Structural characterization of complexes using NOESY experiments

Size: px
Start display at page:

Download "Structural characterization of complexes using NOESY experiments"

Transcription

1 Structural characterization of complexes using NOESY experiments Isotope labeling ( 3 C, 5 N) allows observation of individual components of a (binary) complex) H, 3 C, 5 N H, 3 C, 5 N 2 H/ H, 2 C, 4 N 2 H/ H, 2 C, 4 N Complex with different labeling of the components Isotope edited NMR spectra Isotope filtered NMR spectra

2 Basic terminology Isotope editing: selection of protons directly bound to a NMR active heteronucleus (e.g. 3 C- H or 5 N- H) Isotope filtering: suppression of protons directly bound to a NMR active heteronucleus, ideal suppression corresponds to the 'selection' of protons bound to NMR 'inactive' nuclei (e.g. 2 C- H, 4 N- H, O-H) Important isotopes for biomolecular NMR NMR active isotope natural abundance corresponding NMR inactive isotope natural abundance H % 3 C. % 5 N 0.37 % 2 H 0.05 % 2 C 98.9 % 4 N 99.63% ( 4 N, 2 H are quadrupol nuclei, relaxes very fast in biomacromolecules, nearly NMR inactive)

3 In practice: real isotope composition of complexes (in H 2 O solution) {95-99 % 5 N - H} {90-99 % 3 C- H} 00% O-H, S-H {-0% 2 C- H} { 99.7% 4 N - H} {99% 2 C- H} 00% O-H, S-H {% 3 C- H}

4 Selectivity for isotope editing Selectivity = Fraction of wanted observed component Fraction of unwanted observed component Sel. Iso.Ed. = concentration(labeled component) * degree of labeling concentration(unlabeled component) * (natural abundance) Sel. Iso.Filt. = concentration(unlabeled component) concentration(labeled component) * (fraction of protons not bound to a NMR active heteronucleus

5 Examples for the selectivity in a : complex Degree of 3 C labeling selektivity Iso.Ed. selektivity Iso.Filt. 50 % % % Isotope filtering requires a very high degree of isotopic labeling especially for NOESY experiments, because the relative intensity of different NOESY cross peaks show up factors in the range 0-00 (strong and weak NOE cross peaks!)

6 Basic principle for isotope filtering and editing H - X: H x J HX 2H z t H x cos( J HX t) + 2H y sin( J HX t) H : H x t H x Isotope editing: Isotope filtering: Selection of the term 2H y Suppression of the term 2H y and of the term H x for the HX pairs Additional requirements on filtering compared to editing

7 Basic principle for isotope editing H x J HX 2H z t H x cos( J HX t) + 2H y sin( J HX t) Maximizing of the 2H y term by setting t = / (2 J HX ) A: ± 90 H x H x cos( J HX t) + 2H y sin( J HX t) H x cos( J HX t) ± 2H z sin( J HX t) Alternating of receiver phase eliminates H x term B: H x cos( J HX t) ± 2H z sin( J HX t) ± 90 X y H x cos( J HX t) ± 2H z X x sin( J HX t) Alternating of receiver phase eliminates H x term At least one of both phase alternations is found in every phase cycling of an isotope editited experiment (e.g. HSQC)!

8 Dependence on the relative size of the J-coupling H x J HX 2H z t H x cos( J HX t) + 2H y sin( J HX t) J 0 = 40 Hz t = 3.57 ms J / J0 J / J0 y = cos( J HX t) y = sin( J HX t) Intensity of the H x -term is more sensitive to variations of the J couplings that means: Isotope filtering is more difficult compared to editing

9 Examples for filtering and editing H, I t / 2 t / 2 H z H y x ±x I z I y cos( J IS t) ± 2I x S z sin( J IS t) S Receiver + / + Filtering Receiver + / - Editing t = / (2J IS ) x H, I t / 2 t / 2 H z H z -H y a I z I z cos( J IS t) + 2I x S y sin( J IS t) S Grd Dephasing by gradients t = / (2J IS )

10 H, I t / 2 t / 2 S x ±x H z I z H y I y cos 2 ( J IS t/2) ± (-I y )sin 2 ( J IS t/2) t = / (J IS ) H z (90 x - t/2-80 x -t/2) H y I z (90 x - t/2) - I y cos( J IS t/2) + I x S z sin( J IS t/2) - I y cos( J IS t/2) + I x S z sin( J IS t/2) I y cos( J IS t/2) ± (- I x S z )sin( J IS t/2) (80 x (I) + 90 x (S) + 90 ±x (S)) ( t/2 ) I y cos( J IS t/2) ± (- I x S z )sin( J IS t/2) I y cos 2 ( J IS t/2) ± (- I y ) sin 2 ( J IS t/2)

11 Inclusion of half filters in a NOESY experiment (G. Otting, K. Wüthrich (989) J. Magn. Res. 85, ) /2 /2 /2 /2 ½ t ½ t m x 7 x dec = x, -x 2 = x 3 = 2{x}, 2{-x} 4 = 4{x}, 4{-x} 5 = 8{x}, 8{-x} 6 = x 7 = x rec = x, -x, -x, x, -x, x, x, -x -x, x, x, -x, x, -x, -x, x Four subspectra I x x II -x x III x -x IV -x -x 2

12 F F2 Subspectrum I II III IV 2 C- H - 3 C- H 2 C- H - 3 C- H 2 C- H + 3 C- H 2 C- H - 3 C- H 2 C- H - 3 C- H 2 C- H + 3 C- H 2 C- H + 3 C- H 2 C- H + 3 C- H F F2 Linear combinations (I + II) + (III + IV) (I + II) - (III + IV) (I - II) + (III - IV) (I - II) - (III - IV) 2 C- H 2 C- H 3 C- H 3 C- H 2 C- H 3 C- H 2 C- H 3 C- H

13 J( H, 3 C) Couplings in nucleic acids and proteins linear regression Nucleic acids J CH = 0.7(Hz/ppm) C + 0 Hz Proteins J CH = (Hz/ppm) C + 20 Hz

14 Problem with the variation of the J couplings x H, I / 2 / 2 S a no ideal can be found Grd = / (2J IS ) x H, I / 2 / 2 a S Evolution of the J IS -coupling: - 2 Grd = / (2J IS )

15 Filterelement with an adiabatic S inversion pulse (C. Zwahlen et al. (997), J. Am. Chem. Soc. 9, ) x H, I a a S p Amplitude [%] Phase [ ] Grd g g g Pulsdauer [us] Puls duration.948 ms (800 MHz) smoothed chirp (0 %) 40 khz sweep (low-field -> high-field)

16 Pulse sequence for a F( 3 C-filtered)-F2( 3 C-edited) NOESY -x 0 -x 4 y -y a a a a a a y y 6 p p dec g g g2 g3 g3 g4 g5 g6 g6 4 = 2{x}, 2{-x} 6 = x, -x 0 = 4{x}, 4{-x} = 8{x}, 8{-x} rec = x, -x, -x, x, -x, x, x-, -x -x, x, -x, -x, x, -x, -x, x g = 3 % g2 = 40 % g3 = 0.6 % g4 = 0. % g5 = 3 % g6 = 50 % (500 ms) ( ms) (500 ms) ( ms) ( ms) ( ms)

17 F( 3 C-filtered)-F2( 3 C-edited) NOESY of a protein-protein complex 3 C, 5 N N(-53) in complex with NusA( ) (:2) ( N ca. mm, 800 MHz, 66 h) Ausschnitte aus dem 3C editierten NOESY F(3C filtered) F2 (3C edited) NOESY H [ppm] H [ppm] 0.

18 D slices from the F( 3 C-filtered)-F2( 3 C-edited) NOESY compared with the 3 C-NOESYHSQC x 0 6 Intensität x 0 6 Intensität HD* 40.HD2* HD* 40.HD* 3 3 2D C gefiltert C editiert NOESY HSQC 3 3D C NOESY HSQC Ref. 40.HD* 4.HN Ref. 40.HD* 4.HN 40.HD2* 40.HD* 40.HD2* 40.HD2* 3 3 2D C gefiltert C editiert NOESY HSQC 3 3D C NOESY HSQC Ref. 40.HD2* 4.HN Ref. 40.HD2* 4.HN indirekte Protonendimension [ppm]

Filtered/edited NOESY spectra

Filtered/edited NOESY spectra Filtered/edited NOESY spectra NMR Seminar HS 207 Nina Ripin 22..7 Overview NMR of biomolecular complexes Problems and Solutions Filtered/edited nomenclature Experimental elements NOESY vs filtered pulse

More information

Biochemistry 530 NMR Theory and Practice. Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington

Biochemistry 530 NMR Theory and Practice. Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington 1D spectra contain structural information.. but is hard to extract:

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Protein-protein interactions by NMR

Protein-protein interactions by NMR Protein-protein interactions by NMR Fast k on,off >> (ν free - ν bound ) A + B k on k off AB k on,off ~ (ν free - ν bound ) Slow k on,off

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

Band-Selective Homonuclear 2D Correlation Experiments

Band-Selective Homonuclear 2D Correlation Experiments Band-Selective Homonuclear 2D Correlation Experiments Application Note Authors Péter Sándor Agilent Technologies GmbH D76337 Waldbronn Germany Abstract This application note demonstrates the utility of

More information

Determining Chemical Structures with NMR Spectroscopy the ADEQUATEAD Experiment

Determining Chemical Structures with NMR Spectroscopy the ADEQUATEAD Experiment Determining Chemical Structures with NMR Spectroscopy the ADEQUATEAD Experiment Application Note Author Paul A. Keifer, Ph.D. NMR Applications Scientist Agilent Technologies, Inc. Santa Clara, CA USA Abstract

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin Journal of Magnetic Resonance 202 (2010) 9-13 Bajaj S. V., Mak-Jurkauskus, A. L., Belenky, M., Herzfeld, J. and Griffin, R. MR Seminar

More information

Introduction solution NMR

Introduction solution NMR 2 NMR journey Introduction solution NMR Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben EMBO Global Exchange course, IHEP, Beijing April 28 - May 5, 20 3 Topics

More information

NMR in Structural Biology

NMR in Structural Biology NMR in Structural Biology Exercise session 2 1. a. List 3 NMR observables that report on structure. b. Also indicate whether the information they give is short/medium or long-range, or perhaps all three?

More information

Name: BCMB/CHEM 8190, BIOMOLECULAR NMR FINAL EXAM-5/5/10

Name: BCMB/CHEM 8190, BIOMOLECULAR NMR FINAL EXAM-5/5/10 Name: BCMB/CHEM 8190, BIOMOLECULAR NMR FINAL EXAM-5/5/10 Instructions: This is an open book, limited time, exam. You may use notes you have from class and any text book you find useful. You may also use

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy Topics: 1. Some Common Experiments 2. Anatomy of a 2D experiment 3. 3D NMR spectroscopy no quantum mechanics! Some Common 2D Experiments Very

More information

Key words: CLEANEX-PM, hydrogen exchange, NOE, protein, pulsed field gradients, water

Key words: CLEANEX-PM, hydrogen exchange, NOE, protein, pulsed field gradients, water Journal of Biomolecular NMR, 11: 221 226, 1998. KLUWER/ESCOM 1998 Kluwer Academic Publishers. Printed in Belgium. 221 Accurate quantitation of water amide proton exchange rates using the Phase-Modulated

More information

Protein-protein interactions and NMR: G protein/effector complexes

Protein-protein interactions and NMR: G protein/effector complexes Protein-protein interactions and NMR: G protein/effector complexes Helen Mott 5th CCPN Annual Conference, August 2005 Department of Biochemistry University of Cambridge Fast k on,off >> (ν free - ν bound

More information

NMR Studies of a Series of Shikimic Acid Derivatives

NMR Studies of a Series of Shikimic Acid Derivatives Journal of the Chinese Chemical Society, 2007, 54, 1313-1320 1313 NMR Studies of a Series of Shikimic Acid Derivatives Ping Zhang ( ), Jian Huang ( ) and Fen-Er Chen* ( ) Department of Chemistry, Fudan

More information

NMR Spectroscopy. Guangjin Hou

NMR Spectroscopy. Guangjin Hou NMR Spectroscopy Guangjin Hou 22-04-2009 NMR History 1 H NMR spectra of water H NMR spectra of water (First NMR Spectra on Water, 1946) 1 H NMR spectra ethanol (First bservation of the Chemical Shift,

More information

Concentration measurements by PULCON using X-filtered or 2D NMR spectra

Concentration measurements by PULCON using X-filtered or 2D NMR spectra MAGNETIC RESONANCE IN CHEMISTRY Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mrc.1838 Concentration measurements by PULCON using X-filtered or 2D NMR spectra Lars Dreier

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

Triple Resonance Experiments For Proteins

Triple Resonance Experiments For Proteins Triple Resonance Experiments For Proteins Limitations of homonuclear ( 1 H) experiments for proteins -the utility of homonuclear methods drops quickly with mass (~10 kda) -severe spectral degeneracy -decreased

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Supplementary Fig. 1 Methanol-derived protons in methanediol in the formaldehyde production from methanol: The water formed in the oxidation is used to form

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice David Baker Autumn Quarter 2014 Slides Courtesy of Gabriele Varani Recommended NMR Textbooks Derome, A. E. (1987) Modern NMR Techniques for Chemistry Research,

More information

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews Advanced Quadrupolar NMR Sharon Ashbrook School of Chemistry, University of St Andrews Quadrupolar nuclei: revision single crystal powder ST 500 khz ST ω 0 MAS 1 khz 5 khz second-order broadening Example:

More information

Midterm Exam: CHEM/BCMB 8190 (148 points) Friday, 3 March, 2017

Midterm Exam: CHEM/BCMB 8190 (148 points) Friday, 3 March, 2017 Midterm Exam: CHEM/BCMB 8190 (148 points) Friday, 3 March, 2017 INSTRUCTIONS: You will have 50 minute to work on this exam. You can use any notes or books that you bring with you to assist you in answering

More information

K ex. Conformational equilibrium. equilibrium K B

K ex. Conformational equilibrium. equilibrium K B Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any yprocess in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy

Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy Bernhard Brutscher Laboratoire de Résonance Magnétique Nucléaire Institut de Biologie Structurale -

More information

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE Foreword Preface Acknowledgements V VI I X Chapter 1. Introduction 1.1. The development of high-resolution NMR 1 1.2. Modern

More information

Labelling strategies in the NMR structure determination of larger proteins

Labelling strategies in the NMR structure determination of larger proteins Labelling strategies in the NMR structure determination of larger proteins - Difficulties of studying larger proteins - The effect of deuteration on spectral complexity and relaxation rates - NMR expts

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2017 Supplementary Information Probing the excited-state chemical shifts and exchange

More information

Lecture 9. Heteronuclear 3D NMR Spectroscopy.

Lecture 9. Heteronuclear 3D NMR Spectroscopy. Lecture 9. eteronuclear 3D NMR Spectroscopy. The isotope-editing experiments discussed in the last lecture provide the conceptual framework for heteronuclear 3D NMR experiments. These experiments are the

More information

NMR journey. Introduction to solution NMR. Alexandre Bonvin. Topics. Why use NMR...? Bijvoet Center for Biomolecular Research

NMR journey. Introduction to solution NMR. Alexandre Bonvin. Topics. Why use NMR...? Bijvoet Center for Biomolecular Research 2 NMR journey Introduction to solution NMR Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben EMBO Global Exchange course, CCMB, Hyderabad, India November 29th

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Resonance assignments in proteins. Christina Redfield

Resonance assignments in proteins. Christina Redfield Resonance assignments in proteins Christina Redfield 1. Introduction The assignment of resonances in the complex NMR spectrum of a protein is the first step in any study of protein structure, function

More information

NMR Resonance Assignment Assisted by Mass Spectrometry

NMR Resonance Assignment Assisted by Mass Spectrometry NMR Resonance Assignment Assisted by Mass Spectrometry This lecture talked about a NMR resonance assignment assisted by mass spectrometry [1, 2]. 1 Motivation Nuclear magnetic resonance (NMR) provides

More information

pyridoxal phosphate synthase

pyridoxal phosphate synthase Supplementary Information 13 C-NMR snapshots of the complex reaction coordinate of pyridoxal phosphate synthase Jeremiah W. Hanes, Ivan Keresztes, and Tadhg P. Begley * Department of Chemistry and Chemical

More information

BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE

BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE "Biomolecular Nuclear Magnetic Resonance" is a course intended for all graduate students with an interest in applications

More information

NMR in Medicine and Biology

NMR in Medicine and Biology NMR in Medicine and Biology http://en.wikipedia.org/wiki/nmr_spectroscopy MRI- Magnetic Resonance Imaging (water) In-vivo spectroscopy (metabolites) Solid-state t NMR (large structures) t Solution NMR

More information

Cross Polarization 53 53

Cross Polarization 53 53 Cross Polarization 53 Why don t we normally detect protons in the solid-state BPTI Strong couplings between protons ( >20kHz) Homogeneous interaction Not readily averaged at moderate spinning speeds Rhodopsin

More information

Supplementary Material

Supplementary Material Supplementary Material 4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins Barbara Krähenbühl 1 Sebastian Hiller 2 Gerhard Wider 1 1 Institute of Molecular

More information

StepNOESY Overcoming Spectral Overlap in NOESY1D

StepNOESY Overcoming Spectral Overlap in NOESY1D StepNOESY Overcoming Spectral Overlap in NOESY1D Application Note Author David Russell NMR Applications Scientist Research Products Group Santa Clara, CA Abstract VnmrJ 3 software provides easy-to-use,

More information

Tips & Tricks around temperature

Tips & Tricks around temperature Tips & Tricks around temperature 40. NMR Benutzertagung 2016 Karlsruhe Frank Schumann Bruker BioSpin AG, Schweiz Innovation with Integrity Temperature in NMR NMR experiments are sensitive to small changes

More information

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems Agilent s new solution for obtaining routinely quantitative results from NMR measurements. 1 Magnetic Resonance Systems The Scope of Analytical Chemistry Analytical Chemistry is the study of the separation,

More information

Concepts on protein triple resonance experiments

Concepts on protein triple resonance experiments 2005 NMR User Training Course National Program for Genomic Medicine igh-field NMR Core Facility, The Genomic Research Center, Academia Sinica 03/30/2005 Course andout Concepts on protein triple resonance

More information

Schematic of the COSY Experiment

Schematic of the COSY Experiment Schematic of the COSY Experiment 9 o 9 o (d) t 2 (aq) homonuclear COSY But what happens for a heteronuclear experiment? The 9 o pulses will not cover both sets of nuclei, and there would be issues with

More information

Selective polarization transfer using a single rf field

Selective polarization transfer using a single rf field Selective polarization transfer using a single rf field Eddy R. Rey Castellanos, Dominique P. Frueh, and Julien Wist Citation: J. Chem. Phys. 129, 014504 (2008); doi: 10.1063/1.2939572 View online: http://dx.doi.org/10.1063/1.2939572

More information

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M19_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. 15 N NMR spectroscopy 3. 19 F NMR spectroscopy

More information

Extending the limits of the selective 1D NOESY experiment with an improved selective TOCSY edited preparation function

Extending the limits of the selective 1D NOESY experiment with an improved selective TOCSY edited preparation function Journal of Magnetic Resonance 171 (2004) 201 206 Communication Extending the limits of the selective 1D NOESY experiment with an improved selective TOCSY edited preparation function Haitao Hu a, *, Scott

More information

Magic-Angle Spinning (MAS) drive bearing

Magic-Angle Spinning (MAS) drive bearing Magic-Angle Spinning (MAS) magic-angle spinning is done pneumatically spinning frequency can be stabilized within a few Hz Magic-Angle Spinning (MAS) drive bearing Magic-Angle Spinning (MAS) Maximum spinning

More information

COSY type experiments exploring through-bond homonuclear correlations

COSY type experiments exploring through-bond homonuclear correlations COSY type experiments exploring through-bond homonuclear correlations Assistant Professor Kenneth Kongstad Bioanalytical Chemistry and Metabolomics Research Group Section for Natural Products and Peptides

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington 1D spectra contain structural information.. but is hard to extract:

More information

Supporting Information

Supporting Information Supporting Information Nucleophilic ipso-substitution of Aryl Methyl Ethers through Aryl C OMe Bond Cleavage; an Access to Functionalized Bisthiophenes Abhishek Kumar Mishra, Ajay Verma, and Srijit Biswas*,

More information

Basic principles of multidimensional NMR in solution

Basic principles of multidimensional NMR in solution Basic principles of multidimensional NMR in solution 19.03.2008 The program 2/93 General aspects Basic principles Parameters in NMR spectroscopy Multidimensional NMR-spectroscopy Protein structures NMR-spectra

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Adiabatic Single Scan Two-Dimensional NMR Spectrocopy

Adiabatic Single Scan Two-Dimensional NMR Spectrocopy Published on Web 09/13/2003 Adiabatic Single Scan Two-Dimensional NMR Spectrocopy Philippe Pelupessy*, Contribution from the Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24 rue Lhomond,

More information

Selective Rotations Using Non-Selective Pulses and Heteronuclear Couplings

Selective Rotations Using Non-Selective Pulses and Heteronuclear Couplings Vol. 16, No. 1/2 49 Selective Rotations Using Non-Selective Pulses and Heteronuclear Couplings Ole Winneche S0rensen Novo Nordisk, 2880 Bagsvterd, Denmark Contents I. Introduction 49 II. Heteronuclear

More information

Malz, F., & Jancke, H. (2005). Validation of quantitative NMR. Journal of Pharmaceutical and Biomedical Analysis, 38(5),

Malz, F., & Jancke, H. (2005). Validation of quantitative NMR. Journal of Pharmaceutical and Biomedical Analysis, 38(5), Malz, F., & Jancke, H. (2005). Validation of quantitative NMR. Journal of Pharmaceutical and Biomedical Analysis, 38(5), 813 23. https://doi.org/10.1016/j.jpba.2005.01.043 Malz, F., & Jancke, H. (2005).

More information

BMB/Bi/Ch 173 Winter 2018

BMB/Bi/Ch 173 Winter 2018 BMB/Bi/Ch 173 Winter 2018 Homework Set 8.1 (100 Points) Assigned 2-27-18, due 3-6-18 by 10:30 a.m. TA: Rachael Kuintzle. Office hours: SFL 220, Friday 3/2 4-5pm and SFL 229, Monday 3/5 4-5:30pm. 1. NMR

More information

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials PIERS ONLINE, VOL. 5, NO. 1, 2009 81 Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials Eva Gescheidtova 1 and Karel Bartusek 2 1 Faculty of Electrical Engineering

More information

Deuteration: Structural Studies of Larger Proteins

Deuteration: Structural Studies of Larger Proteins Deuteration: Structural Studies of Larger Proteins Problems with larger proteins Impact of deuteration on relaxation rates Approaches to structure determination Practical aspects of producing deuterated

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature20798 Supplementary Tables Table S1: Kinetic parameters for porphyrin torsional rotation in c-p6 6+ and c-p6 12+ from 1 H EXSY. Table S2: Calculated (NICS, ppm) and experimental ( δ,

More information

North Carolina State University Department of Chemistry Varian NMR Training Manual

North Carolina State University Department of Chemistry Varian NMR Training Manual North Carolina State University Department of Chemistry Varian NMR Training Manual by J.B. Clark IV & Dr. S. Sankar 1 st Edition 05/15/2009 Section 3: Glide Program Operations for Advanced 1D & 2D Spectra

More information

Connecting NMR data to biomolecular structure and dynamics

Connecting NMR data to biomolecular structure and dynamics Connecting NMR data to biomolecular structure and dynamics David A. Case Chem 538, Spring, 2014 Basics of NMR All nuclei are characterized by a spin quantum number I, which can be 0, 1/2, 1, 3/2, 2...

More information

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends 4 Spin-echo, Spin-echo ouble Resonance (SEOR and Rotational-echo ouble Resonance (REOR applied on polymer blends The next logical step after analyzing and concluding upon the results of proton transversal

More information

NMR Spectroscopy. Alexej Jerschow, NYU Chemistry

NMR Spectroscopy. Alexej Jerschow, NYU Chemistry NMR Spectroscopy Alexej Jerschow, NYU Chemistry 1 Overview Larmor Eq Chemical Shift J-coupling 1D NMR spectra 2D NMR spectra (Imaging) Alexej Jerschow, NYU 2 Alexej Jerschow, NYU 3 For further reading:

More information

Basic One- and Two-Dimensional NMR Spectroscopy

Basic One- and Two-Dimensional NMR Spectroscopy Horst Friebolin Basic One- and Two-Dimensional NMR Spectroscopy Third Revised Edition Translated by Jack K. Becconsall WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Contents XV 1 The

More information

Introduction to solution NMR. Alexandre Bonvin. The NMR research group. Bijvoet Center for Biomolecular Research

Introduction to solution NMR. Alexandre Bonvin. The NMR research group. Bijvoet Center for Biomolecular Research Introduction to solution NMR 1 Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben Bente%Vestergaard% The NMR research group Prof. Marc Baldus Prof. Rolf Boelens

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1299 Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy Ishita Sengupta 1, Philippe S. Nadaud 1, Jonathan J. Helmus 1, Charles D. Schwieters 2

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 13 Structure t Determination: ti Nuclear Magnetic Resonance Spectroscopy Revisions by Dr. Daniel Holmes MSU Paul D. Adams University of Arkansas

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Molecular motion of Donor-Acceptor catenanes in water

Molecular motion of Donor-Acceptor catenanes in water Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for: Molecular motion of Donor-Acceptor catenanes

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Macromolecular X-ray Crystallography

Macromolecular X-ray Crystallography Protein Structural Models for CHEM 641 Fall 07 Brian Bahnson Department of Chemistry & Biochemistry University of Delaware Macromolecular X-ray Crystallography Purified Protein X-ray Diffraction Data collection

More information

8.2 The Nuclear Overhauser Effect

8.2 The Nuclear Overhauser Effect 8.2 The Nuclear Overhauser Effect Copyright Hans J. Reich 2016 All Rights Reserved University of Wisconsin An important consequence of DD relaxation is the Nuclear Overhauser Effect, which can be used

More information

Ultra-high Resolution in Low Field Tabletop NMR Spectrometers

Ultra-high Resolution in Low Field Tabletop NMR Spectrometers Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting Information Ultra-high Resolution in Low Field Tabletop NMR Spectrometers Experimental

More information

Homonuclear Broadband Decoupling via PSYCHE Element Benjamin Görling, Aitor Moreno, Wolfgang Bermel

Homonuclear Broadband Decoupling via PSYCHE Element Benjamin Görling, Aitor Moreno, Wolfgang Bermel Homonuclear Broadband Decoupling via PSYCHE Element Benjamin Görling, Aitor Moreno, Wolfgang Bermel Bruker BioSpin GmbH Homonuclear broadband decoupling of proton spectra is a challenging task since standard

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Protein NMR. Part III. (let s start by reviewing some of the things we have learned already)

Protein NMR. Part III. (let s start by reviewing some of the things we have learned already) Protein NMR Part III (let s start by reviewing some of the things we have learned already) 1. Magnetization Transfer Magnetization transfer through space > NOE Magnetization transfer through bonds > J-coupling

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

BMB/Bi/Ch 173 Winter 2018

BMB/Bi/Ch 173 Winter 2018 BMB/Bi/Ch 173 Winter 2018 Homework Set 8.1 (100 Points) Assigned 2-27-18, due 3-6-18 by 10:30 a.m. TA: Rachael Kuintzle. Office hours: SFL 220, Friday 3/2 4:00-5:00pm and SFL 229, Monday 3/5 4:00-5:30pm.

More information

NMR NEWS June To find tutorials, links and more, visit our website

NMR NEWS June To find tutorials, links and more, visit our website Department of Chemistry NMR Facilities Director: Dr. Carlos A. Steren NMR NEWS June 2014 To find tutorials, links and more, visit our website www.chem.utk.edu/facilities/nmr Computers and software updates

More information

Three-Dimensional Triple-Resonance NMR of 13C / 15N-Enriched Proteins Using Constant-Time Evolution

Three-Dimensional Triple-Resonance NMR of 13C / 15N-Enriched Proteins Using Constant-Time Evolution JOURNAL OF MAGNETIC RESONANCE 94,209-2 13 ( 199 1) Three-Dimensional Triple-Resonance NMR of 13C / 15N-Enriched Proteins Using Constant-Time Evolution ROBERTPOWERS, ANGELA M. GRONENBORN,G.MARIUSCLORE,ANDADBAX

More information

How to perform 2D NMR Experiments on the Varian/Agilent VNMRS 500 when using the Chempack interface

How to perform 2D NMR Experiments on the Varian/Agilent VNMRS 500 when using the Chempack interface How to perform 2D NMR Experiments on the Varian/Agilent VNMRS 500 when using the Chempack interface 1 June 3, 2014 To start: 1. Insert your sample 2. If running any 2D spectrum or even just a 1D 13 C spectrum

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

Chemistry 605 (Reich)

Chemistry 605 (Reich) Chemistry 605 (Reich) THIRD HOUR EXAM Wed. May 15, 2013 Question/Points R-12L /20 R-12M /15 R-12N /25 R-12O /10 R-12P /20 Total /90 Name If you place answers anywhere else except in the spaces provided,

More information

Supplementary Information. Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1.

Supplementary Information. Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1. Supplementary Information Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1. Mar. Drugs 2014, 12 2 Figure S2. 13 C NMR (125 MHz, CDCl 3 ) of 1. Mar. Drugs 2014, 12 3 Figure S3. gcosy (600 MHz, CDCl 3 ) of 1.

More information

5 Heteronuclear Correlation Spectroscopy

5 Heteronuclear Correlation Spectroscopy 61 5 Heteronuclear Correlation Spectroscopy H,C-COSY We will generally discuss heteronuclear correlation spectroscopy for X = 13 C (in natural abundance!), since this is by far the most widely used application.

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

1. 3-hour Open book exam. No discussion among yourselves.

1. 3-hour Open book exam. No discussion among yourselves. Lecture 13 Review 1. 3-hour Open book exam. No discussion among yourselves. 2. Simple calculations. 3. Terminologies. 4. Decriptive questions. 5. Analyze a pulse program using density matrix approach (omonuclear

More information

Sequential Assignment Strategies in Proteins

Sequential Assignment Strategies in Proteins Sequential Assignment Strategies in Proteins NMR assignments in order to determine a structure by traditional, NOE-based 1 H- 1 H distance-based methods, the chemical shifts of the individual 1 H nuclei

More information

The Use of NMR Spectroscopy

The Use of NMR Spectroscopy Spektroskopi Molekul Organik (SMO): Nuclear Magnetic Resonance (NMR) Spectroscopy All is adopted from McMurry s Organic Chemistry The Use of NMR Spectroscopy Used to determine relative location of atoms

More information

The wonderful world of NUCLEIC ACID NMR!

The wonderful world of NUCLEIC ACID NMR! Lecture 12 M230 Feigon Sequential resonance assignments in DNA (and RNA): homonuclear method 2 structure determination Reading resources Evans Chap 9 The wonderful world of NUCLEIC ACID NMR! Catalytically

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 5 N 4 8 20 22 24 2 28 4 8 20 22 24 2 28 a b 0 9 8 7 H c (kda) 95 0 57 4 28 2 5.5 Precipitate before NMR expt. Supernatant before NMR expt. Precipitate after hrs NMR expt. Supernatant after hrs NMR expt.

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Lectures for CCB 538 James Aramini, PhD. CABM 014A jma@cabm.rutgers.edu J.A.! 04/21/14! April 21!!!!April 23!! April 28! Outline 1. Introduction / Spectroscopy Overview! 2. NMR

More information

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

More information

Two-Dimensional NMR Spectroscopy

Two-Dimensional NMR Spectroscopy Two-Dimensional NMR Spectroscopy Applications for Chemists and Biochemists Second Edition Expanded and Updated to Include Multidimensional Work EDITED BY William R. Croasmun and Robert M. K. Carlson VCH

More information