Two Remarkable Ortho-Homological Triangles

Size: px
Start display at page:

Download "Two Remarkable Ortho-Homological Triangles"

Transcription

1 Two Remarkable Ortho-Homological Triangles Prof. Ion Pătraşcu - The National ollege Fraţii Buzeşti, raiova, Romania Prof. Florentin Smarandache University of New Mexico, U.S.. In a previous paper [5] we have introduced the ortho-homological triangles, which are triangles that are orthological and homological simultaneously. In this article we call attention to two remarkable ortho-homological triangles (the given triangle B and its first Brocard s triangle), and using the Sondat s theorem relative to orthological triangles, we emphasize on four important collinear points in the geometry of the triangle. Definition The first Brocard triangle of a given triangle B is the triangle formed by the projections of the symmedian center of the triangle B on its perpendicular bisectors. Observation In figure we note with K the symmedian center, O', OB ', O ' the perpendicular bisectors of the triangle B and B the first Brocard s triangle. B B O K B Fig. Theorem If B is a given triangle and B is its first triangle Brocard, then the triangles B and B are ortho-homological.

2 We ll perform the proof of this theorem in two stages. I. We prove that the triangles B and B are orthological. The perpendiculars from, B, on B, respective B are perpendicular bisectors in the triangle B, therefore are concurrent in O, the center of the circumscribed circle of triangle B which is the orthological center for triangles B and B. II. We prove that the triangles B and B are homological, that is the lines, BB, are concurrent. To continue with these proves we need to refresh some knowledge and some helpful results. Definition In any triangle B there exist the points Ω and Ω ' and the angle ω such that: m( Ω B) Ω B Ω ω m Ω ' B Ω ' Ω ' B ω ( ) ω Ω Ω ω ω B Fig. The points Ω and Ω ' are called the first, respectively the second point of Brocard and ω is called the Brocard s angle. Lemma In the triangle B let Ω the first point of Brocard and { "} { "} B" c " a Ω B, then:

3 ria B" B "sinω () ria " "sin( ω) () From () and () we find: ria B" B sinω ria " sin( ω) (3) On the other side, the mentioned triangles have the same height built from, therefore: ria B" B" ria " " (4) From (3) and (4) we have: B" B sinω " sin( ω) (5) pplying the sinus theorem in the triangle Ω and in the triangle BΩ, it results: Ω sin ( ω) sin Ω (6) Ω B sinω sin BΩ (7) Because m Ω o 80 ( ) ( ) o m BΩ 80 From the relations (6) and (7) we find: sinω sin sin ( ω ) B (8) sin pplying the sinus theorem in the triangle B leads to: sin B (9) sin B The relations (5), (8), (9) provide us the relation: B" c " a Remark By making the notations: { B" } BΩ and { " } Ω B we obtain also the relations: B" a " b and B" b B" c Lemma In a triangle B, the Brocard s evian BΩ, symmedian from and the median from are concurrent. 3

4 K 3 K K It is known that the symmedian K of triangle B intersects B in the point such b B" a that. We had that the evian BΩ intersects in B " such that. B c B" b The median from intersects B in ' and B' '. B ' B" Because, the reciprocal of eva s theorem ensures the concurrency ' B" B of the lines BΩ, K and '. Lemma 3 Give a triangle B and ω the Brocard s angle, then ctgω ctg + ctgb + ctg (9) From the relation (8) we find: a sin sin ( ω) sinω (0) b sin From the sinus theorem in the triangle B we have that a sin b sin B sin sinω Substituting it in (0) it results: sin ( ω) sin B sin Furthermore we have: sin( ω) sin cosω sinω cos sin sinω sin cosω sinω cos () sin B sin Dividing relation () by sin sinω and taking into account that sin sin( B+ ), and sin( B + ) sin B cos+ sin cos B we obtain relation (5) Lemma 4 If in the triangle B, K is the symmedian center and K, K, K 3 are its projections on the sides B,, B, then: F E B Fig. 3 4

5 KK KK KK3 tgω a b c : Let the symmedian in the triangle B, we have: B ria B, ria where E and F are the projection of on respectively B. F c It results that E b KK3 F From the fact that KK3 F and KK E we find that KK E KK 3 lso: KK KK KK, and similarly:, consequently: b c a b KK KK KK 3 () a b c The relation () is equivalent to: akk bkk ckk3 akk+ bkk + ckk3 a b c a + b + c Because akk+ bkk + ckk3 ria B S, we have: KK KK KK3 S a b c a + b + c If we note H, H, H 3 the projections of, B, on B,, B, we have ctg H bccos BH S H B Fig. 4 From the cosine s theorem it results that : b + c a bc cos, and therefore 5

6 b + c a ctg 4S Taking into account the relation (9), we find: a + b + c ctgω, 4S then 4S tgω a + b + c and then KK S tgω. a a + b + c Lemma 5 The evians, BB, are the isotomics of the symmedians, BB, in the triangle B. : J Ω K J K B Fig. 5 In figure 5 we note J the intersection point of the evians from the Lemma. Because K B, we have that ' KK atgω. On the other side from the right triangle ' B ' we have: tg B' tgω, consequently the point, the vertex of the first B' triangle of Brocard belongs to the evians BΩ. We note { J' } K ', and evidently from K B it results that JJ ' is the median in the triangle J K, therefore J ' J' K. 6

7 We note with ' the intersection of the evians with B, because K ' and J ' is a median in the triangle K it results that ' is a median in triangle ' therefore the points ' and are isometric. Similarly it can be shown that BB and ' are the isometrics of the symmedians ' BB and. The second part of this proof: Indeed it is known that the isometric evians of certain concurrent evians are concurrent and from Lemma 5 along with the fact that the symmedians of a triangle are concurrent, it results the concurrency of the evians, BB, and therefore the triangle B and the first triangle of Brocard are homological. The homology s center (the concurrency point) of these evians is marked in some works with Ω" with and it is called the third point of Brocard. From the previous proof, it results that Ω" is the isotomic conjugate of the symmedian center K. Remark The triangles B and B (first Brocard triangle) are triple-homological, since first time the evians B, B, are concurrent (in a Brocard point), second time the evians, B, B are also concurrent (in the second Brocard point), and third time the evians, BB, are concurrent as well (in the third point of Brocard). Definition 3 It is called the Tarry point of a triangle B, the concurrency point of the perpendiculars from, B, on the sides B,, B of the Brocard s first triangle. Remark 3 The fact that the perpendiculars from the above definition are concurrent results from the theorem and from the theorem that states that the relation of triangles orthology is symmetric. We continue to prove the concurrency using another approach that will introduce supplementary information about the Tarry s point. We ll use the following: Lemma 6: The first triangle Brocard of a triangle and the triangle itself are similar. From K (see Fig. ), similarly B and O' B it results that ( ) m KO 90 ( ) ( ) m KBO m KO 90 and therefore the first triangle of Brocard is inscribed in the circle with OK as diameter (this circle is called the Brocard circle). Because 7

8 ( ) m O 80 B and, B,, O are concyclic, it results that B B, similarly m( B' O' ) 80, it results that m( BO ) m( ) but BO B, therefore B and the triangle B is similar wit the triangle B. Theorem The orthology center of the triangle B and of the first triangle of Brocard is the Tarry s point T of the triangle B, and T belongs to the circumscribed circle of the triangle B. We mark with T the intersection of the perpendicular raised from B on with the perpendicular raised from on B and let We have { B '} BT, { '} B T. ( ' ') 80 ( ) m B T m B B K S B O T B B Fig 6 8

9 But because of Lemma 6 B. It results that m( B' T' ) 80, therefore m( BT' ) + m( B) 80 Therefore T belongs to the circumscribed circle of triangle B If { ' } B T and if we note with T ' the intersection of the perpendicular raised from on B with the perpendicular raised from B on, we observe that m( B' T' ' ) m( B) therefore m( BT' ) + m( B) and it results that T ' belongs to the circumscribed triangle B. Therefore T T ' and the theorem is proved. Theorem 3 If through the vertexes, B, of a triangle are constructed the parallels to the sides B, respectively B of the first triangle of Brocard of this triangle, then these lines are concurrent in a point S (the Steiner point of the triangle) We note with S the polar intersection constructed through to B with the polar constructed through B to (see Fig. 6). We have m( SB) 80 m( B) (angles with parallel sides) because m( B) m, we have m SB m, ( ) 80 therefore SB are concyclic. Similarly, if we note with S ' the intersection of the polar constructed through to B B we find that the points S ' B are concyclic. with the parallel constructed through to Because the parallels from to B contain the points,, ' are on the circumscribed circle of the triangle, it results that S S' Remark 4 Because S B and B T, it results that SS and the points SS, ', and the theorem is proved. ( ) 90 m ST, but S and T belong to the circumscribed circle to the triangle B, consequently the Steiner s point and the Tarry point are diametric opposed. 9

10 Theorem 4 In a triangle B the Tarry point T, the center of the circumscribed circle O, the third point of Brocard Ω " and Steiner s point S are collinear points The P. Sondat s theorem relative to the orthological triangles (see [4]) says that the points T, O, Ω " are collinear, therefore the points: T, O, Ω ", S are collinear. References [] Roger. Johnson dvanced Euclidean Geometry, Dover Publications, Inc. Mineola, New York, 007. [] F. Smarandache Multispace & Multistructure, Neutrospheric Trandisciplinarity (00 ollected Papers of Sciences), Vol IV. North-European Scientific Publishers, Hanko, Findland, 00. [3]. Barbu Teoreme fundamentale din geometria triunghiului. Editura Unique, Bacău, 008. [4] I. Pătraşcu, F. Smarandache - n application of Sondat Theorem Regarding the Orthohomological Triangles. [5] Ion Pătrașcu, Florentin Smarandache, Theorem about Simulotaneously Orthological and Homological Triangles, 0

A Theorem about Simultaneous Orthological and Homological Triangles

A Theorem about Simultaneous Orthological and Homological Triangles Theorem about Simultaneous Orthological and Homological Triangles Ion Pătraşcu Frații uzești ollege, raiova, Romania Florentin Smarandache University of New Mexico, Gallup ampus, US bstract. In this paper

More information

Lemoine Circles Radius Calculus

Lemoine Circles Radius Calculus Lemoine Circles Radius Calculus Ion Pătrașcu, professor, Frații Buzești National College,Craiova, Romania Florentin Smarandache, professor, New Mexico University, U.S.A. For the calculus of the first Lemoine

More information

Ion Patrascu, Florentin Smarandache A Sufficient Condition for the Circle of the 6 Points to Become Euler s Circle

Ion Patrascu, Florentin Smarandache A Sufficient Condition for the Circle of the 6 Points to Become Euler s Circle A Sufficient Condition for the Circle of the 6 Points to Become Euler s Circle In : Complements to Classic Topics of Circles Geometry. Brussels (Belgium): Pons Editions, 2016 In this article, we prove

More information

Ion Patrascu Florentin Smarandache. Complements to Classic Topics of Circles Geometry

Ion Patrascu Florentin Smarandache. Complements to Classic Topics of Circles Geometry Ion Patrascu Florentin Smarandache Complements to Classic Topics of Circles Geometry Pons Editions Brussels 2016 Complements to Classic Topics of Circles Geometry Ion Patrascu Florentin Smarandache Complements

More information

Ion Patrascu, Florentin Smarandache Theorems with Parallels Taken through a Triangle s Vertices and Constructions Performed only with the Ruler

Ion Patrascu, Florentin Smarandache Theorems with Parallels Taken through a Triangle s Vertices and Constructions Performed only with the Ruler Theorems with Parallels Taken through a Triangle s Vertices and Constructions Performed only with the Ruler In Ion Patrascu, Florentin Smarandache: Complements to Classic Topics of Circles Geometry. Brussels

More information

Ion Patrascu, Florentin Smarandache Radical Axis of Lemoine s Circles

Ion Patrascu, Florentin Smarandache Radical Axis of Lemoine s Circles Radical Axis of Lemoine s Circles In Ion Patrascu, Florentin Smarandache: Complements to Classic Topics of Circles Geometry. Brussels (Belgium): Pons Editions, 2016 Complements to Classic Topics of Circles

More information

Ion Patrascu, Florentin Smarandache The Polars of a Radical Center

Ion Patrascu, Florentin Smarandache The Polars of a Radical Center Ion Patrascu, Florentin Smarandache The Polars of a Radical Center In Ion Patrascu, Florentin Smarandache: Complements to Classic Topics of Circles Geometry. Brussels (Belgium): Pons Editions, 2016 In

More information

THE GEOMETRY OF HOMOLOGICAL TRIANGLES

THE GEOMETRY OF HOMOLOGICAL TRIANGLES THE GEOMETRY OF HOMOLOGIL TRINGLES X Z D D F E S F D B B F E E B Y FLORENTIN SMRNDHE ION PĂTRŞU FLORENTIN SMRNDHE ION PĂTRŞU THE GEOMETRY OF HOMOLOGIL TRINGLES 0 This book can be ordered on paper or electronic

More information

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 3) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 Example 11(a): Fermat point. Given triangle, construct externally similar isosceles triangles

More information

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIII GEOMETRIL OLYMPID IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to

More information

Advanced Euclidean Geometry

Advanced Euclidean Geometry dvanced Euclidean Geometry Paul iu Department of Mathematics Florida tlantic University Summer 2016 July 11 Menelaus and eva Theorems Menelaus theorem Theorem 0.1 (Menelaus). Given a triangle with points,,

More information

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem hapter 3 The angle bisectors 3.1 The angle bisector theorem Theorem 3.1 (ngle bisector theorem). The bisectors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Example 1(a). Given a triangle, the intersection P of the perpendicular bisector of and

More information

Chapter 1. Theorems of Ceva and Menelaus

Chapter 1. Theorems of Ceva and Menelaus hapter 1 Theorems of eva and Menelaus We start these lectures by proving some of the most basic theorems in the geometry of a planar triangle. Let,, be the vertices of the triangle and,, be any points

More information

Abstract The symmedian point of a triangle is known to give rise to two circles, obtained by drawing respectively parallels and antiparallels to the

Abstract The symmedian point of a triangle is known to give rise to two circles, obtained by drawing respectively parallels and antiparallels to the bstract The symmedian point of a triangle is known to give rise to two circles, obtained by drawing respectively parallels and antiparallels to the sides of the triangle through the symmedian point. In

More information

Harmonic Division and its Applications

Harmonic Division and its Applications Harmonic ivision and its pplications osmin Pohoata Let d be a line and,,, and four points which lie in this order on it. he four-point () is called a harmonic division, or simply harmonic, if =. If is

More information

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

INVERSION IN THE PLANE BERKELEY MATH CIRCLE INVERSION IN THE PLANE BERKELEY MATH CIRCLE ZVEZDELINA STANKOVA MILLS COLLEGE/UC BERKELEY SEPTEMBER 26TH 2004 Contents 1. Definition of Inversion in the Plane 1 Properties of Inversion 2 Problems 2 2.

More information

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 21 Menelaus and eva theorems 21.1 Menelaus theorem Theorem 21.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30.

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. 1. (V. Yasinsky) In trapezoid D angles and are right, = D, D = + D, < D. Prove that

More information

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem

Chapter 5. Menelaus theorem. 5.1 Menelaus theorem hapter 5 Menelaus theorem 5.1 Menelaus theorem Theorem 5.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof. (= ) LetW

More information

The Menelaus and Ceva Theorems

The Menelaus and Ceva Theorems hapter 7 The Menelaus and eva Theorems 7.1 7.1.1 Sign convention Let and be two distinct points. point on the line is said to divide the segment in the ratio :, positive if is between and, and negative

More information

Menelaus and Ceva theorems

Menelaus and Ceva theorems hapter 3 Menelaus and eva theorems 3.1 Menelaus theorem Theorem 3.1 (Menelaus). Given a triangle with points,, on the side lines,, respectively, the points,, are collinear if and only if = 1. W Proof.

More information

A MOST BASIC TRIAD OF PARABOLAS ASSOCIATED WITH A TRIANGLE

A MOST BASIC TRIAD OF PARABOLAS ASSOCIATED WITH A TRIANGLE Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.6, (207), Issue, pp.45-57 A MOST BASIC TRIAD OF PARABOLAS ASSOCIATED WITH A TRIANGLE PAUL YIU AND XIAO-DONG ZHANG

More information

Trn Quang Hng - High school for gifted students at Science 1. On Casey Inequality. Tran Quang Hung, High school for gifted students at Science

Trn Quang Hng - High school for gifted students at Science 1. On Casey Inequality. Tran Quang Hung, High school for gifted students at Science Trn Quang Hng - High school for gifted students at Science 1 n asey nequality Tran Quang Hung, High school for gifted students at Science asey s theorem is one of famous theorem of geometry, we can see

More information

Geometry. Class Examples (July 10) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 10) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 10) Paul iu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Menelaus theorem Theorem (Menelaus). Given a triangle with points,, on the side lines,,

More information

KIEPERT TRIANGLES IN AN ISOTROPIC PLANE

KIEPERT TRIANGLES IN AN ISOTROPIC PLANE SARAJEVO JOURNAL OF MATHEMATICS Vol.7 (19) (2011), 81 90 KIEPERT TRIANGLES IN AN ISOTROPIC PLANE V. VOLENEC, Z. KOLAR-BEGOVIĆ AND R. KOLAR ŠUPER Abstract. In this paper the concept of the Kiepert triangle

More information

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid hapter 6 asic triangle centers 6.1 The Euler line 6.1.1 The centroid Let E and F be the midpoints of and respectively, and G the intersection of the medians E and F. onstruct the parallel through to E,

More information

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS GEOMETRY OF KIEPERT ND GRINERG MYKISHEV HYPEROLS LEXEY. ZSLVSKY bstract. new synthetic proof of the following fact is given: if three points,, are the apices of isosceles directly-similar triangles,, erected

More information

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter hapter 8 Feuerbach s theorem 8.1 Distance between the circumcenter and orthocenter Y F E Z H N X D Proposition 8.1. H = R 1 8 cosαcos β cosγ). Proof. n triangle H, = R, H = R cosα, and H = β γ. y the law

More information

Problems First day. 8 grade. Problems First day. 8 grade

Problems First day. 8 grade. Problems First day. 8 grade First day. 8 grade 8.1. Let ABCD be a cyclic quadrilateral with AB = = BC and AD = CD. ApointM lies on the minor arc CD of its circumcircle. The lines BM and CD meet at point P, thelinesam and BD meet

More information

SOME PROPERTIES OF INTERSECTION POINTS OF EULER LINE AND ORTHOTRIANGLE

SOME PROPERTIES OF INTERSECTION POINTS OF EULER LINE AND ORTHOTRIANGLE SOME PROPERTIES OF INTERSETION POINTS OF EULER LINE ND ORTHOTRINGLE DNYLO KHILKO bstract. We consider the points where the Euler line of a given triangle meets the sides of its orthotriangle, i.e. the

More information

Classical Theorems in Plane Geometry 1

Classical Theorems in Plane Geometry 1 BERKELEY MATH CIRCLE 1999 2000 Classical Theorems in Plane Geometry 1 Zvezdelina Stankova-Frenkel UC Berkeley and Mills College Note: All objects in this handout are planar - i.e. they lie in the usual

More information

The Apollonian Circles and Isodynamic Points

The Apollonian Circles and Isodynamic Points The pollonian ircles and Isodynamic Points Tarik dnan oon bstract This paper is on the pollonian circles and isodynamic points of a triangle. Here we discuss some of the most intriguing properties of pollonian

More information

Berkeley Math Circle, May

Berkeley Math Circle, May Berkeley Math Circle, May 1-7 2000 COMPLEX NUMBERS IN GEOMETRY ZVEZDELINA STANKOVA FRENKEL, MILLS COLLEGE 1. Let O be a point in the plane of ABC. Points A 1, B 1, C 1 are the images of A, B, C under symmetry

More information

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS 22 SPL PROLS WITH SOLUTIOS FRO 555 GOTRY PROLS SOLUTIOS S O GOTRY I FIGURS Y. V. KOPY Stanislav hobanov Stanislav imitrov Lyuben Lichev 1 Problem 3.9. Let be a quadrilateral. Let J and I be the midpoints

More information

Nagel, Speiker, Napoleon, Torricelli. Centroid. Circumcenter 10/6/2011. MA 341 Topics in Geometry Lecture 17

Nagel, Speiker, Napoleon, Torricelli. Centroid. Circumcenter 10/6/2011. MA 341 Topics in Geometry Lecture 17 Nagel, Speiker, Napoleon, Torricelli MA 341 Topics in Geometry Lecture 17 Centroid The point of concurrency of the three medians. 07-Oct-2011 MA 341 2 Circumcenter Point of concurrency of the three perpendicular

More information

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

QUESTION BANK ON STRAIGHT LINE AND CIRCLE QUESTION BANK ON STRAIGHT LINE AND CIRCLE Select the correct alternative : (Only one is correct) Q. If the lines x + y + = 0 ; 4x + y + 4 = 0 and x + αy + β = 0, where α + β =, are concurrent then α =,

More information

EHRMANN S THIRD LEMOINE CIRCLE

EHRMANN S THIRD LEMOINE CIRCLE EHRMNN S THIRD EMOINE IRE DRIJ GRINERG bstract. The symmedian point of a triangle is known to give rise to two circles, obtained by drawing respectively parallels and antiparallels to the sides of the

More information

Inversion in the Plane. Part II: Radical Axes 1

Inversion in the Plane. Part II: Radical Axes 1 BERKELEY MATH CIRCLE, October 18 1998 Inversion in the Plane. Part II: Radical Axes 1 Zvezdelina Stankova-Frenkel, UC Berkeley Definition 2. The degree of point A with respect to a circle k(o, R) is defined

More information

Bicevian Tucker Circles

Bicevian Tucker Circles Forum Geometricorum Volume 7 (2007) 87 97. FORUM GEOM ISSN 1534-1178 icevian Tucker ircles ernard Gibert bstract. We prove that there are exactly ten bicevian Tucker circles and show several curves containing

More information

Some Collinearities in the Heptagonal Triangle

Some Collinearities in the Heptagonal Triangle Forum Geometricorum Volume 16 (2016) 249 256. FRUM GEM ISSN 1534-1178 Some ollinearities in the Heptagonal Triangle bdilkadir ltintaş bstract. With the methods of barycentric coordinates, we establish

More information

The Apollonius Circle as a Tucker Circle

The Apollonius Circle as a Tucker Circle Forum Geometricorum Volume 2 (2002) 175 182 FORUM GEOM ISSN 1534-1178 The Apollonius Circle as a Tucker Circle Darij Grinberg and Paul Yiu Abstract We give a simple construction of the circular hull of

More information

The circumcircle and the incircle

The circumcircle and the incircle hapter 4 The circumcircle and the incircle 4.1 The Euler line 4.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,.

More information

On the Circumcenters of Cevasix Configurations

On the Circumcenters of Cevasix Configurations Forum Geometricorum Volume 3 (2003) 57 63. FORUM GEOM ISSN 1534-1178 On the ircumcenters of evasix onfigurations lexei Myakishev and Peter Y. Woo bstract. We strengthen Floor van Lamoen s theorem that

More information

RMT 2014 Geometry Test Solutions February 15, 2014

RMT 2014 Geometry Test Solutions February 15, 2014 RMT 014 Geometry Test Solutions February 15, 014 1. The coordinates of three vertices of a parallelogram are A(1, 1), B(, 4), and C( 5, 1). Compute the area of the parallelogram. Answer: 18 Solution: Note

More information

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 1 Triangles: Basics This section will cover all the basic properties you need to know about triangles and the important points of a triangle.

More information

ON TWO SPECIAL POINTS IN TRIANGLE

ON TWO SPECIAL POINTS IN TRIANGLE ON TWO SPEIL POINTS IN TRINGLE KPIL PUSE 1. Introduction Today we will learn about two intriguing special points in triangle that seem to have many interesting properties. You will see many examples where

More information

SMT Power Round Solutions : Poles and Polars

SMT Power Round Solutions : Poles and Polars SMT Power Round Solutions : Poles and Polars February 18, 011 1 Definition and Basic Properties 1 Note that the unit circles are not necessary in the solutions. They just make the graphs look nicer. (1).0

More information

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIV GEOMETRIL OLYMPI IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (L.Shteingarts, grade 8) Three circles lie inside a square. Each of them touches externally two remaining circles. lso

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 21 Example 11: Three congruent circles in a circle. The three small circles are congruent.

More information

The Lemniscate of Bernoulli, without Formulas

The Lemniscate of Bernoulli, without Formulas The Lemniscate of ernoulli, without Formulas rseniy V. kopyan ariv:1003.3078v [math.h] 4 May 014 bstract In this paper, we give purely geometrical proofs of the well-known properties of the lemniscate

More information

The Isogonal Tripolar Conic

The Isogonal Tripolar Conic Forum Geometricorum Volume 1 (2001) 33 42. FORUM GEOM The Isogonal Tripolar onic yril F. Parry bstract. In trilinear coordinates with respect to a given triangle, we define the isogonal tripolar of a point

More information

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC.

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC. hapter 2 The laws of sines and cosines 2.1 The law of sines Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle. 2R = a sin α = b sin β = c sin γ. α O O α as Since the area of a

More information

Three Natural Homoteties of The Nine-Point Circle

Three Natural Homoteties of The Nine-Point Circle Forum Geometricorum Volume 13 (2013) 209 218. FRUM GEM ISS 1534-1178 Three atural omoteties of The ine-point ircle Mehmet Efe kengin, Zeyd Yusuf Köroğlu, and Yiğit Yargiç bstract. Given a triangle with

More information

Statistics. To find the increasing cumulative frequency, we start with the first

Statistics. To find the increasing cumulative frequency, we start with the first Statistics Relative frequency = frequency total Relative frequency in% = freq total x100 To find the increasing cumulative frequency, we start with the first frequency the same, then add the frequency

More information

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c =

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = Q1. If (1, 2) lies on the circle x 2 + y 2 + 2gx + 2fy + c = 0 which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = a) 11 b) -13 c) 24 d) 100 Solution: Any circle concentric with x 2 +

More information

LAMC Intermediate I March 8, Oleg Gleizer. Theorem 1 Any two inscribed angles subtending the same arc on a circle are congruent.

LAMC Intermediate I March 8, Oleg Gleizer. Theorem 1 Any two inscribed angles subtending the same arc on a circle are congruent. LAMC Intermediate I March 8, 2015 Oleg Gleizer prof1140g@math.ucla.edu Theorem 1 Any two inscribed angles subtending the same arc on a circle are congruent. α = β α O β Problem 1 Prove Theorem 1. 1 Theorem

More information

Circles EOC Assessment 15%

Circles EOC Assessment 15% MGSE9-12.G.C.1 1. Which of the following is false about circles? A. All circles are similar but not necessarily congruent. B. All circles have a common ratio of 3.14 C. If a circle is dilated with a scale

More information

Steiner s porism and Feuerbach s theorem

Steiner s porism and Feuerbach s theorem hapter 10 Steiner s porism and Feuerbach s theorem 10.1 Euler s formula Lemma 10.1. f the bisector of angle intersects the circumcircle at M, then M is the center of the circle through,,, and a. M a Proof.

More information

Geometry JWR. Monday September 29, 2003

Geometry JWR. Monday September 29, 2003 Geometry JWR Monday September 29, 2003 1 Foundations In this section we see how to view geometry as algebra. The ideas here should be familiar to the reader who has learned some analytic geometry (including

More information

Gergonne Meets Sangaku

Gergonne Meets Sangaku Forum Geometricorum Volume 17 (2017) 143 148. FORUM GEOM ISSN 1534-1178 Gergonne Meets Sangaku Paris Pamfilos bstract. In this article we discuss the relation of some hyperbolas, naturally associated with

More information

Harmonic quadrangle in isotropic plane

Harmonic quadrangle in isotropic plane Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (018) 4: 666 678 c TÜBİTAK doi:10.3906/mat-1607-35 Harmonic quadrangle in isotropic plane Ema JURKIN

More information

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 8) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 The incircle The internal angle bisectors of a triangle are concurrent at the incenter

More information

Plane geometry Circles: Problems with some Solutions

Plane geometry Circles: Problems with some Solutions The University of Western ustralia SHL F MTHMTIS & STTISTIS UW MY FR YUNG MTHMTIINS Plane geometry ircles: Problems with some Solutions 1. Prove that for any triangle, the perpendicular bisectors of the

More information

How Pivotal Isocubics Intersect the Circumcircle

How Pivotal Isocubics Intersect the Circumcircle Forum Geometricorum Volume 7 (2007) 211 229. FORUM GEOM ISSN 1534-1178 How Pivotal Isocubics Intersect the ircumcircle ernard Gibert bstract. Given the pivotal isocubic K = pk(ω, P), we seek its common

More information

Theorem on altitudes and the Jacobi identity

Theorem on altitudes and the Jacobi identity Theorem on altitudes and the Jacobi identity A. Zaslavskiy and M. Skopenkov Solutions. First let us give a table containing the answers to all the problems: Algebraic object Geometric sense A apointa a

More information

Geometry Problem booklet

Geometry Problem booklet Geometry Problem booklet Assoc. Prof. Cornel Pintea E-mail: cpintea math.ubbcluj.ro Contents 1 Week 1: Vector algebra 1 1.1 Brief theoretical background. Free vectors..................... 1 1.1.1 Operations

More information

r-inscribable quadrilaterals

r-inscribable quadrilaterals Osječki matematički list 8(2008), 83 92 83 STUDENTSKA RUBRIKA r-inscribable quadrilaterals Maria Flavia Mammana Abstract. In this paper we characterize convex quadrilaterals that are inscribable in a rectangle,

More information

Practice Problems in Geometry

Practice Problems in Geometry Practice Problems in Geometry Navneel Singhal August 12, 2016 Abstract The problems here are not sorted in order of difficulty because sometimes after seeing the source of the problem, people get intimidated.

More information

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 29) Paul Yiu Department of Mathematics Florida tlantic University c a Summer 2014 1 The Pythagorean Theorem Theorem (Pythagoras). The lengths a

More information

Common Core Readiness Assessment 3

Common Core Readiness Assessment 3 Common Core Readiness ssessment 3 1. B 3. Find the value of x. D E 2y24 y15 C y13 2x If you know that DE y C, and that D and E are midpoints, which of the following justifies that C 5 2DE? Triangle Midsegment

More information

Singapore International Mathematical Olympiad Training Problems

Singapore International Mathematical Olympiad Training Problems Singapore International athematical Olympiad Training Problems 18 January 2003 1 Let be a point on the segment Squares D and EF are erected on the same side of with F lying on The circumcircles of D and

More information

Heptagonal Triangles and Their Companions

Heptagonal Triangles and Their Companions Forum Geometricorum Volume 9 (009) 15 148. FRUM GEM ISSN 1534-1178 Heptagonal Triangles and Their ompanions Paul Yiu bstract. heptagonal triangle is a non-isosceles triangle formed by three vertices of

More information

Collinearity/Concurrence

Collinearity/Concurrence Collinearity/Concurrence Ray Li (rayyli@stanford.edu) June 29, 2017 1 Introduction/Facts you should know 1. (Cevian Triangle) Let ABC be a triangle and P be a point. Let lines AP, BP, CP meet lines BC,

More information

Inversion. Contents. 1 General Properties. 1 General Properties Problems Solutions... 3

Inversion. Contents. 1 General Properties. 1 General Properties Problems Solutions... 3 c 007 The Author(s) and The IMO Compendium Group Contents Inversion Dušan Djukić 1 General Properties................................... 1 Problems........................................ 3 Solutions........................................

More information

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks.

y hsn.uk.net Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. Straight Line Paper 1 Section Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of a?.

More information

Triangle Centers. Maria Nogin. (based on joint work with Larry Cusick)

Triangle Centers. Maria Nogin. (based on joint work with Larry Cusick) Triangle enters Maria Nogin (based on joint work with Larry usick) Undergraduate Mathematics Seminar alifornia State University, Fresno September 1, 2017 Outline Triangle enters Well-known centers enter

More information

arxiv: v1 [math.ho] 10 Feb 2018

arxiv: v1 [math.ho] 10 Feb 2018 RETIVE GEOMETRY LEXNDER SKUTIN arxiv:1802.03543v1 [math.ho] 10 Feb 2018 1. Introduction This work is a continuation of [1]. s in the previous article, here we will describe some interesting ideas and a

More information

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :,

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :, Geometry A. Right Triangle Legs of a right triangle : a, b Hypotenuse : c Altitude : h Medians : m a, m b, m c Angles :, Radius of circumscribed circle : R Radius of inscribed circle : r Area : S 1. +

More information

MA 460 Supplement: Analytic geometry

MA 460 Supplement: Analytic geometry M 460 Supplement: nalytic geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus.

More information

VECTOR NAME OF THE CHAPTER. By, Srinivasamurthy s.v. Lecturer in mathematics. K.P.C.L.P.U.College. jogfalls PART-B TWO MARKS QUESTIONS

VECTOR NAME OF THE CHAPTER. By, Srinivasamurthy s.v. Lecturer in mathematics. K.P.C.L.P.U.College. jogfalls PART-B TWO MARKS QUESTIONS NAME OF THE CHAPTER VECTOR PART-A ONE MARKS PART-B TWO MARKS PART-C FIVE MARKS PART-D SIX OR FOUR MARKS PART-E TWO OR FOUR 1 1 1 1 1 16 TOTAL MARKS ALLOTED APPROXIMATELY By, Srinivasamurthy s.v Lecturer

More information

Hagge circles revisited

Hagge circles revisited agge circles revisited Nguyen Van Linh 24/12/2011 bstract In 1907, Karl agge wrote an article on the construction of circles that always pass through the orthocenter of a given triangle. The purpose of

More information

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words.

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words. Standard 1: Algebra and Functions Students graph linear inequalities in two variables and quadratics. They model data with linear equations. IM2.1.1 Graph a linear inequality in two variables. IM2.1.2

More information

Y. D. Chai and Young Soo Lee

Y. D. Chai and Young Soo Lee Honam Mathematical J. 34 (01), No. 1, pp. 103 111 http://dx.doi.org/10.5831/hmj.01.34.1.103 LOWER BOUND OF LENGTH OF TRIANGLE INSCRIBED IN A CIRCLE ON NON-EUCLIDEAN SPACES Y. D. Chai and Young Soo Lee

More information

Congruence. Chapter The Three Points Theorem

Congruence. Chapter The Three Points Theorem Chapter 2 Congruence In this chapter we use isometries to study congruence. We shall prove the Fundamental Theorem of Transformational Plane Geometry, which states that two plane figures are congruent

More information

Notes on Barycentric Homogeneous Coordinates

Notes on Barycentric Homogeneous Coordinates Notes on arycentric Homogeneous oordinates Wong Yan Loi ontents 1 arycentric Homogeneous oordinates 2 2 Lines 3 3 rea 5 4 Distances 5 5 ircles I 8 6 ircles II 10 7 Worked Examples 14 8 Exercises 20 9 Hints

More information

CIRCLES. ii) P lies in the circle S = 0 s 11 = 0

CIRCLES. ii) P lies in the circle S = 0 s 11 = 0 CIRCLES 1 The set of points in a plane which are at a constant distance r ( 0) from a given point C is called a circle The fixed point C is called the centre and the constant distance r is called the radius

More information

On Tripolars and Parabolas

On Tripolars and Parabolas Forum Geometricorum Volume 12 (2012) 287 300. FORUM GEOM ISSN 1534-1178 On Tripolars and Parabolas Paris Pamfilos bstract. Starting with an analysis of the configuration of chords of contact points with

More information

Isotomic Inscribed Triangles and Their Residuals

Isotomic Inscribed Triangles and Their Residuals Forum Geometricorum Volume 3 (2003) 125 134. FORUM GEOM ISSN 1534-1178 Isotomic Inscribed Triangles and Their Residuals Mario Dalcín bstract. We prove some interesting results on inscribed triangles which

More information

ON THE GERGONNE AND NAGEL POINTS FOR A HYPERBOLIC TRIANGLE

ON THE GERGONNE AND NAGEL POINTS FOR A HYPERBOLIC TRIANGLE INTERNATIONAL JOURNAL OF GEOMETRY Vol 6 07 No - ON THE GERGONNE AND NAGEL POINTS FOR A HYPERBOLIC TRIANGLE PAUL ABLAGA Abstract In this note we prove the existence of the analogous points of the Gergonne

More information

MA 460 Supplement on Analytic Geometry

MA 460 Supplement on Analytic Geometry M 460 Supplement on nalytic Geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus.

More information

right angle an angle whose measure is exactly 90ᴼ

right angle an angle whose measure is exactly 90ᴼ right angle an angle whose measure is exactly 90ᴼ m B = 90ᴼ B two angles that share a common ray A D C B Vertical Angles A D C B E two angles that are opposite of each other and share a common vertex two

More information

Homework Assignments Math /02 Fall 2014

Homework Assignments Math /02 Fall 2014 Homework Assignments Math 119-01/02 Fall 2014 Assignment 1 Due date : Friday, September 5 6th Edition Problem Set Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14,

More information

The Cevian Simson Transformation

The Cevian Simson Transformation Forum Geometricorum Volume 14 (2014 191 200. FORUM GEOM ISSN 1534-1178 The evian Simson Transformation Bernard Gibert Abstract. We study a transformation whose origin lies in the relation between concurrent

More information

LAMC Intermediate I & II March 1, Oleg Gleizer. A natural unit of measuring angles, a radian

LAMC Intermediate I & II March 1, Oleg Gleizer. A natural unit of measuring angles, a radian LAMC Intermediate I & II March 1, 2015 Oleg Gleizer prof1140g@math.ucla.edu A natural unit of measuring angles, a radian Consider an angle and a circle such that the vertex of the angle is the center of

More information

9.7 Extension: Writing and Graphing the Equations

9.7 Extension: Writing and Graphing the Equations www.ck12.org Chapter 9. Circles 9.7 Extension: Writing and Graphing the Equations of Circles Learning Objectives Graph a circle. Find the equation of a circle in the coordinate plane. Find the radius and

More information

Alhazen s Hyperbolic Billiard Problem

Alhazen s Hyperbolic Billiard Problem Alhazen s Hyperbolic Billiard Problem Nathan Poirier and Michael McDaniel Aquinas College May 2011 Alhazen s billiard problem, rst posed in 150 BC, starts with a given circle and two points A and B inside.

More information

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these Q. If a, b, c are distinct positive real in H.P., then the value of the expression, b a b c + is equal to b a b c () (C) (D) 4 Q. In a triangle BC, (b + c) = a bc where is the circumradius of the triangle.

More information

Grade 11 Pre-Calculus Mathematics (1999) Grade 11 Pre-Calculus Mathematics (2009)

Grade 11 Pre-Calculus Mathematics (1999) Grade 11 Pre-Calculus Mathematics (2009) Use interval notation (A-1) Plot and describe data of quadratic form using appropriate scales (A-) Determine the following characteristics of a graph of a quadratic function: y a x p q Vertex Domain and

More information

PARABOLAS AND FAMILIES OF CONVEX QUADRANGLES

PARABOLAS AND FAMILIES OF CONVEX QUADRANGLES PROLS N FMILIS OF ONVX QURNGLS PRIS PMFILOS bstract. In this article we study some parabolas naturally associated with a generic convex quadrangle. It is shown that the quadrangle defines, through these

More information