MA 460 Supplement on Analytic Geometry

Size: px
Start display at page:

Download "MA 460 Supplement on Analytic Geometry"

Transcription

1 M 460 Supplement on nalytic Geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus. Here we revisit some parts of Euclidean geometry from this perspective. Notation: To avoid confusion, we label theorems by letters here. Numbered theorems refer to theorems in version 5 of McClure s notes. Given a pair of points and B, B may refer the line through these points, the line segment B, or the length of this line segment depending on the context which will be made clear. 1 Cartesian Coordinates We choose a point on the plane O called the origin, and draw two perpendicular lines call the x-axis and the y-axis. t the risk of sounding pedantic, we should also choose directions along these axes which tells us whether we are to the left or right of O along the x-axis, or above or below O along the y-axis. Given a point on the plane, we can construct a line through parallel to the y-axis. This line will meet the x-axis at a point, say P. We can measure the distance OP. The x-coordinate a 1 of is +OP if P is to the right of O, and OP if P is the left of O. We also construct a line Q parallel to the x-axis with Q on y-axis. The y-coordinate a 2 of is defined similarly as +OQ if Q is above O and OP otherwise. The quadrilateral P OQ is automatically a rectangle by Theorem. parallelogram with one right angle is a rectangle. Proof. You should check this yourself! (It s too easy to be a homework problem.) 1

2 y axis Q a 2 O a 1 P x axis The point is determined by the pair (a 1, a 2 ). Conversely, any pair of real numbers corresponds to a point in the plane by reversing this process. To summarize: Theorem B. There is a one to one correspondence between points on the plane and the set of pairs of real numbers denoted by R 2. We will simply regard a point as equal to the pair (a 1, a 2 ) of its coordinates. Note that O = (0, 0). The set of points where a 1 0 and a 2 0 is called the first quadrant. The remaining quadrants are where some or all these numbers are negative. Theorem C. Given two points = (a 1, a 2 ) and B = (b 1, b 2 ). 1. If a 1 = b 1, the distance from to B is b 2 a If a 2 = b 2, the distance from to B is b 1 a 1. Proof. We treat case 2. The line l through perpendicular to the y-axis contains B. By swicthing and B if necessary, we can assume that b 1 a 1, which means that B is to the right of on l. There are 3 cases: (a) and B are to the right of O, that is 0 a 1 b 1. (b) O is in between and B, that is a 1 0 b 1. (c) and B are to the left of O, that is a 1 b 1 0. In case (a), we have b 1 = BO = O + B = a 1 + B. Therefore B = b 1 a 1 = b 1 a 1 In case (b), B = O + BO = a 1 + b 1 = b 1 a 1 2

3 Finally, in case (c), b 1 = BO = O + B = a 1 + B. Therefore B = a 1 b 1 = b 1 a 1 a 1 b a 1 1 O B a 1 b 1 O B a b 1 1 b 1 B O Theorem D. The distance between = (a 1, a 2 ) and B = (b 1, b 2 ) is (b 1 a 1 ) 2 + (b 2 a 2 ) 2. Proof. Draw the right triangle BC, where C = (b 1, a 2 ). B By the previous theorem, C = b 1 a 1 and BC = b 2 a 2. Then by Pythagoreas theorem (theorem 9), so that B 2 = C 2 + BC 2 = (b 1 a 1 ) 2 + (b 2 a 2 ) 2 B = (b 1 a 1 ) 2 + (b 2 a 2 ) 2 C 2 Vector Sum We construct a geometric operation on points called the vector sum. (Incidentally, notions involving vectors evolved in the 19th century long after Descartes.) Given distinct points and B, we define + B as the vertex C of the parallelogram OCB. It is clear that this does not depend on the order, so that + B = B +. 3

4 C=+B B O Theorem E. If = (a 1, a 2 ) and B = (b 1, b 2 ) are distinct, then +B = (a 1 +b 1, a 2 +b 2 ). In other words, the coordinates of + B are the sum of the coordinates of and B. Proof. We treat the case where and B both lie in the first quadrant. Other cases will be considered in the homework. Let C = + B = (c 1, c 2 ), we have to show that c 1 = a 1 + b 1. By interchanging and B if necessary, we can assume that a 1 b 1. Consider the picture below. 4

5 H C B G O D E F x axis We assume that D, BE and CF are parallel to the y-axis. Therefore we have a 1 = OD, b 1 = OE and c 1 = OF. We also let G be the point on CF such that BG is parallel to the x-axis. Therefore BEF G is a parallelogram because the sides are parallel. It also follows that BGC = 90. Since D and the x-axis are perpendicular, we have that ( ) BGC = OD Since CBO is a parallelogram, theorem 11 implies that O = BC By BF5, we see that OD = OHF and also that OHF = BCG. Therefore ( ) OD = BCG 5

6 Since the sum of the angles of OD and BCG are both 180, we deduce from this together with (*) and (**) that OD = CBG. Therefore we may conclude from S (BF3) that OD and BCG are congruent. Thus BG = OD = a 1. Since BEF G is a parallelogram (in fact a rectangle), we deduce that EF = BG = a 1. Consequently The proof that c 2 = a 2 + b 2 is similar. c 1 = OF = OE + EF = b 1 + a 1 We can extend the sum operation to allow = B, by defining + = (2a 1, 2a 2 ) We also write this as 2. More generally, for any real number let t = (ta 1, ta 2 ) Theorem F. The distance from O to t is t O. If t 0, then t lies on the ray O. If t < 0, t lies on the line O on the opposite side from (i.e. not on the ray O). Proof. This will be left as homework. We define subtraction by B = + ( 1)B = (a 1 b 1, a 2 b 2 ) The geometric interpretation is explained by the picture below. B B B 6

7 3 Midpoints Theorem G. If = (a 1, a 2 ) and B = (b 1, b 2 ) are two distinct points, then M = ( 2 B = a1 + b 1, a ) 2 + b is the midpoint of B. Proof. We treat the case a 1 b 1 and a 2 b 2. Let M = (m 1, m 2 ) denote the midpoint of B and let C = (b 1, a 2 ), D = (m 1, a 2 ) and E = (b 1, m 2 ). B M E D Since MD and BC are both perpendicular to the x-axis, the x-axis forms a transversal such that the corresponding angles are the same. Therefore M D and BC are parallel. Therefore by theorem 17 of McClure s notes, D is the midpoint of C. Therefore m 1 a 1 = D = 1 2 (b 1 a 1 ) C and so m 1 = 1 2 (b 1 + a 1 ) Similarly, E is a midpoint of BC. Therefore m 2 a 2 = CE = 1 2 (b 2 a 2 ) and so m 2 = 1 2 (b 2 + a 2 ) Theorem H. If = (a 1, a 2 ), B = (b 1, b 2 ) and C = (c 1, c 2 ) are three distinct points, then C is on the line segment B if and only if C = (1 t) + tb, for some 0 t 1. Proof. We have to show that c 1 = (1 t)a 1 + tb 1 and c 2 = (1 t)a 2 + tb 2 for some 0 t 1. ssume for simplicity that a 1 b 1 and a 2 b 2. Let D = (b 1, a 2 ) and let E = (c 1, a 2 ) 7

8 B C E D Let t = E D 0 Since E is a part of D, E D so that t 1. By theorem D, E = c 1 a 1, CE = c 2 a 2 D = b 1 a 1, BD = b 2 a 2 The triangles BD and CE share the angle. We have CE = BD = 90. Therefore CE = 180 CE = 180 BD = BD It follows that BD and CE are similar, since they have equal angles. Therefore by BF4. By substitution, we obtain CE BD = E D = t c 1 a 1 b 1 a 1 = t By algebra, c 2 a 2 b 2 a 2 = t c 1 = a 1 + t(b 1 a 1 ) = (1 t)a 1 + tb 1 c 2 = a 2 + t(b 2 a 2 ) = (1 t)a 2 + tb 2 8

9 4 Centroid Recall that a median of triangle is a line joining a midpoint to the opposite vertex. Theorem I. If = (a 1, a 2 ), B = (b 1, b 2 ) and C = (c 1, c 2 ) are three distinct points, then G = B C lies on each of the medians of BC. In particular, the medians are concurrent Note that this gives a new proof of theorem 29. The formula shows that the centroid G coincides with the center of mass that you have learned about in other courses. Proof. Let M, N and P be the midpoints of BC, C and B respectively. By theorem G, M = 1 (B + C) 2 By algebra, G = M By theorem H, G lies on M. By a similar argument, we can see that G lies on BN and CP. Theorem J. If = (a 1, a 2 ), B = (b 1, b 2 ) and C = (c 1, c 2 ) be the vertices of a triangle, then D lies inside BC if and only if D = r + sb + tc where 0 < r < 1, 0 < s < 1 and 0 < t < 1 and r + s + t = 1. Proof. Homework. Given a quadrilateral BCD, we can define its centroid as B C D We will leave it for homework to discover what this means geometrically. 5 Dot Products We start with a converse to Pythagoreas theorem. Theorem K. Given a triangle with sides labeled a, b, c. If c 2 = a 2 + b 2, then the triangle is a right triangle with c its hypotenuse. 9

10 Proof. Let 1 be the angle opposite c. There are three cases 1 < 90, 1 > 90 and 1 = 90. It suffices to prove that the first two cases are impossible if c 2 = a 2 + b 2. We treat only the first in detail. Draw in the altitude from the angle opposite b. Let h be the height. The side b is divided into two nonzero parts b = d + e as pictured. a h c 1 By Pythagoreas theorem d e a 2 = d 2 + h 2 c 2 = e 2 + h 2 Since 1 < 90, we must have d 0. Therefore d 2 > 0. dding h 2 to both sides and using the first equation implies a 2 > h 2 Since b > e, we have dding these two inequalities yields which contradicts c 2 = a 2 + b 2. b 2 > e 2 a 2 + b 2 > c 2 We define the dot product of two points by (a 1, a 2 ) (b 1, b 2 ) = a 1 b 1 + a 2 b 2 Theorem L. Let, B, C, D be points, and t be a number. Then 1. B = B. 2. t( B) = (t) B = (tb) 3. ( + B) (C + D) = C + D + B C + B D. 4. ( B) ( B) equals B 2 (the length of B squared). 10

11 Proof. The proof of the first three formulas is straight forward algebra. For the last item, we have ( B) ( B) = (a 1 b 1, a 2 b 2 ) (a 1 b 1, a 2 b 2 ) = (a 1 b 1 ) 2 + (a 2 b 2 ) 2 This is B 2 by theorem D. Theorem M. B = 0 if and only if O and BO are perpendicular. Proof. Consider the triangle OB. By the previous theorem, O 2 =, BO 2 = B B and B 2 = ( B) ( B) = B B + B B Therefore ( ) B 2 = O 2 + BO 2 2 B If OB = 90, then Pythagoreas theorem implies B 2 = O 2 + BO 2 When combined with ( ) this forces B = 0. Conversely, if B = 0. Then ( ) implies Therefore, by theorem K, OB = 90. By an similar argument, we get B 2 = O 2 + BO 2 Theorem N. ( C) (B C) = 0 if and only if CB = Circumcenter We can now give a proof of theorem 24 of McClure s notes using analytic geometry. In order to reduce the complexity of the proof, we start with a preliminary and somewhat technical result called a lemma. Lemma 1. Let D, E and X be three distinct points, and let Q be the midpoint of DE. Then XQ is a perpendicular bisector of DE if and only if 2X (E D) = E E D D Proof. By theorem N, XQ is perpendicular to DE if and only if or equivalently if and only if (X Q) (E Q) = 0 ( ) X (E Q) = Q (E Q) 11

12 Since Q is a midpoint, Q = 1 2 D E by theorem G. Substituting this into the left and right side of (*) gives X (E Q) = 1 X (E D) 2 and Q (E Q) = 1 4 (E + D) (E D) = 1 (E E D D) 4 Substituting these into (*) yields or 1 2 X (E D) = 1 (E E D D) 4 2X (E D) = E E D D Theorem O. The perpendicular bisectors of the sides of a triangle BC are concurrent. Proof. Let M, N, P be the midpoints of B, C and BC respectively. Let X be the intersection of the perpendicular bisectors of B and C. Then by lemma 1, and Subtracting these equations yields which simplifies to 2X (B ) = B B 2X (C ) = C C 2X (C ) 2X (B ) = C C B B + 2X (C B) = C C B B Lemma 1 will then imply that X lies on the perpendicular bisector of BC as required. 12

MA 460 Supplement: Analytic geometry

MA 460 Supplement: Analytic geometry M 460 Supplement: nalytic geometry Donu rapura In the 1600 s Descartes introduced cartesian coordinates which changed the way we now do geometry. This also paved for subsequent developments such as calculus.

More information

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q.

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH Algebra Section : - Introduction to Vectors. You may have already met the notion of a vector in physics. There you will have

More information

MATH 243 Winter 2008 Geometry II: Transformation Geometry Solutions to Problem Set 1 Completion Date: Monday January 21, 2008

MATH 243 Winter 2008 Geometry II: Transformation Geometry Solutions to Problem Set 1 Completion Date: Monday January 21, 2008 MTH 4 Winter 008 Geometry II: Transformation Geometry Solutions to Problem Set 1 ompletion Date: Monday January 1, 008 Department of Mathematical Statistical Sciences University of lberta Question 1. Let

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2005-02-16) Logic Rules (Greenberg): Logic Rule 1 Allowable justifications.

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Quiz #1. Tuesday, 17 January, 2012. [10 minutes] 1. Given a line segment AB, use (some of) Postulates I V,

More information

UNIT 1 VECTORS INTRODUCTION 1.1 OBJECTIVES. Stucture

UNIT 1 VECTORS INTRODUCTION 1.1 OBJECTIVES. Stucture UNIT 1 VECTORS 1 Stucture 1.0 Introduction 1.1 Objectives 1.2 Vectors and Scalars 1.3 Components of a Vector 1.4 Section Formula 1.5 nswers to Check Your Progress 1.6 Summary 1.0 INTRODUCTION In this unit,

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Undefined Terms: Point, Line, Incident, Between, Congruent. Incidence Axioms:

More information

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Mathematics Revision Guides Vectors Page of 9 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier VECTORS Version:.4 Date: 05-0-05 Mathematics Revision Guides Vectors Page of 9 VECTORS

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2009-03-26) Logic Rule 0 No unstated assumptions may be used in a proof.

More information

RMT 2013 Geometry Test Solutions February 2, = 51.

RMT 2013 Geometry Test Solutions February 2, = 51. RMT 0 Geometry Test Solutions February, 0. Answer: 5 Solution: Let m A = x and m B = y. Note that we have two pairs of isosceles triangles, so m A = m ACD and m B = m BCD. Since m ACD + m BCD = m ACB,

More information

TOPIC 4 Line and Angle Relationships. Good Luck To. DIRECTIONS: Answer each question and show all work in the space provided.

TOPIC 4 Line and Angle Relationships. Good Luck To. DIRECTIONS: Answer each question and show all work in the space provided. Good Luck To Period Date DIRECTIONS: Answer each question and show all work in the space provided. 1. Name a pair of corresponding angles. 1 3 2 4 5 6 7 8 A. 1 and 4 C. 2 and 7 B. 1 and 5 D. 2 and 4 2.

More information

Midterm Review Packet. Geometry: Midterm Multiple Choice Practice

Midterm Review Packet. Geometry: Midterm Multiple Choice Practice : Midterm Multiple Choice Practice 1. In the diagram below, a square is graphed in the coordinate plane. A reflection over which line does not carry the square onto itself? (1) (2) (3) (4) 2. A sequence

More information

Berkeley Math Circle, May

Berkeley Math Circle, May Berkeley Math Circle, May 1-7 2000 COMPLEX NUMBERS IN GEOMETRY ZVEZDELINA STANKOVA FRENKEL, MILLS COLLEGE 1. Let O be a point in the plane of ABC. Points A 1, B 1, C 1 are the images of A, B, C under symmetry

More information

Geometry JWR. Monday September 29, 2003

Geometry JWR. Monday September 29, 2003 Geometry JWR Monday September 29, 2003 1 Foundations In this section we see how to view geometry as algebra. The ideas here should be familiar to the reader who has learned some analytic geometry (including

More information

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true?

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true? 0809ge 1 Based on the diagram below, which statement is true? 3 In the diagram of ABC below, AB AC. The measure of B is 40. 1) a b ) a c 3) b c 4) d e What is the measure of A? 1) 40 ) 50 3) 70 4) 100

More information

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch Cairo Governorate Department : Maths Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Sheet Ismailia Road Branch Sheet ( 1) 1-Complete 1. in the parallelogram, each two opposite

More information

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours

Sample Question Paper Mathematics First Term (SA - I) Class IX. Time: 3 to 3 ½ hours Sample Question Paper Mathematics First Term (SA - I) Class IX Time: 3 to 3 ½ hours M.M.:90 General Instructions (i) All questions are compulsory. (ii) The question paper consists of 34 questions divided

More information

0114ge. Geometry Regents Exam 0114

0114ge. Geometry Regents Exam 0114 0114ge 1 The midpoint of AB is M(4, 2). If the coordinates of A are (6, 4), what are the coordinates of B? 1) (1, 3) 2) (2, 8) 3) (5, 1) 4) (14, 0) 2 Which diagram shows the construction of a 45 angle?

More information

Homework Assignments Math /02 Fall 2017

Homework Assignments Math /02 Fall 2017 Homework Assignments Math 119-01/02 Fall 2017 Assignment 1 Due date : Wednesday, August 30 Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14, 16, 17, 18, 20, 22,

More information

Downloaded from

Downloaded from Triangles 1.In ABC right angled at C, AD is median. Then AB 2 = AC 2 - AD 2 AD 2 - AC 2 3AC 2-4AD 2 (D) 4AD 2-3AC 2 2.Which of the following statement is true? Any two right triangles are similar

More information

1/19 Warm Up Fast answers!

1/19 Warm Up Fast answers! 1/19 Warm Up Fast answers! The altitudes are concurrent at the? Orthocenter The medians are concurrent at the? Centroid The perpendicular bisectors are concurrent at the? Circumcenter The angle bisectors

More information

right angle an angle whose measure is exactly 90ᴼ

right angle an angle whose measure is exactly 90ᴼ right angle an angle whose measure is exactly 90ᴼ m B = 90ᴼ B two angles that share a common ray A D C B Vertical Angles A D C B E two angles that are opposite of each other and share a common vertex two

More information

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

INVERSION IN THE PLANE BERKELEY MATH CIRCLE INVERSION IN THE PLANE BERKELEY MATH CIRCLE ZVEZDELINA STANKOVA MILLS COLLEGE/UC BERKELEY SEPTEMBER 26TH 2004 Contents 1. Definition of Inversion in the Plane 1 Properties of Inversion 2 Problems 2 2.

More information

0113ge. Geometry Regents Exam In the diagram below, under which transformation is A B C the image of ABC?

0113ge. Geometry Regents Exam In the diagram below, under which transformation is A B C the image of ABC? 0113ge 1 If MNP VWX and PM is the shortest side of MNP, what is the shortest side of VWX? 1) XV ) WX 3) VW 4) NP 4 In the diagram below, under which transformation is A B C the image of ABC? In circle

More information

Culminating Review for Vectors

Culminating Review for Vectors Culminating Review for Vectors 0011 0010 1010 1101 0001 0100 1011 An Introduction to Vectors Applications of Vectors Equations of Lines and Planes 4 12 Relationships between Points, Lines and Planes An

More information

Nozha Directorate of Education Form : 2 nd Prep

Nozha Directorate of Education Form : 2 nd Prep Cairo Governorate Department : Maths Nozha Directorate of Education Form : 2 nd Prep Nozha Language Schools Geometry Revision Sheet Ismailia Road Branch Sheet ( 1) 1-Complete 1. In the parallelogram, each

More information

TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE. 1. Introduction

TOPICS IN GEOMETRY: THE GEOMETRY OF THE EUCLIDEAN PLANE. 1. Introduction TOPIS IN GEOMETRY: THE GEOMETRY OF THE EULIEN PLNE TUGHT Y PIOTR PRZYTYKI. NOTES Y YLN NT. Note. These course notes are based on a course taught by Piotr Przytycki at McGill University in the fall of 2016.

More information

Exercises for Unit I I I (Basic Euclidean concepts and theorems)

Exercises for Unit I I I (Basic Euclidean concepts and theorems) Exercises for Unit I I I (Basic Euclidean concepts and theorems) Default assumption: All points, etc. are assumed to lie in R 2 or R 3. I I I. : Perpendicular lines and planes Supplementary background

More information

Geometry Honors Review for Midterm Exam

Geometry Honors Review for Midterm Exam Geometry Honors Review for Midterm Exam Format of Midterm Exam: Scantron Sheet: Always/Sometimes/Never and Multiple Choice 40 Questions @ 1 point each = 40 pts. Free Response: Show all work and write answers

More information

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems To locate a point in a plane, two numbers are necessary. We know that any point in the plane can be represented as an ordered pair (a, b) of real numbers, where a is the x-coordinate and b is the y-coordinate.

More information

Vectors - Applications to Problem Solving

Vectors - Applications to Problem Solving BERKELEY MATH CIRCLE 00-003 Vectors - Applications to Problem Solving Zvezdelina Stankova Mills College& UC Berkeley 1. Well-known Facts (1) Let A 1 and B 1 be the midpoints of the sides BC and AC of ABC.

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Quiz #1. Wednesday, 13 September. [10 minutes] 1. Suppose you are given a line (segment) AB. Using

More information

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle. 6 CHAPTER We are Starting from a Point but want to Make it a Circle of Infinite Radius A plane figure bounded by three line segments is called a triangle We denote a triangle by the symbol In fig ABC has

More information

PRACTICE QUESTIONS CLASS IX: CHAPTER 4 LINEAR EQUATION IN TWO VARIABLES

PRACTICE QUESTIONS CLASS IX: CHAPTER 4 LINEAR EQUATION IN TWO VARIABLES PRACTICE QUESTIONS CLASS IX: CHAPTER 4 LINEAR EQUATION IN TWO VARIABLES 1. Find the value of k, if x =, y = 1 is a solution of the equation x + 3y = k.. Find the points where the graph of the equation

More information

Vectors. 1 Basic Definitions. Liming Pang

Vectors. 1 Basic Definitions. Liming Pang Vectors Liming Pang 1 Basic Definitions Definition 1. A vector in a line/plane/space is a quantity which has both magnitude and direction. The magnitude is a nonnegative real number and the direction is

More information

Name: Class: Date: 5. If the diagonals of a rhombus have lengths 6 and 8, then the perimeter of the rhombus is 28. a. True b.

Name: Class: Date: 5. If the diagonals of a rhombus have lengths 6 and 8, then the perimeter of the rhombus is 28. a. True b. Indicate whether the statement is true or false. 1. If the diagonals of a quadrilateral are perpendicular, the quadrilateral must be a square. 2. If M and N are midpoints of sides and of, then. 3. The

More information

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions CHAPTER 7 TRIANGLES (A) Main Concepts and Results Triangles and their parts, Congruence of triangles, Congruence and correspondence of vertices, Criteria for Congruence of triangles: (i) SAS (ii) ASA (iii)

More information

Homework Assignments Math /02 Fall 2014

Homework Assignments Math /02 Fall 2014 Homework Assignments Math 119-01/02 Fall 2014 Assignment 1 Due date : Friday, September 5 6th Edition Problem Set Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14,

More information

Examples: Identify three pairs of parallel segments in the diagram. 1. AB 2. BC 3. AC. Write an equation to model this theorem based on the figure.

Examples: Identify three pairs of parallel segments in the diagram. 1. AB 2. BC 3. AC. Write an equation to model this theorem based on the figure. 5.1: Midsegments of Triangles NOTE: Midsegments are also to the third side in the triangle. Example: Identify the 3 midsegments in the diagram. Examples: Identify three pairs of parallel segments in the

More information

Chapter 1 Coordinates, points and lines

Chapter 1 Coordinates, points and lines Cambridge Universit Press 978--36-6000-7 Cambridge International AS and A Level Mathematics: Pure Mathematics Coursebook Hugh Neill, Douglas Quadling, Julian Gilbe Ecerpt Chapter Coordinates, points and

More information

CONCURRENT LINES- PROPERTIES RELATED TO A TRIANGLE THEOREM The medians of a triangle are concurrent. Proof: Let A(x 1, y 1 ), B(x, y ), C(x 3, y 3 ) be the vertices of the triangle A(x 1, y 1 ) F E B(x,

More information

4 Arithmetic of Segments Hilbert s Road from Geometry

4 Arithmetic of Segments Hilbert s Road from Geometry 4 Arithmetic of Segments Hilbert s Road from Geometry to Algebra In this section, we explain Hilbert s procedure to construct an arithmetic of segments, also called Streckenrechnung. Hilbert constructs

More information

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in Chapter - 10 (Circle) Key Concept * Circle - circle is locus of such points which are at equidistant from a fixed point in a plane. * Concentric circle - Circle having same centre called concentric circle.

More information

21. Prove that If one side of the cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

21. Prove that If one side of the cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle. 21. Prove that If one side of the cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle. 22. Prove that If two sides of a cyclic quadrilateral are parallel, then

More information

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors.

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. Vectors summary Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. AB is the position vector of B relative to A and is the vector

More information

16 circles. what goes around...

16 circles. what goes around... 16 circles. what goes around... 2 lesson 16 this is the first of two lessons dealing with circles. this lesson gives some basic definitions and some elementary theorems, the most important of which is

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

MAT1035 Analytic Geometry

MAT1035 Analytic Geometry MAT1035 Analytic Geometry Lecture Notes R.A. Sabri Kaan Gürbüzer Dokuz Eylül University 2016 2 Contents 1 Review of Trigonometry 5 2 Polar Coordinates 7 3 Vectors in R n 9 3.1 Located Vectors..............................................

More information

1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case

1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case Math 3181 Dr. Franz Rothe December 25, 2012 Name: 1 Solution of Final Figure 1: Dissection proof of the Pythagorean theorem in a special case 10 Problem 1. Given is a right triangle ABC with angle α =

More information

Hyperbolic Analytic Geometry

Hyperbolic Analytic Geometry Chapter 6 Hyperbolic Analytic Geometry 6.1 Saccheri Quadrilaterals Recall the results on Saccheri quadrilaterals from Chapter 4. Let S be a convex quadrilateral in which two adjacent angles are right angles.

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

Par-hexagons M.J.Crabb, J.Duncan, C.M.McGregor

Par-hexagons M.J.Crabb, J.Duncan, C.M.McGregor Par-hexagons M.J.rabb, J.uncan,.M.McGregor onvex quadrilaterals with their opposite sides parallel have been very well understood for a long time. The situation for convex polygons with more than four

More information

5-1 Practice Form K. Midsegments of Triangles. Identify three pairs of parallel segments in the diagram.

5-1 Practice Form K. Midsegments of Triangles. Identify three pairs of parallel segments in the diagram. 5-1 Practice Form K Midsegments of Triangles Identify three pairs of parallel segments in the diagram. 1. 2. 3. Name the segment that is parallel to the given segment. 4. MN 5. ON 6. AB 7. CB 8. OM 9.

More information

0610ge. Geometry Regents Exam The diagram below shows a right pentagonal prism.

0610ge. Geometry Regents Exam The diagram below shows a right pentagonal prism. 0610ge 1 In the diagram below of circle O, chord AB chord CD, and chord CD chord EF. 3 The diagram below shows a right pentagonal prism. Which statement must be true? 1) CE DF 2) AC DF 3) AC CE 4) EF CD

More information

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0 Q.No. The bisector of the acute angle between the lines x - 4y + 7 = 0 and x + 5y - = 0, is: Option x + y - 9 = 0 Option x + 77y - 0 = 0 Option x - y + 9 = 0 Correct Answer L : x - 4y + 7 = 0 L :-x- 5y

More information

Geometry Note Cards EXAMPLE:

Geometry Note Cards EXAMPLE: Geometry Note Cards EXAMPLE: Lined Side Word and Explanation Blank Side Picture with Statements Sections 12-4 through 12-5 1) Theorem 12-3 (p. 790) 2) Theorem 12-14 (p. 790) 3) Theorem 12-15 (p. 793) 4)

More information

Name: Period: Date: Given: is the bisector of Draw JD and DL such that it makes triangle DJL. Then answer the question. a. 17 b. 73 c. 118 d.

Name: Period: Date: Given: is the bisector of Draw JD and DL such that it makes triangle DJL. Then answer the question. a. 17 b. 73 c. 118 d. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which statement is not necessarily true? Name: Given: is the bisector of Draw JD and DL such that it makes

More information

MT - w A.P. SET CODE MT - w - MATHEMATICS (71) GEOMETRY- SET - A (E) Time : 2 Hours Preliminary Model Answer Paper Max.

MT - w A.P. SET CODE MT - w - MATHEMATICS (71) GEOMETRY- SET - A (E) Time : 2 Hours Preliminary Model Answer Paper Max. .P. SET CODE.. Solve NY FIVE of the following : (i) ( BE) ( BD) ( BE) ( BD) BE D 6 9 MT - w 07 00 - MT - w - MTHEMTICS (7) GEOMETRY- (E) Time : Hours Preliminary Model nswer Paper Max. Marks : 40 [Triangles

More information

SOLUTIONS SECTION A [1] = 27(27 15)(27 25)(27 14) = 27(12)(2)(13) = cm. = s(s a)(s b)(s c)

SOLUTIONS SECTION A [1] = 27(27 15)(27 25)(27 14) = 27(12)(2)(13) = cm. = s(s a)(s b)(s c) 1. (A) 1 1 1 11 1 + 6 6 5 30 5 5 5 5 6 = 6 6 SOLUTIONS SECTION A. (B) Let the angles be x and 3x respectively x+3x = 180 o (sum of angles on same side of transversal is 180 o ) x=36 0 So, larger angle=3x

More information

2005 Palm Harbor February Invitational Geometry Answer Key

2005 Palm Harbor February Invitational Geometry Answer Key 005 Palm Harbor February Invitational Geometry Answer Key Individual 1. B. D. C. D 5. C 6. D 7. B 8. B 9. A 10. E 11. D 1. C 1. D 1. C 15. B 16. B 17. E 18. D 19. C 0. C 1. D. C. C. A 5. C 6. C 7. A 8.

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C. hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a + b = c. roof. b a a 3 b b 4 b a b 4 1 a a 3

More information

Chapter 1. Theorems of Ceva and Menelaus

Chapter 1. Theorems of Ceva and Menelaus hapter 1 Theorems of eva and Menelaus We start these lectures by proving some of the most basic theorems in the geometry of a planar triangle. Let,, be the vertices of the triangle and,, be any points

More information

Unit 1: Introduction to Proof

Unit 1: Introduction to Proof Unit 1: Introduction to Proof Prove geometric theorems both formally and informally using a variety of methods. G.CO.9 Prove and apply theorems about lines and angles. Theorems include but are not restricted

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1) Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

Course Notes for MA 460. Version 5.

Course Notes for MA 460. Version 5. ourse Notes for M 460. Version 5. Jim Mclure 1 Definitions and asic Facts. The goal of this course is to help you become expert in geometry, so that you can teach it with confidence and pleasure. We begin

More information

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle?

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle? 1 For all problems, NOTA stands for None of the Above. 1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle? (A) 40 (B) 60 (C) 80 (D) Cannot be determined

More information

Geometry: Introduction, Circle Geometry (Grade 12)

Geometry: Introduction, Circle Geometry (Grade 12) OpenStax-CNX module: m39327 1 Geometry: Introduction, Circle Geometry (Grade 12) Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

LOCUS. Definition: The set of all points (and only those points) which satisfy the given geometrical condition(s) (or properties) is called a locus.

LOCUS. Definition: The set of all points (and only those points) which satisfy the given geometrical condition(s) (or properties) is called a locus. LOCUS Definition: The set of all points (and only those points) which satisfy the given geometrical condition(s) (or properties) is called a locus. Eg. The set of points in a plane which are at a constant

More information

Integrated Math 3 Math 3 Course Description:

Integrated Math 3 Math 3 Course Description: Course Description: Integrated Math 3 Math 3 Course Description: Integrated strands include algebra, functions, geometry, trigonometry, statistics, probability and discrete math. Scope and sequence includes

More information

Concurrency and Collinearity

Concurrency and Collinearity Concurrency and Collinearity Victoria Krakovna vkrakovna@gmail.com 1 Elementary Tools Here are some tips for concurrency and collinearity questions: 1. You can often restate a concurrency question as a

More information

CLASS IX GEOMETRY MOCK TEST PAPER

CLASS IX GEOMETRY MOCK TEST PAPER Total time:3hrs darsha vidyalay hunashyal P. M.M=80 STION- 10 1=10 1) Name the point in a triangle that touches all sides of given triangle. Write its symbol of representation. 2) Where is thocenter of

More information

Subject: General Mathematics

Subject: General Mathematics Subject: General Mathematics Written By Or Composed By:Sarfraz Talib Chapter No.1 Matrix A rectangular array of number arranged into rows and columns is called matrix OR The combination of rows and columns

More information

Use this space for computations. 1 In trapezoid RSTV below with bases RS and VT, diagonals RT and SV intersect at Q.

Use this space for computations. 1 In trapezoid RSTV below with bases RS and VT, diagonals RT and SV intersect at Q. Part I Answer all 28 questions in this part. Each correct answer will receive 2 credits. For each statement or question, choose the word or expression that, of those given, best completes the statement

More information

Solutions and scoring for 1st Midterm Exam Geometry 515 Fall Oct 2 Mon 4:00-5:20 pm

Solutions and scoring for 1st Midterm Exam Geometry 515 Fall Oct 2 Mon 4:00-5:20 pm Solutions and scoring for 1st Midterm Exam Geometry 515 Fall 2017 Oct 2 Mon 4:00-5:20 pm 1. On the line AB you have the point O between the points A and B (i.e. rays OA and OB form a straight angle AOB).

More information

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC.

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC. hapter 2 The laws of sines and cosines 2.1 The law of sines Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle. 2R = a sin α = b sin β = c sin γ. α O O α as Since the area of a

More information

Comments about Chapter 3 of the Math 5335 (Geometry I) text Joel Roberts November 5, 2003; revised October 18, 2004

Comments about Chapter 3 of the Math 5335 (Geometry I) text Joel Roberts November 5, 2003; revised October 18, 2004 Comments about Chapter 3 of the Math 5335 (Geometry I) text Joel Roberts November 5, 2003; revised October 18, 2004 Contents: Heron's formula (Theorem 8 in 3.5). 3.4: Another proof of Theorem 6. 3.7: The

More information

10. Circles. Q 5 O is the centre of a circle of radius 5 cm. OP AB and OQ CD, AB CD, AB = 6 cm and CD = 8 cm. Determine PQ. Marks (2) Marks (2)

10. Circles. Q 5 O is the centre of a circle of radius 5 cm. OP AB and OQ CD, AB CD, AB = 6 cm and CD = 8 cm. Determine PQ. Marks (2) Marks (2) 10. Circles Q 1 True or False: It is possible to draw two circles passing through three given non-collinear points. Mark (1) Q 2 State the following statement as true or false. Give reasons also.the perpendicular

More information

Triangles. 3.In the following fig. AB = AC and BD = DC, then ADC = (A) 60 (B) 120 (C) 90 (D) none 4.In the Fig. given below, find Z.

Triangles. 3.In the following fig. AB = AC and BD = DC, then ADC = (A) 60 (B) 120 (C) 90 (D) none 4.In the Fig. given below, find Z. Triangles 1.Two sides of a triangle are 7 cm and 10 cm. Which of the following length can be the length of the third side? (A) 19 cm. (B) 17 cm. (C) 23 cm. of these. 2.Can 80, 75 and 20 form a triangle?

More information

8. Quadrilaterals. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.

8. Quadrilaterals. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ. 8. Quadrilaterals Q 1 Name a quadrilateral whose each pair of opposite sides is equal. Mark (1) Q 2 What is the sum of two consecutive angles in a parallelogram? Mark (1) Q 3 The angles of quadrilateral

More information

MAT 3271: Selected solutions to problem set 7

MAT 3271: Selected solutions to problem set 7 MT 3271: Selected solutions to problem set 7 Chapter 3, Exercises: 16. Consider the Real ffine Plane (that is what the text means by the usual Euclidean model ), which is a model of incidence geometry.

More information

SUMMATIVE ASSESSMENT I, IX / Class IX

SUMMATIVE ASSESSMENT I, IX / Class IX I, 0 SUMMATIVE ASSESSMENT I, 0 0 MATHEMATICS / MATHEMATICS MATHEMATICS CLASS CLASS - IX - IX IX / Class IX MA-0 90 Time allowed : hours Maximum Marks : 90 (i) (ii) 8 6 0 0 (iii) 8 (iv) (v) General Instructions:

More information

1.4 Midpoints and Bisectors

1.4 Midpoints and Bisectors www.ck12.org Chapter 1. Basics of Geometry 1.4 Midpoints and Bisectors Learning Objectives Identify the midpoint of line segments. Identify the bisector of a line segment. Understand and the Angle Bisector

More information

Math 1230, Notes 2. Aug. 28, Math 1230, Notes 2 Aug. 28, / 17

Math 1230, Notes 2. Aug. 28, Math 1230, Notes 2 Aug. 28, / 17 Math 1230, Notes 2 Aug. 28, 2014 Math 1230, Notes 2 Aug. 28, 2014 1 / 17 This fills in some material between pages 10 and 11 of notes 1. We first discuss the relation between geometry and the quadratic

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

Vectors Practice [296 marks]

Vectors Practice [296 marks] Vectors Practice [96 marks] The diagram shows quadrilateral ABCD with vertices A(, ), B(, 5), C(5, ) and D(4, ) a 4 Show that AC = ( ) Find BD (iii) Show that AC is perpendicular to BD The line (AC) has

More information

0611ge. Geometry Regents Exam Line segment AB is shown in the diagram below.

0611ge. Geometry Regents Exam Line segment AB is shown in the diagram below. 0611ge 1 Line segment AB is shown in the diagram below. In the diagram below, A B C is a transformation of ABC, and A B C is a transformation of A B C. Which two sets of construction marks, labeled I,

More information

0811ge. Geometry Regents Exam

0811ge. Geometry Regents Exam 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 ) 8 3) 3 4) 6 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 Here are the solutions to the additional exercises in betsepexercises.pdf. B1. Let y and z be distinct points of L; we claim that x, y and z are not

More information

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT CLASS-IX MATHEMATICS For Pre-Foundation Course CAREER POINT CONTENTS S. No. CHAPTERS PAGE NO. 0. Number System... 0 3 0. Polynomials... 39 53 03. Co-ordinate Geometry... 54 04. Introduction to Euclid's

More information

CMA Geometry Unit 1 Introduction Week 2 Notes

CMA Geometry Unit 1 Introduction Week 2 Notes CMA Geometry Unit 1 Introduction Week 2 Notes Assignment: 9. Defined Terms: Definitions betweenness of points collinear points coplanar points space bisector of a segment length of a segment line segment

More information

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB.

2. In ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 26, find AB. 2009 FGCU Mathematics Competition. Geometry Individual Test 1. You want to prove that the perpendicular bisector of the base of an isosceles triangle is also the angle bisector of the vertex. Which postulate/theorem

More information

Class 6 Geometry. Answer the questions. For more such worksheets visit (1) If AB and DE are parallel, find the value of ACB.

Class 6 Geometry. Answer the questions. For more such worksheets visit   (1) If AB and DE are parallel, find the value of ACB. ID : in-6-geometry [1] Class 6 Geometry For more such worksheets visit www.edugain.com Answer the questions (1) If AB and DE are parallel, find the value of ACB. (2) If AB and DE are parallel to each other,

More information

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10.

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10. 0811ge 1 The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to 1) 9 2) 8 3) 3 4) 6 2 In the diagram below, ABC XYZ. 4 Pentagon PQRST has PQ parallel to TS. After a translation

More information

1 st Preparatory. Part (1)

1 st Preparatory. Part (1) Part (1) (1) omplete: 1) The square is a rectangle in which. 2) in a parallelogram in which m ( ) = 60, then m ( ) =. 3) The sum of measures of the angles of the quadrilateral equals. 4) The ray drawn

More information

Geometry 21 - More Midterm Practice

Geometry 21 - More Midterm Practice Class: Date: Geometry 21 - More Midterm Practice 1. What are the names of three planes that contain point A? 6. If T is the midpoint of SU, what are ST, TU, and SU? A. ST = 7, TU = 63, and SU = 126 B.

More information

7.5 Proportionality Relationships

7.5 Proportionality Relationships www.ck12.org Chapter 7. Similarity 7.5 Proportionality Relationships Learning Objectives Identify proportional segments when two sides of a triangle are cut by a segment parallel to the third side. Extend

More information

Class 9 Quadrilaterals

Class 9 Quadrilaterals ID : in-9-quadrilaterals [1] Class 9 Quadrilaterals For more such worksheets visit www.edugain.com Answer t he quest ions (1) The diameter of circumcircle of a rectangle is 13 cm and rectangle's width

More information

Exercise. and 13x. We know that, sum of angles of a quadrilateral = x = 360 x = (Common in both triangles) and AC = BD

Exercise. and 13x. We know that, sum of angles of a quadrilateral = x = 360 x = (Common in both triangles) and AC = BD 9 Exercise 9.1 Question 1. The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral. Solution Given, the ratio of the angles of quadrilateral are 3 : 5 : 9

More information