: Evolution of Classical Cryptography CS555. Topic 2 1

Cryptography CS 555. Topic 2: Evolution of Classical Cryptography CS555. Topic 2 1 Cryptography CS 555 Topic 2: Evolution of Classical Cryptography Topic 2 1 Lecture Outline Basics of probability Vigenere cipher. Attacks on Vigenere: Kasisky Test and Index of Coincidence Cipher machines:

More information

Cryptanalysis of PRESENT-like ciphers with secret S-boxes

Cryptanalysis of PRESENT-like ciphers with secret S-boxes Cryptanalysis of PRESENT-like ciphers with secret S-boxes Julia Borghoff Lars Knudsen Gregor Leander Søren S. Thomsen DTU, Denmark FSE 2011 Cryptanalysis of Maya Julia Borghoff Lars Knudsen Gregor Leander

More information

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018

THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS MIDTERM EXAMINATION 1 FALL 2018 CPSC 418/MATH 318 L01 October 17, 2018 Time: 50 minutes

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-27 Recap ADFGX Cipher Block Cipher Modes of Operation Hill Cipher Inverting a Matrix (mod n) Encryption: Hill Cipher Example Multiple

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

CSCI3381-Cryptography

CSCI3381-Cryptography CSCI3381-Cryptography Lecture 2: Classical Cryptosystems September 3, 2014 This describes some cryptographic systems in use before the advent of computers. All of these methods are quite insecure, from

More information

Introduction to Cryptology. Lecture 2

Introduction to Cryptology. Lecture 2 Introduction to Cryptology Lecture 2 Announcements 2 nd vs. 1 st edition of textbook HW1 due Tuesday 2/9 Readings/quizzes (on Canvas) due Friday 2/12 Agenda Last time Historical ciphers and their cryptanalysis

More information

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3

Shift Cipher. For 0 i 25, the ith plaintext character is. E.g. k = 3 Shift Cipher For 0 i 25, the ith plaintext character is shifted by some value 0 k 25 (mod 26). E.g. k = 3 a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y

More information

Solution to Midterm Examination

Solution to Midterm Examination YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Handout #13 Xueyuan Su November 4, 2008 Instructions: Solution to Midterm Examination This is a closed book

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CSG 252 Fall 2006 Riccardo Pucella Goals of Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to communications Alice and Bob share a key K Alice

More information

A block cipher enciphers each block with the same key.

A block cipher enciphers each block with the same key. Ciphers are classified as block or stream ciphers. All ciphers split long messages into blocks and encipher each block separately. Block sizes range from one bit to thousands of bits per block. A block

More information

Impossible Differential Cryptanalysis of Mini-AES

Impossible Differential Cryptanalysis of Mini-AES Impossible Differential Cryptanalysis of Mini-AES Raphael Chung-Wei Phan ADDRESS: Swinburne Sarawak Institute of Technology, 1 st Floor, State Complex, 93576 Kuching, Sarawak, Malaysia. rphan@swinburne.edu.my

More information

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis Daniel Genkin, Adi Shamir, Eran Tromer Mathematical Attacks Input Crypto Algorithm Key Output Goal: recover the key given access to the inputs

More information

Akelarre. Akelarre 1

Akelarre. Akelarre 1 Akelarre Akelarre 1 Akelarre Block cipher Combines features of 2 strong ciphers o IDEA mixed mode arithmetic o RC5 keyed rotations Goal is a more efficient strong cipher Proposed in 1996, broken within

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 11 February 21, 2013 CPSC 467b, Lecture 11 1/27 Discrete Logarithm Diffie-Hellman Key Exchange ElGamal Key Agreement Primitive Roots

More information

AES side channel attacks protection using random isomorphisms

AES side channel attacks protection using random isomorphisms Rostovtsev A.G., Shemyakina O.V., St. Petersburg State Polytechnic University AES side channel attacks protection using random isomorphisms General method of side-channel attacks protection, based on random

More information

Outline. Computer Science 418. Number of Keys in the Sum. More on Perfect Secrecy, One-Time Pad, Entropy. Mike Jacobson. Week 3

Outline. Computer Science 418. Number of Keys in the Sum. More on Perfect Secrecy, One-Time Pad, Entropy. Mike Jacobson. Week 3 Outline Computer Science 48 More on Perfect Secrecy, One-Time Pad, Mike Jacobson Department of Computer Science University of Calgary Week 3 2 3 Mike Jacobson (University of Calgary) Computer Science 48

More information

Solutions to the Midterm Test (March 5, 2011)

Solutions to the Midterm Test (March 5, 2011) MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough Solutions to the Midterm Test (March 5, 2011) YOUR NAME: DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. INSTRUCTIONS:

More information

Chapter 2. A Look Back. 2.1 Substitution ciphers

Chapter 2. A Look Back. 2.1 Substitution ciphers Chapter 2 A Look Back In this chapter we take a quick look at some classical encryption techniques, illustrating their weakness and using these examples to initiate questions about how to define privacy.

More information

Concurrent Error Detection in S-boxes 1

Concurrent Error Detection in S-boxes 1 International Journal of Computer Science & Applications Vol. 4, No. 1, pp. 27 32 2007 Technomathematics Research Foundation Concurrent Error Detection in S-boxes 1 Ewa Idzikowska, Krzysztof Bucholc Poznan

More information

8.1 Principles of Public-Key Cryptosystems

8.1 Principles of Public-Key Cryptosystems Public-key cryptography is a radical departure from all that has gone before. Right up to modern times all cryptographic systems have been based on the elementary tools of substitution and permutation.

More information

Structural Cryptanalysis of SASAS

Structural Cryptanalysis of SASAS tructural Cryptanalysis of AA Alex Biryukov and Adi hamir Computer cience department The Weizmann Institute Rehovot 76100, Israel. Abstract. In this paper we consider the security of block ciphers which

More information

Improved Impossible Differential Cryptanalysis of Rijndael and Crypton

Improved Impossible Differential Cryptanalysis of Rijndael and Crypton Improved Impossible Differential Cryptanalysis of Rijndael and Crypton Jung Hee Cheon 1, MunJu Kim 2, Kwangjo Kim 1, Jung-Yeun Lee 1, and SungWoo Kang 3 1 IRIS, Information and Communications University,

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously on COS 433 Takeaway: Crypto is Hard Designing crypto is hard, even experts get it wrong Just because I don t know

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 08 Shannon s Theory (Contd.)

More information

Jay Daigle Occidental College Math 401: Cryptology

Jay Daigle Occidental College Math 401: Cryptology 3 Block Ciphers Every encryption method we ve studied so far has been a substitution cipher: that is, each letter is replaced by exactly one other letter. In fact, we ve studied stream ciphers, which produce

More information

All-Or-Nothing Transforms Using Quasigroups

All-Or-Nothing Transforms Using Quasigroups All-Or-Nothing Transforms Using Quasigroups Stelios I Marnas, Lefteris Angelis, and George L Bleris Department of Informatics, Aristotle University 54124 Thessaloniki, Greece Email: {marnas,lef,bleris}@csdauthgr

More information

Implementation of the RSA algorithm and its cryptanalysis. Abstract. Introduction

Implementation of the RSA algorithm and its cryptanalysis. Abstract. Introduction Implementation of the RSA algorithm and its cryptanalysis Chandra M. Kota and Cherif Aissi 1 University of Louisiana at Lafayette, College of Engineering Lafayette, LA 70504, USA Abstract Session IVB4

More information

Bernoulli variables. Let X be a random variable such that. 1 with probability p X = 0 with probability q = 1 p

Bernoulli variables. Let X be a random variable such that. 1 with probability p X = 0 with probability q = 1 p Unit 20 February 25, 2011 1 Bernoulli variables Let X be a random variable such that { 1 with probability p X = 0 with probability q = 1 p Such an X is called a Bernoulli random variable Unit 20 February

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

An average case analysis of a dierential attack. on a class of SP-networks. Distributed Systems Technology Centre, and

An average case analysis of a dierential attack. on a class of SP-networks. Distributed Systems Technology Centre, and An average case analysis of a dierential attack on a class of SP-networks Luke O'Connor Distributed Systems Technology Centre, and Information Security Research Center, QUT Brisbane, Australia Abstract

More information

SYMMETRIC ENCRYPTION. Syntax. Example: OTP. Correct decryption requirement. A symmetric encryption scheme SE = (K, E, D) consists of three algorithms:

SYMMETRIC ENCRYPTION. Syntax. Example: OTP. Correct decryption requirement. A symmetric encryption scheme SE = (K, E, D) consists of three algorithms: Syntax symmetric encryption scheme = (K, E, D) consists of three algorithms: SYMMETRIC ENCRYPTION K is randomized E can be randomized or stateful D is deterministic 1/ 116 2/ 116 Correct decryption requirement

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m.

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m. Final Exam Math 10: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 0 April 2002 :0 11:00 a.m. Instructions: Please be as neat as possible (use a pencil), and show

More information

Efficient Cryptanalysis of Homophonic Substitution Ciphers

Efficient Cryptanalysis of Homophonic Substitution Ciphers Efficient Cryptanalysis of Homophonic Substitution Ciphers Amrapali Dhavare Richard M. Low Mark Stamp Abstract Substitution ciphers are among the earliest methods of encryption. Examples of classic substitution

More information

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6 U.C. Berkeley CS276: Cryptography Handout N6 Luca Trevisan February 5, 2009 Notes for Lecture 6 Scribed by Ian Haken, posted February 8, 2009 Summary The encryption scheme we saw last time, based on pseudorandom

More information

Cryptanalysis of Patarin s 2-Round Public Key System with S Boxes (2R)

Cryptanalysis of Patarin s 2-Round Public Key System with S Boxes (2R) Cryptanalysis of Patarin s 2-Round Public Key System with S Boxes (2R) Eli Biham Computer Science Department Technion Israel Institute of Technology Haifa 32000, Israel biham@cs.technion.ac.il http://www.cs.technion.ac.il/~biham/

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Appendix A: Symmetric Techniques Block Ciphers A block cipher f of block-size

More information

Notes 10: Public-key cryptography

Notes 10: Public-key cryptography MTH6115 Cryptography Notes 10: Public-key cryptography In this section we look at two other schemes that have been proposed for publickey ciphers. The first is interesting because it was the earliest such

More information

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography

Lecture 1: Perfect Secrecy and Statistical Authentication. 2 Introduction - Historical vs Modern Cryptography CS 7880 Graduate Cryptography September 10, 2015 Lecture 1: Perfect Secrecy and Statistical Authentication Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Definition of perfect secrecy One-time

More information

MATH 509 Differential Cryptanalysis on DES

MATH 509 Differential Cryptanalysis on DES MATH 509 on DES Department of Mathematics, Boise State University Spring 2012 MATH 509 on DES MATH 509 on DES Feistel Round Function for DES MATH 509 on DES 1977: DES is approved as a standard. 1 1 Designers:

More information

Attacks on DES , K 2. ) L 3 = R 2 = L 1 f ( R 1, K 2 ) R 4 R 2. f (R 1 = L 1 ) = L 1. ) f ( R 3 , K 4. f (R 3 = L 3

Attacks on DES , K 2. ) L 3 = R 2 = L 1 f ( R 1, K 2 ) R 4 R 2. f (R 1 = L 1 ) = L 1. ) f ( R 3 , K 4. f (R 3 = L 3 Attacks on DES 1 Attacks on DES Differential cryptanalysis is an attack on DES that compares the differences (that is, XOR values between ciphertexts of certain chosen plaintexts to discover information

More information

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen.

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen. Yoyo Game with AES Navid Ghaedi Bardeh University of Bergen May 8, 2018 1 / 33 Outline 1 Introduction on Block cipher 2 Yoyo Game 3 Application on AES 4 Conclusion 2 / 33 Classical Model of Symmetric Cryptography

More information

Lecture 5, CPA Secure Encryption from PRFs

Lecture 5, CPA Secure Encryption from PRFs CS 4501-6501 Topics in Cryptography 16 Feb 2018 Lecture 5, CPA Secure Encryption from PRFs Lecturer: Mohammad Mahmoody Scribe: J. Fu, D. Anderson, W. Chao, and Y. Yu 1 Review Ralling: CPA Security and

More information

MATH3302 Cryptography Problem Set 2

MATH3302 Cryptography Problem Set 2 MATH3302 Cryptography Problem Set 2 These questions are based on the material in Section 4: Shannon s Theory, Section 5: Modern Cryptography, Section 6: The Data Encryption Standard, Section 7: International

More information

SOBER Cryptanalysis. Daniel Bleichenbacher and Sarvar Patel Bell Laboratories Lucent Technologies

SOBER Cryptanalysis. Daniel Bleichenbacher and Sarvar Patel Bell Laboratories Lucent Technologies SOBER Cryptanalysis Daniel Bleichenbacher and Sarvar Patel {bleichen,sarvar}@lucent.com Bell Laboratories Lucent Technologies Abstract. SOBER is a new stream cipher that has recently been developed by

More information

Notes for Lecture 17

Notes for Lecture 17 U.C. Berkeley CS276: Cryptography Handout N17 Luca Trevisan March 17, 2009 Notes for Lecture 17 Scribed by Matt Finifter, posted April 8, 2009 Summary Today we begin to talk about public-key cryptography,

More information

Cryptography. pieces from work by Gordon Royle

Cryptography. pieces from work by Gordon Royle Cryptography pieces from work by Gordon Royle The set-up Cryptography is the mathematics of devising secure communication systems, whereas cryptanalysis is the mathematics of breaking such systems. We

More information

Module 2 Advanced Symmetric Ciphers

Module 2 Advanced Symmetric Ciphers Module 2 Advanced Symmetric Ciphers Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University E-mail: natarajan.meghanathan@jsums.edu Data Encryption Standard (DES) The DES algorithm

More information

Differential-Linear Cryptanalysis of Serpent

Differential-Linear Cryptanalysis of Serpent Differential-Linear Cryptanalysis of Serpent Eli Biham, 1 Orr Dunkelman, 1 Nathan Keller 2 1 Computer Science Department, Technion. Haifa 32000, Israel {biham,orrd}@cs.technion.ac.il 2 Mathematics Department,

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 4: Enigma.

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 4: Enigma. CS355: Cryptography Lecture 4: Enigma. Towards cryptographic engines } How to move from pencil and paper to more automatic ways of encrypting and decrypting? } How to design more secure ciphers } Alberti

More information

Block Ciphers and Feistel cipher

Block Ciphers and Feistel cipher introduction Lecture (07) Block Ciphers and cipher Dr. Ahmed M. ElShafee Modern block ciphers are widely used to provide encryption of quantities of information, and/or a cryptographic checksum to ensure

More information

Lecture 5: Pseudorandom functions from pseudorandom generators

Lecture 5: Pseudorandom functions from pseudorandom generators Lecture 5: Pseudorandom functions from pseudorandom generators Boaz Barak We have seen that PRF s (pseudorandom functions) are extremely useful, and we ll see some more applications of them later on. But

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Linear Cryptanalysis of Reduced-Round Speck

Linear Cryptanalysis of Reduced-Round Speck Linear Cryptanalysis of Reduced-Round Speck Tomer Ashur Daniël Bodden KU Leuven and iminds Dept. ESAT, Group COSIC Address Kasteelpark Arenberg 10 bus 45, B-3001 Leuven-Heverlee, Belgium tomer.ashur-@-esat.kuleuven.be

More information

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 82 CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 83 5.1 Introduction In a pioneering paper, Hill [5] developed a block cipher by using the modular arithmetic inverse

More information

Differential Attack on Five Rounds of the SC2000 Block Cipher

Differential Attack on Five Rounds of the SC2000 Block Cipher Differential Attack on Five Rounds of the SC2 Block Cipher Jiqiang Lu Department of Mathematics and Computer Science, Eindhoven University of Technology, 56 MB Eindhoven, The Netherlands lvjiqiang@hotmail.com

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 7

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 7 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 7 Lecture date: Monday, 28 February, 2005 Scribe: M.Chov, K.Leung, J.Salomone 1 Oneway Trapdoor Permutations Recall that a

More information

Permutation Generators Based on Unbalanced Feistel Network: Analysis of the Conditions of Pseudorandomness 1

Permutation Generators Based on Unbalanced Feistel Network: Analysis of the Conditions of Pseudorandomness 1 Permutation Generators Based on Unbalanced Feistel Network: Analysis of the Conditions of Pseudorandomness 1 Kwangsu Lee A Thesis for the Degree of Master of Science Division of Computer Science, Department

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 3 January 22, 2013 CPSC 467b, Lecture 3 1/35 Perfect secrecy Caesar cipher Loss of perfection Classical ciphers One-time pad Affine

More information

Cryptanalysis on An ElGamal-Like Cryptosystem for Encrypting Large Messages

Cryptanalysis on An ElGamal-Like Cryptosystem for Encrypting Large Messages Cryptanalysis on An ElGamal-Like Cryptosystem for Encrypting Large Messages MEI-NA WANG Institute for Information Industry Networks and Multimedia Institute TAIWAN, R.O.C. myrawang@iii.org.tw SUNG-MING

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-22 Recap Two methods for attacking the Vigenère cipher Frequency analysis Dot Product Playfair Cipher Classical Cryptosystems - Section

More information

Solutions for week 1, Cryptography Course - TDA 352/DIT 250

Solutions for week 1, Cryptography Course - TDA 352/DIT 250 Solutions for week, Cryptography Course - TDA 352/DIT 250 In this weekly exercise sheet: you will use some historical ciphers, the OTP, the definition of semantic security and some combinatorial problems.

More information

On Correlation Between the Order of S-boxes and the Strength of DES

On Correlation Between the Order of S-boxes and the Strength of DES On Correlation Between the Order of S-boxes and the Strength of DES Mitsuru Matsui Computer & Information Systems Laboratory Mitsubishi Electric Corporation 5-1-1, Ofuna, Kamakura, Kanagawa, 247, Japan

More information

PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY

PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY PERFECT SECRECY AND ADVERSARIAL INDISTINGUISHABILITY BURTON ROSENBERG UNIVERSITY OF MIAMI Contents 1. Perfect Secrecy 1 1.1. A Perfectly Secret Cipher 2 1.2. Odds Ratio and Bias 3 1.3. Conditions for Perfect

More information

Chapter 1 - Linear cryptanalysis.

Chapter 1 - Linear cryptanalysis. Chapter 1 - Linear cryptanalysis. James McLaughlin 1 Introduction. Linear cryptanalysis was first introduced by Mitsuru Matsui in [12]. The cryptanalyst attempts to find a linear equation x 1... x i =

More information

Outline. CPSC 418/MATH 318 Introduction to Cryptography. Information Theory. Partial Information. Perfect Secrecy, One-Time Pad

Outline. CPSC 418/MATH 318 Introduction to Cryptography. Information Theory. Partial Information. Perfect Secrecy, One-Time Pad Outline CPSC 418/MATH 318 Introduction to Cryptography, One-Time Pad Renate Scheidler Department of Mathematics & Statistics Department of Computer Science University of Calgary Based in part on slides

More information

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Computer and Network Security Topic 3.1 Secret Key Cryptography Algorithms CSC/ECE 574 Dr. Peng Ning 1 Outline Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Dr. Peng Ning 2 Introduction

More information

Linear Cryptanalysis of Long-Key Iterated Cipher with Applications to Permutation-Based Ciphers

Linear Cryptanalysis of Long-Key Iterated Cipher with Applications to Permutation-Based Ciphers Linear Cryptanalysis of Long-Key Iterated Cipher with Applications to Permutation-Based Ciphers Kaisa Nyberg Aalto University School of Science kaisa.nyberg@aalto.fi Luxemburg January 2017 Outline Introduction

More information

Stream ciphers I. Thomas Johansson. May 16, Dept. of EIT, Lund University, P.O. Box 118, Lund, Sweden

Stream ciphers I. Thomas Johansson. May 16, Dept. of EIT, Lund University, P.O. Box 118, Lund, Sweden Dept. of EIT, Lund University, P.O. Box 118, 221 00 Lund, Sweden thomas@eit.lth.se May 16, 2011 Outline: Introduction to stream ciphers Distinguishers Basic constructions of distinguishers Various types

More information

Solution of Exercise Sheet 7

Solution of Exercise Sheet 7 saarland Foundations of Cybersecurity (Winter 16/17) Prof. Dr. Michael Backes CISPA / Saarland University university computer science Solution of Exercise Sheet 7 1 Variants of Modes of Operation Let (K,

More information

Number Theory in Cryptography

Number Theory in Cryptography Number Theory in Cryptography Introduction September 20, 2006 Universidad de los Andes 1 Guessing Numbers 2 Guessing Numbers (person x) (last 6 digits of phone number of x) 3 Guessing Numbers (person x)

More information

Klein s and PTW Attacks on WEP

Klein s and PTW Attacks on WEP TTM4137 Wireless Security Klein s and PTW Attacks on WEP Anton Stolbunov NTNU, Department of Telematics version 1, September 7, 2009 Abstract These notes should help for an in-depth understanding of the

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod. Assignment #2

Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod. Assignment #2 0368.3049.01 Winter 2008 Introduction to Modern Cryptography Benny Chor and Rani Hod Assignment #2 Published Sunday, February 17, 2008 and very slightly revised Feb. 18. Due Tues., March 4, in Rani Hod

More information

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks 1 Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks Michael Albert michael.albert@cs.otago.ac.nz 2 This week Arithmetic Knapsack cryptosystems Attacks on knapsacks Some

More information

Exercise Sheet Cryptography 1, 2011

Exercise Sheet Cryptography 1, 2011 Cryptography 1 http://www.cs.ut.ee/~unruh/crypto1-11/ Exercise Sheet Cryptography 1, 2011 Exercise 1 DES The Data Encryption Standard (DES) is a very famous and widely used block cipher. It maps 64-bit

More information

Statistical and Algebraic Properties of DES

Statistical and Algebraic Properties of DES Statistical and Algebraic Properties of DES Stian Fauskanger 1 and Igor Semaev 2 1 Norwegian Defence Research Establishment (FFI), PB 25, 2027 Kjeller, Norway 2 Department of Informatics, University of

More information

STREAM CIPHER. Chapter - 3

STREAM CIPHER. Chapter - 3 STREAM CIPHER Chapter - 3 S t r e a m C i p h e r P a g e 38 S t r e a m C i p h e r P a g e 39 STREAM CIPHERS Stream cipher is a class of symmetric key algorithm that operates on individual bits or bytes.

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES CS355: Cryptography Lecture 9: Encryption modes. AES Encryption modes: ECB } Message is broken into independent blocks of block_size bits; } Electronic Code Book (ECB): each block encrypted separately.

More information

DES S-box Generator. 2 EPFL, Switzerland

DES S-box Generator.  2 EPFL, Switzerland DES S-box Generator Lauren De Meyer 1 and Serge Vaudenay 2 lauren.demeyer@student.kuleuven.be serge.vaudenay@epfl.ch 1 KU Leuven, Belgium 2 EPFL, Switzerland Abstract. The Data Encryption Standard (DES)

More information

Block ciphers. Block ciphers. Data Encryption Standard (DES) DES: encryption circuit

Block ciphers. Block ciphers. Data Encryption Standard (DES) DES: encryption circuit Block ciphers Block ciphers Myrto Arapinis School o Inormatics University o Edinburgh January 22, 2015 A block cipher with parameters k and l is a pair o deterministic algorithms (E, D) such that Encryption

More information

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and )

The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) A Better Cipher The Vigenère cipher is a stronger version of the Caesar cipher The encryption key is a word/sentence/random text ( and ) To the first letter, add 1 To the second letter, add 14 To the third

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Authentication CPSC 467b: Cryptography and Computer Security Lecture 18 Michael J. Fischer Department of Computer Science Yale University March 29, 2010 Michael J. Fischer CPSC 467b, Lecture 18

More information

Improved Slide Attacks

Improved Slide Attacks Improved Slide Attacs Eli Biham 1 Orr Dunelman 2 Nathan Keller 3 1 Computer Science Department, Technion. Haifa 32000, Israel biham@cs.technion.ac.il 2 Katholiee Universiteit Leuven, Dept. of Electrical

More information

Symmetric Cryptanalytic Techniques. Sean Murphy ショーン マーフィー Royal Holloway

Symmetric Cryptanalytic Techniques. Sean Murphy ショーン マーフィー Royal Holloway Symmetric Cryptanalytic Techniques Sean Murphy ショーン マーフィー Royal Holloway Block Ciphers Encrypt blocks of data using a key Iterative process ( rounds ) Modified by Modes of Operation Data Encryption Standard

More information

Block Cipher Cryptanalysis: An Overview

Block Cipher Cryptanalysis: An Overview 0/52 Block Cipher Cryptanalysis: An Overview Subhabrata Samajder Indian Statistical Institute, Kolkata 17 th May, 2017 0/52 Outline Iterated Block Cipher 1 Iterated Block Cipher 2 S-Boxes 3 A Basic Substitution

More information

Symmetric Ciphers. Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5)

Symmetric Ciphers. Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5) Symmetric Ciphers Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5) Symmetric Cryptography C = E(P,K) P = D(C,K) Requirements Given C, the only way to obtain P should be with the knowledge of K Any

More information

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael Outline CPSC 418/MATH 318 Introduction to Cryptography Advanced Encryption Standard Renate Scheidler Department of Mathematics & Statistics Department of Computer Science University of Calgary Based in

More information

Cryptography and RSA. Group (1854, Cayley) Upcoming Interview? Outline. Commutative or Abelian Groups

Cryptography and RSA. Group (1854, Cayley) Upcoming Interview? Outline. Commutative or Abelian Groups Great Theoretical Ideas in CS V. Adamchik CS 15-251 Upcoming Interview? Lecture 24 Carnegie Mellon University Cryptography and RSA How the World's Smartest Company Selects the Most Creative Thinkers Groups

More information

Introduction to Cryptography. Susan Hohenberger

Introduction to Cryptography. Susan Hohenberger Introduction to Cryptography Susan Hohenberger 1 Cryptography -- from art to science -- more than just encryption -- essential today for non-military applications 2 Symmetric Crypto Shared secret K =>

More information

Chosen Plaintext Attacks (CPA)

Chosen Plaintext Attacks (CPA) Chosen Plaintext Attacks (CPA) Goals New Attacks! Chosen Plaintext Attacks (often CPA) is when Eve can choose to see some messages encoded. Formally she has Black Box for ENC k. We will: 1. Define Chosen

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Overview. Background / Context. CSC 580 Cryptography and Computer Security. March 21, 2017

Overview. Background / Context. CSC 580 Cryptography and Computer Security. March 21, 2017 CSC 580 Cryptography and Computer Security Math for Public Key Crypto, RSA, and Diffie-Hellman (Sections 2.4-2.6, 2.8, 9.2, 10.1-10.2) March 21, 2017 Overview Today: Math needed for basic public-key crypto

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 9 February 6, 2012 CPSC 467b, Lecture 9 1/53 Euler s Theorem Generating RSA Modulus Finding primes by guess and check Density of

More information