1

Size: px
Start display at page:

Download "1"

Transcription

1 i

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15 14

16 15

17 16

18 17

19 18

20 19

21 20

22 21

23 22

24 23

25 24

26 Foreign Liabilities/ Dependen Variabel Rasio Foreign Liabilities Total Debt (1) (2) Konstanta 0.216*** 0.219*** Ekspor/Total Sales Rasio Foreign Asset 0.538*** 1.785*** R-squared N Estimator FE FE Haussman Test

27 26

28 Variabel Dependen Rasio Ekuitas Konstanta FA*Nilai Tukar *** NFA (-1) *** Nilai Tukar (-1) *** Rasio Derivatif (-1) DL (-1) *** R-Squared N Estimator Hausman Test FE Dependen Variabel Rasio Net Income Rasio EBIT Rasio Operating Rasio Interest Expenditures Coverage (1) (2) (3) (4) Konstanta *** 0.65*** *** Rasio Transaksi Derivatif Rasio EBIT Rasio Ekspor Rasio Foreign Asset *** *** 0.563*** Rasio Foreign Liabilities *** 1.125*** -1.01*** * Rasio Liabilities *** *** 2.214*** Rasio Sales *** *** Changes GM 0.511** R-squared N Estimator FE FE FE RE Haussman Test

29 28

30 Variabel Level 1 st Difference CVAR * DERIVATIF_TOT * FORWARD_TOT * SWAP_TOT ** OPTION_TOT * DER_KORP * FORWARD_KORP * SWAP_KORP * OPTION_KORP * 29

31 30

32 31

33 32

34 33

35 34

36 35

37 . xtreg rfrli rexs rfras, fe Fixed-effects (within) regression Number of obs = 890 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 5 between = avg = 7.0 overall = max = 7 F(2,760) = 8.19 corr(u_i, Xb) = Prob > F = rfrli Coef. Std. Err. t P> t [95% Conf. Interval] rexs rfras _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 760) = 6.37 Prob > F = estimates store fixed. xtreg rfrli rexs rfras, re Random-effects GLS regression Number of obs = 890 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 5 between = avg = 7.0 overall = max = 7 Random effects u_i ~ Gaussian Wald chi2(2) = corr(u_i, X) = 0 (assumed) Prob > chi2 = rfrli Coef. Std. Err. z P> z [95% Conf. Interval] rexs rfras _cons sigma_u sigma_e rho (fraction of variance due to u_i). estimates store random. hausman fixed random Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rexs rfras b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 =

38 . xtreg rfrtl rexs rfras, fe Fixed-effects (within) regression Number of obs = 890 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 5 between = avg = 7.0 overall = max = 7 F(2,760) = corr(u_i, Xb) = Prob > F = rfrtl Coef. Std. Err. t P> t [95% Conf. Interval] rexs rfras _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 760) = 9.96 Prob > F = estimates store fixed. xtreg rfrtl rexs rfras, re Random-effects GLS regression Number of obs = 890 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 5 between = avg = 7.0 overall = max = 7 Random effects u_i ~ Gaussian Wald chi2(2) = corr(u_i, X) = 0 (assumed) Prob > chi2 = rfrtl Coef. Std. Err. z P> z [95% Conf. Interval] rexs rfras _cons sigma_u sigma_e rho (fraction of variance due to u_i). estimates store random. hausman fixed random Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rexs rfras b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 =

39 . xtreg rderb rexs rdfras rdfrli, fe Fixed-effects (within) regression Number of obs = 758 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 F(3,627) = corr(u_i, Xb) = Prob > F = rderb Coef. Std. Err. t P> t [95% Conf. Interval] rexs rdfras rdfrli _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 627) = 0.96 Prob > F = estimates store fixed. xtreg rderb rexs rdfras rdfrli, re Random-effects GLS regression Number of obs = 758 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 Random effects u_i ~ Gaussian Wald chi2(3) = corr(u_i, X) = 0 (assumed) Prob > chi2 = rderb Coef. Std. Err. z P> z [95% Conf. Interval] rexs rdfras rdfrli _cons sigma_u 0 sigma_e rho 0 (fraction of variance due to u_i). estimates store random. hausman fixed random Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rexs rdfras rdfrli b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(3) = (b-b)'[(v_b-v_b)^(-1)](b-b) = 0.20 Prob>chi2 =

40 . xtreg rderj rexs rdfras rdfrli, fe Fixed-effects (within) regression Number of obs = 758 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 F(3,627) = corr(u_i, Xb) = Prob > F = rderj Coef. Std. Err. t P> t [95% Conf. Interval] rexs rdfras rdfrli _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 627) = 0.96 Prob > F = estimates store fixed. xtreg rderj rexs rdfras rdfrli, re Random-effects GLS regression Number of obs = 758 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 Random effects u_i ~ Gaussian Wald chi2(3) = corr(u_i, X) = 0 (assumed) Prob > chi2 = rderj Coef. Std. Err. z P> z [95% Conf. Interval] rexs rdfras rdfrli _cons sigma_u 0 sigma_e rho 0 (fraction of variance due to u_i). estimates store random. hausman fixed random Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rexs rdfras rdfrli b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(3) = (b-b)'[(v_b-v_b)^(-1)](b-b) = 0.19 Prob>chi2 =

41 Fixed-effects (within) regression Number of obs = 756 Group variable: id Number of groups = 126 R-sq: within = Obs per group: min = 6 between = avg = 6.0 overall = max = 6 F(6,624) = corr(u_i, Xb) = Prob > F = req Coef. Std. Err. t P> t [95% Conf. Interval] rnfadkurs L rnfa L dkurs L netkumderd~s L dli L rwc _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(125, 624) = 2.01 Prob > F =

42 . xtreg rni rdert rexs rfrli rfras rli rsa, fe Fixed-effects (within) regression Number of obs = 761 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 F(6,627) = corr(u_i, Xb) = Prob > F = rni Coef. Std. Err. t P> t [95% Conf. Interval] rdert 3.19e rexs rfrli rfras rlia rsa _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 627) = 3.74 Prob > F = estimates store fixed. xtreg rni rdert rexs rfrli rfras rli rsa, re Random-effects GLS regression Number of obs = 761 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 Random effects u_i ~ Gaussian Wald chi2(6) = corr(u_i, X) = 0 (assumed) Prob > chi2 = rni Coef. Std. Err. z P> z [95% Conf. Interval] rdert 4.00e rexs rfrli rfras rlia rsa _cons sigma_u sigma_e rho (fraction of variance due to u_i). estimates store random. hausman fixed random Note: the rank of the differenced variance matrix (5) does not equal the number of coefficients being tested (6); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rdert 3.19e e e-07. rexs rfrli rfras rlia rsa b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(5) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 = (V_b-V_B is not positive definite) 41

43 . xtreg rebit rdert rexs rfrli rfras rli rsa, fe Fixed-effects (within) regression Number of obs = 761 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 F(6,627) = corr(u_i, Xb) = Prob > F = rebit Coef. Std. Err. t P> t [95% Conf. Interval] rdert 5.42e rexs rfrli rfras rlia rsa _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 627) = 4.24 Prob > F = estimates store fixed. xtreg rebit rdert rexs rfrli rfras rli rsa, re Random-effects GLS regression Number of obs = 761 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 Random effects u_i ~ Gaussian Wald chi2(6) = corr(u_i, X) = 0 (assumed) Prob > chi2 = rebit Coef. Std. Err. z P> z [95% Conf. Interval] rdert 4.88e rexs rfrli rfras rlia rsa _cons sigma_u sigma_e rho (fraction of variance due to u_i). estimates store random. hausman fixed random Note: the rank of the differenced variance matrix (5) does not equal the number of coefficients being tested (6); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rdert 5.42e e e-06. rexs rfrli rfras rlia rsa b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(5) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 = (V_b-V_B is not positive definite) 42

44 . xtreg ropx rdert rexs rfrli rfras rli rsa, fe Fixed-effects (within) regression Number of obs = 761 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 F(6,627) = corr(u_i, Xb) = Prob > F = ropx Coef. Std. Err. t P> t [95% Conf. Interval] rdert -1.16e rexs rfrli rfras rlia rsa _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(127, 627) = 5.15 Prob > F = estimates store fixed. xtreg ropx rdert rexs rfrli rfras rli rsa, re Random-effects GLS regression Number of obs = 761 Group variable: id Number of groups = 128 R-sq: within = Obs per group: min = 4 between = avg = 5.9 overall = max = 6 Random effects u_i ~ Gaussian Wald chi2(6) = corr(u_i, X) = 0 (assumed) Prob > chi2 = ropx Coef. Std. Err. z P> z [95% Conf. Interval] rdert -2.76e rexs rfrli rfras rlia rsa _cons sigma_u sigma_e rho (fraction of variance due to u_i). estimates store random. hausman fixed random Note: the rank of the differenced variance matrix (5) does not equal the number of coefficients being tested (6); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. Coefficients (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. rdert -1.16e e e-06. rexs rfrli rfras rlia rsa b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(5) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 = (V_b-V_B is not positive definite) 43

45 44

46 45

47 46

48 47

49 48

50 49

51 50

52 51

53 52

54 53

55 54

56 55

57 56

58 57

59 58

60 59

61 60

62 61

Fixed and Random Effects Models: Vartanian, SW 683

Fixed and Random Effects Models: Vartanian, SW 683 : Vartanian, SW 683 Fixed and random effects models See: http://teaching.sociology.ul.ie/dcw/confront/node45.html When you have repeated observations per individual this is a problem and an advantage:

More information

Problem Set 10: Panel Data

Problem Set 10: Panel Data Problem Set 10: Panel Data 1. Read in the data set, e11panel1.dta from the course website. This contains data on a sample or 1252 men and women who were asked about their hourly wage in two years, 2005

More information

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page!

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Econometrics - Exam May 11, 2011 1 Exam Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Problem 1: (15 points) A researcher has data for the year 2000 from

More information

point estimates, standard errors, testing, and inference for nonlinear combinations

point estimates, standard errors, testing, and inference for nonlinear combinations Title xtreg postestimation Postestimation tools for xtreg Description The following postestimation commands are of special interest after xtreg: command description xttest0 Breusch and Pagan LM test for

More information

Lecture 3 Linear random intercept models

Lecture 3 Linear random intercept models Lecture 3 Linear random intercept models Example: Weight of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ) The response is measures at n different times, or under

More information

Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions

Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions QUESTION 1 Data for this exercise can be prepared by running the do-file called preparedo posted on my webpage This do-file collects

More information

Exercices for Applied Econometrics A

Exercices for Applied Econometrics A QEM F. Gardes-C. Starzec-M.A. Diaye Exercices for Applied Econometrics A I. Exercice: The panel of households expenditures in Poland, for years 1997 to 2000, gives the following statistics for the whole

More information

Econometrics Homework 4 Solutions

Econometrics Homework 4 Solutions Econometrics Homework 4 Solutions Computer Question (Optional, no need to hand in) (a) c i may capture some state-specific factor that contributes to higher or low rate of accident or fatality. For example,

More information

****Lab 4, Feb 4: EDA and OLS and WLS

****Lab 4, Feb 4: EDA and OLS and WLS ****Lab 4, Feb 4: EDA and OLS and WLS ------- log: C:\Documents and Settings\Default\Desktop\LDA\Data\cows_Lab4.log log type: text opened on: 4 Feb 2004, 09:26:19. use use "Z:\LDA\DataLDA\cowsP.dta", clear.

More information

Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgment References Also see

Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgment References Also see Title stata.com hausman Hausman specification test Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgment References Also see Description hausman

More information

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

4 Instrumental Variables Single endogenous variable One continuous instrument. 2 Econ 495 - Econometric Review 1 Contents 4 Instrumental Variables 2 4.1 Single endogenous variable One continuous instrument. 2 4.2 Single endogenous variable more than one continuous instrument..........................

More information

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser Simultaneous Equations with Error Components Mike Bronner Marko Ledic Anja Breitwieser PRESENTATION OUTLINE Part I: - Simultaneous equation models: overview - Empirical example Part II: - Hausman and Taylor

More information

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

4 Instrumental Variables Single endogenous variable One continuous instrument. 2 Econ 495 - Econometric Review 1 Contents 4 Instrumental Variables 2 4.1 Single endogenous variable One continuous instrument. 2 4.2 Single endogenous variable more than one continuous instrument..........................

More information

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models Applied Econometrics Lecture 3: Introduction to Linear Panel Data Models Måns Söderbom 4 September 2009 Department of Economics, Universy of Gothenburg. Email: mans.soderbom@economics.gu.se. Web: www.economics.gu.se/soderbom,

More information

Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h.

Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h. Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h. This is an open book examination where all printed and written resources, in addition to a calculator, are allowed. If you are

More information

Problem Set 5 ANSWERS

Problem Set 5 ANSWERS Economics 20 Problem Set 5 ANSWERS Prof. Patricia M. Anderson 1, 2 and 3 Suppose that Vermont has passed a law requiring employers to provide 6 months of paid maternity leave. You are concerned that women

More information

Econometrics. 8) Instrumental variables

Econometrics. 8) Instrumental variables 30C00200 Econometrics 8) Instrumental variables Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Thery of IV regression Overidentification Two-stage least squates

More information

Эконометрика, , 4 модуль Семинар Для Группы Э_Б2015_Э_3 Семинарист О.А.Демидова

Эконометрика, , 4 модуль Семинар Для Группы Э_Б2015_Э_3 Семинарист О.А.Демидова Эконометрика, 2017-2018, 4 модуль Семинар 3 160418 Для Группы Э_Б2015_Э_3 Семинарист ОАДемидова * Stata program * copyright C 2010 by A Colin Cameron and Pravin K Trivedi * used for "Microeconometrics

More information

Fortin Econ Econometric Review 1. 1 Panel Data Methods Fixed Effects Dummy Variables Regression... 7

Fortin Econ Econometric Review 1. 1 Panel Data Methods Fixed Effects Dummy Variables Regression... 7 Fortin Econ 495 - Econometric Review 1 Contents 1 Panel Data Methods 2 1.1 Fixed Effects......................... 2 1.1.1 Dummy Variables Regression............ 7 1.1.2 First Differencing Methods.............

More information

Panel Data: Very Brief Overview Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015

Panel Data: Very Brief Overview Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 Panel Data: Very Brief Overview Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 These notes borrow very heavily, often verbatim, from Paul Allison

More information

Quantitative Methods Final Exam (2017/1)

Quantitative Methods Final Exam (2017/1) Quantitative Methods Final Exam (2017/1) 1. Please write down your name and student ID number. 2. Calculator is allowed during the exam, but DO NOT use a smartphone. 3. List your answers (together with

More information

Monday 7 th Febraury 2005

Monday 7 th Febraury 2005 Monday 7 th Febraury 2 Analysis of Pigs data Data: Body weights of 48 pigs at 9 successive follow-up visits. This is an equally spaced data. It is always a good habit to reshape the data, so we can easily

More information

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points EEP 118 / IAS 118 Elisabeth Sadoulet and Kelly Jones University of California at Berkeley Fall 2008 Introductory Applied Econometrics Final examination Scores add up to 125 points Your name: SID: 1 1.

More information

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M.

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M. CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M. Wooldridge Michigan State University 1. Introduction 2. Linear

More information

1 The basics of panel data

1 The basics of panel data Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Related materials: Steven Buck Notes to accompany fixed effects material 4-16-14 ˆ Wooldridge 5e, Ch. 1.3: The Structure of Economic Data ˆ Wooldridge

More information

multilevel modeling: concepts, applications and interpretations

multilevel modeling: concepts, applications and interpretations multilevel modeling: concepts, applications and interpretations lynne c. messer 27 october 2010 warning social and reproductive / perinatal epidemiologist concepts why context matters multilevel models

More information

xtdpdqml: Quasi-maximum likelihood estimation of linear dynamic short-t panel data models

xtdpdqml: Quasi-maximum likelihood estimation of linear dynamic short-t panel data models xtdpdqml: Quasi-maximum likelihood estimation of linear dynamic short-t panel data models Sebastian Kripfganz University of Exeter Business School, Department of Economics, Exeter, UK UK Stata Users Group

More information

ECON 497 Final Exam Page 1 of 12

ECON 497 Final Exam Page 1 of 12 ECON 497 Final Exam Page of 2 ECON 497: Economic Research and Forecasting Name: Spring 2008 Bellas Final Exam Return this exam to me by 4:00 on Wednesday, April 23. It may be e-mailed to me. It may be

More information

Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes

Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes Lecture 2.1 Basic Linear LDA 1 Outline Linear OLS Models vs: Linear Marginal Models Linear Conditional Models Random Intercepts Random Intercepts & Slopes Cond l & Marginal Connections Empirical Bayes

More information

Jeffrey M. Wooldridge Michigan State University

Jeffrey M. Wooldridge Michigan State University Fractional Response Models with Endogenous Explanatory Variables and Heterogeneity Jeffrey M. Wooldridge Michigan State University 1. Introduction 2. Fractional Probit with Heteroskedasticity 3. Fractional

More information

Dynamic Panel Data Models

Dynamic Panel Data Models Models Amjad Naveed, Nora Prean, Alexander Rabas 15th June 2011 Motivation Many economic issues are dynamic by nature. These dynamic relationships are characterized by the presence of a lagged dependent

More information

Longitudinal Data Analysis. RatSWD Nachwuchsworkshop Vorlesung von Josef Brüderl 25. August, 2009

Longitudinal Data Analysis. RatSWD Nachwuchsworkshop Vorlesung von Josef Brüderl 25. August, 2009 Longitudinal Data Analysis RatSWD Nachwuchsworkshop Vorlesung von Josef Brüderl 25. August, 2009 Longitudinal Data Analysis Traditional definition Statistical methods for analyzing data with a time dimension

More information

Empirical Application of Panel Data Regression

Empirical Application of Panel Data Regression Empirical Application of Panel Data Regression 1. We use Fatality data, and we are interested in whether rising beer tax rate can help lower traffic death. So the dependent variable is traffic death, while

More information

Confidence intervals for the variance component of random-effects linear models

Confidence intervals for the variance component of random-effects linear models The Stata Journal (2004) 4, Number 4, pp. 429 435 Confidence intervals for the variance component of random-effects linear models Matteo Bottai Arnold School of Public Health University of South Carolina

More information

Practice 2SLS with Artificial Data Part 1

Practice 2SLS with Artificial Data Part 1 Practice 2SLS with Artificial Data Part 1 Yona Rubinstein July 2016 Yona Rubinstein (LSE) Practice 2SLS with Artificial Data Part 1 07/16 1 / 16 Practice with Artificial Data In this note we use artificial

More information

Maria Elena Bontempi Roberto Golinelli this version: 5 September 2007

Maria Elena Bontempi Roberto Golinelli this version: 5 September 2007 INSTRUMENTAL VARIABLES (IV) ESTIMATION A Maria Elena Bontempi e.bontempi@economia.unife.it Roberto Golinelli roberto.golinelli@unibo.it this version: 5 September 2007 1. The instrumental variables approach

More information

INTRODUCTION TO BASIC LINEAR REGRESSION MODEL

INTRODUCTION TO BASIC LINEAR REGRESSION MODEL INTRODUCTION TO BASIC LINEAR REGRESSION MODEL 13 September 2011 Yogyakarta, Indonesia Cosimo Beverelli (World Trade Organization) 1 LINEAR REGRESSION MODEL In general, regression models estimate the effect

More information

STATA Commands for Unobserved Effects Panel Data

STATA Commands for Unobserved Effects Panel Data STATA Commands for Unobserved Effects Panel Data John C Frain 21st February 2005 Contents 1 Introduction 1 2 Estimation usingxtreg 9 3 Testing afterxtreg 13 4 Prediction after xtreg 15 5 Faster estimation

More information

Instrumental Variables, Simultaneous and Systems of Equations

Instrumental Variables, Simultaneous and Systems of Equations Chapter 6 Instrumental Variables, Simultaneous and Systems of Equations 61 Instrumental variables In the linear regression model y i = x iβ + ε i (61) we have been assuming that bf x i and ε i are uncorrelated

More information

Lecture 3.1 Basic Logistic LDA

Lecture 3.1 Basic Logistic LDA y Lecture.1 Basic Logistic LDA 0.2.4.6.8 1 Outline Quick Refresher on Ordinary Logistic Regression and Stata Women s employment example Cross-Over Trial LDA Example -100-50 0 50 100 -- Longitudinal Data

More information

Problem Set #3-Key. wage Coef. Std. Err. t P> t [95% Conf. Interval]

Problem Set #3-Key. wage Coef. Std. Err. t P> t [95% Conf. Interval] Problem Set #3-Key Sonoma State University Economics 317- Introduction to Econometrics Dr. Cuellar 1. Use the data set Wage1.dta to answer the following questions. a. For the regression model Wage i =

More information

Lecture#17. Time series III

Lecture#17. Time series III Lecture#17 Time series III 1 Dynamic causal effects Think of macroeconomic data. Difficult to think of an RCT. Substitute: different treatments to the same (observation unit) at different points in time.

More information

Advanced Topics in Maximum Likelihood Models for Panel and Time-Series Cross-Section Data 2009 ICPSR Summer Program

Advanced Topics in Maximum Likelihood Models for Panel and Time-Series Cross-Section Data 2009 ICPSR Summer Program Advanced Topics in Maximum Likelihood Models for Panel and Time-Series Cross-Section Data 2009 ICPSR Summer Program Gregory Wawro Associate Professor Department of Political Science Columbia University

More information

Advanced Topics in Maximum Likelihood Models for Panel and Time-Series Cross-Section Data 2006 ICPSR Summer Program

Advanced Topics in Maximum Likelihood Models for Panel and Time-Series Cross-Section Data 2006 ICPSR Summer Program Advanced Topics in Maximum Likelihood Models for Panel and Time-Series Cross-Section Data 2006 ICPSR Summer Program Gregory Wawro Associate Professor Department of Political Science Columbia University

More information

ERSA Training Workshop Lecture 5: Estimation of Binary Choice Models with Panel Data

ERSA Training Workshop Lecture 5: Estimation of Binary Choice Models with Panel Data ERSA Training Workshop Lecture 5: Estimation of Binary Choice Models with Panel Data Måns Söderbom Friday 16 January 2009 1 Introduction The methods discussed thus far in the course are well suited for

More information

Lab 07 Introduction to Econometrics

Lab 07 Introduction to Econometrics Lab 07 Introduction to Econometrics Learning outcomes for this lab: Introduce the different typologies of data and the econometric models that can be used Understand the rationale behind econometrics Understand

More information

8. Nonstandard standard error issues 8.1. The bias of robust standard errors

8. Nonstandard standard error issues 8.1. The bias of robust standard errors 8.1. The bias of robust standard errors Bias Robust standard errors are now easily obtained using e.g. Stata option robust Robust standard errors are preferable to normal standard errors when residuals

More information

Understanding the multinomial-poisson transformation

Understanding the multinomial-poisson transformation The Stata Journal (2004) 4, Number 3, pp. 265 273 Understanding the multinomial-poisson transformation Paulo Guimarães Medical University of South Carolina Abstract. There is a known connection between

More information

Lecture#12. Instrumental variables regression Causal parameters III

Lecture#12. Instrumental variables regression Causal parameters III Lecture#12 Instrumental variables regression Causal parameters III 1 Demand experiment, market data analysis & simultaneous causality 2 Simultaneous causality Your task is to estimate the demand function

More information

Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics

Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics C1.1 Use the data set Wage1.dta to answer the following questions. Estimate regression equation wage =

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Lecture 4: Generalized Linear Mixed Models

Lecture 4: Generalized Linear Mixed Models Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 11-12 December 2014 An example with one random effect An example with two nested random effects

More information

2.1. Consider the following production function, known in the literature as the transcendental production function (TPF).

2.1. Consider the following production function, known in the literature as the transcendental production function (TPF). CHAPTER Functional Forms of Regression Models.1. Consider the following production function, known in the literature as the transcendental production function (TPF). Q i B 1 L B i K i B 3 e B L B K 4 i

More information

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like.

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like. Measurement Error Often a data set will contain imperfect measures of the data we would ideally like. Aggregate Data: (GDP, Consumption, Investment are only best guesses of theoretical counterparts and

More information

Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p )

Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p ) Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p. 376-390) BIO656 2009 Goal: To see if a major health-care reform which took place in 1997 in Germany was

More information

Lab 11 - Heteroskedasticity

Lab 11 - Heteroskedasticity Lab 11 - Heteroskedasticity Spring 2017 Contents 1 Introduction 2 2 Heteroskedasticity 2 3 Addressing heteroskedasticity in Stata 3 4 Testing for heteroskedasticity 4 5 A simple example 5 1 1 Introduction

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 48 Serial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Panel Threshold Model

Panel Threshold Model Panel Threshold Model 黃河泉淡江大學財務金融系 June 5 7, 2016 Ho-Chuan (River) Huang 面板門檻模型 June 5 7, 2016 1 / 62 1 Linear Model 2 Threshold Model 3 Panel Threshold Model Single-Threshold Model Multiple-Threshold

More information

Econometrics Midterm Examination Answers

Econometrics Midterm Examination Answers Econometrics Midterm Examination Answers March 4, 204. Question (35 points) Answer the following short questions. (i) De ne what is an unbiased estimator. Show that X is an unbiased estimator for E(X i

More information

Interpreting coefficients for transformed variables

Interpreting coefficients for transformed variables Interpreting coefficients for transformed variables! Recall that when both independent and dependent variables are untransformed, an estimated coefficient represents the change in the dependent variable

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 54 erial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Using Stata for a memory saving fixed effects estimation of the three-way error component model

Using Stata for a memory saving fixed effects estimation of the three-way error component model Methodische Aspekte zu Arbeitsmarktdaten Nr. 3/2006 Using Stata for a memory saving fixed effects estimation of the three-way error component model Thomas Cornelißen Nr. 3/2006 Contents 1 Introduction...

More information

Editor Nicholas J. Cox Department of Geography Durham University South Road Durham City DH1 3LE UK

Editor Nicholas J. Cox Department of Geography Durham University South Road Durham City DH1 3LE UK The Stata Journal Editor H. Joseph Newton Department of Statistics Texas A & M University College Station, Texas 77843 979-845-3142; FAX 979-845-3144 jnewton@stata-journal.com Associate Editors Christopher

More information

Econ 836 Final Exam. 2 w N 2 u N 2. 2 v N

Econ 836 Final Exam. 2 w N 2 u N 2. 2 v N 1) [4 points] Let Econ 836 Final Exam Y Xβ+ ε, X w+ u, w N w~ N(, σi ), u N u~ N(, σi ), ε N ε~ Nu ( γσ, I ), where X is a just one column. Let denote the OLS estimator, and define residuals e as e Y X.

More information

Ecmt 675: Econometrics I

Ecmt 675: Econometrics I Ecmt 675: Econometrics I Assignment 7 Problem 1 a. reg hours lwage educ age kidslt6 kidsge6 nwifeinc, r Linear regression Number of obs = 428 F( 6, 421) = 3.93 Prob > F = 0.0008 R-squared = 0.0670 Root

More information

Lecture 8: Instrumental Variables Estimation

Lecture 8: Instrumental Variables Estimation Lecture Notes on Advanced Econometrics Lecture 8: Instrumental Variables Estimation Endogenous Variables Consider a population model: y α y + β + β x + β x +... + β x + u i i i i k ik i Takashi Yamano

More information

Handout 11: Measurement Error

Handout 11: Measurement Error Handout 11: Measurement Error In which you learn to recognise the consequences for OLS estimation whenever some of the variables you use are not measured as accurately as you might expect. A (potential)

More information

New Developments in Econometrics Lecture 11: Difference-in-Differences Estimation

New Developments in Econometrics Lecture 11: Difference-in-Differences Estimation New Developments in Econometrics Lecture 11: Difference-in-Differences Estimation Jeff Wooldridge Cemmap Lectures, UCL, June 2009 1. The Basic Methodology 2. How Should We View Uncertainty in DD Settings?

More information

Specification Error: Omitted and Extraneous Variables

Specification Error: Omitted and Extraneous Variables Specification Error: Omitted and Extraneous Variables Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 5, 05 Omitted variable bias. Suppose that the correct

More information

Multilevel Modeling (MLM) part 1. Robert Yu

Multilevel Modeling (MLM) part 1. Robert Yu Multilevel Modeling (MLM) part 1 Robert Yu a few words before the talk This is a report from attending a 2 day training course of Multilevel Modeling by Dr. Raykov Tenko, held on March 22 23, 2012, in

More information

. *DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(12,20,0) /*matrix of means of RHS vars: edu, exp, error*/

. *DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(12,20,0) /*matrix of means of RHS vars: edu, exp, error*/ . DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(,,) /matrix of means of RHS vars: edu, exp, error/. mat c=(5,-.6, \ -.6,9, \,,.) /covariance matrix of RHS vars /. mat l m /displays matrix of means / c c c3

More information

Homework Solutions Applied Logistic Regression

Homework Solutions Applied Logistic Regression Homework Solutions Applied Logistic Regression WEEK 6 Exercise 1 From the ICU data, use as the outcome variable vital status (STA) and CPR prior to ICU admission (CPR) as a covariate. (a) Demonstrate that

More information

Final Exam. 1. Definitions: Briefly Define each of the following terms as they relate to the material covered in class.

Final Exam. 1. Definitions: Briefly Define each of the following terms as they relate to the material covered in class. Name Answer Key Economics 170 Spring 2003 Honor pledge: I have neither given nor received aid on this exam including the preparation of my one page formula list and the preparation of the Stata assignment

More information

Problem set - Selection and Diff-in-Diff

Problem set - Selection and Diff-in-Diff Problem set - Selection and Diff-in-Diff 1. You want to model the wage equation for women You consider estimating the model: ln wage = α + β 1 educ + β 2 exper + β 3 exper 2 + ɛ (1) Read the data into

More information

An explanation of Two Stage Least Squares

An explanation of Two Stage Least Squares Introduction Introduction to Econometrics An explanation of Two Stage Least Squares When we get an endogenous variable we know that OLS estimator will be inconsistent. In addition OLS regressors will also

More information

Question 1 carries a weight of 25%; question 2 carries 25%; question 3 carries 20%; and question 4 carries 30%.

Question 1 carries a weight of 25%; question 2 carries 25%; question 3 carries 20%; and question 4 carries 30%. UNIVERSITY OF EAST ANGLIA School of Economics Main Series PGT Examination 2017-18 FINANCIAL ECONOMETRIC THEORY ECO-7024A Time allowed: 2 HOURS Answer ALL FOUR questions. Question 1 carries a weight of

More information

4/9/2014. Outline for Stochastic Frontier Analysis. Stochastic Frontier Production Function. Stochastic Frontier Production Function

4/9/2014. Outline for Stochastic Frontier Analysis. Stochastic Frontier Production Function. Stochastic Frontier Production Function Productivity Measurement Mini Course Stochastic Frontier Analysis Prof. Nicole Adler, Hebrew University Outline for Stochastic Frontier Analysis Stochastic Frontier Production Function Production function

More information

Final Exam. Question 1 (20 points) 2 (25 points) 3 (30 points) 4 (25 points) 5 (10 points) 6 (40 points) Total (150 points) Bonus question (10)

Final Exam. Question 1 (20 points) 2 (25 points) 3 (30 points) 4 (25 points) 5 (10 points) 6 (40 points) Total (150 points) Bonus question (10) Name Economics 170 Spring 2004 Honor pledge: I have neither given nor received aid on this exam including the preparation of my one page formula list and the preparation of the Stata assignment for the

More information

Dynamic Panels. Chapter Introduction Autoregressive Model

Dynamic Panels. Chapter Introduction Autoregressive Model Chapter 11 Dynamic Panels This chapter covers the econometrics methods to estimate dynamic panel data models, and presents examples in Stata to illustrate the use of these procedures. The topics in this

More information

Recent Developments in Multilevel Modeling

Recent Developments in Multilevel Modeling Recent Developments in Multilevel Modeling Roberto G. Gutierrez Director of Statistics StataCorp LP 2007 North American Stata Users Group Meeting, Boston R. Gutierrez (StataCorp) Multilevel Modeling August

More information

STATISTICS 110/201 PRACTICE FINAL EXAM

STATISTICS 110/201 PRACTICE FINAL EXAM STATISTICS 110/201 PRACTICE FINAL EXAM Questions 1 to 5: There is a downloadable Stata package that produces sequential sums of squares for regression. In other words, the SS is built up as each variable

More information

Lecture 5. In the last lecture, we covered. This lecture introduces you to

Lecture 5. In the last lecture, we covered. This lecture introduces you to Lecture 5 In the last lecture, we covered. homework 2. The linear regression model (4.) 3. Estimating the coefficients (4.2) This lecture introduces you to. Measures of Fit (4.3) 2. The Least Square Assumptions

More information

Section Least Squares Regression

Section Least Squares Regression Section 2.3 - Least Squares Regression Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Regression Correlation gives us a strength of a linear relationship is, but it doesn t tell us what it

More information

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation Michele Aquaro University of Warwick This version: July 21, 2016 1 / 31 Reading material Textbook: Introductory

More information

Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis

Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Problem 1. The files

More information

GMM Estimation in Stata

GMM Estimation in Stata GMM Estimation in Stata Econometrics I Department of Economics Universidad Carlos III de Madrid Master in Industrial Economics and Markets 1 Outline Motivation 1 Motivation 2 3 4 2 Motivation 3 Stata and

More information

ECON2228 Notes 7. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 41

ECON2228 Notes 7. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 41 ECON2228 Notes 7 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 6 2014 2015 1 / 41 Chapter 8: Heteroskedasticity In laying out the standard regression model, we made

More information

Analyzing spatial autoregressive models using Stata

Analyzing spatial autoregressive models using Stata Analyzing spatial autoregressive models using Stata David M. Drukker StataCorp Summer North American Stata Users Group meeting July 24-25, 2008 Part of joint work with Ingmar Prucha and Harry Kelejian

More information

Suggested Answers Problem set 4 ECON 60303

Suggested Answers Problem set 4 ECON 60303 Suggested Answers Problem set 4 ECON 60303 Bill Evans Spring 04. A program that answers part A) is on the web page and is named psid_iv_comparison.do. Below are some key results and a summary table is

More information

Econometrics II Censoring & Truncation. May 5, 2011

Econometrics II Censoring & Truncation. May 5, 2011 Econometrics II Censoring & Truncation Måns Söderbom May 5, 2011 1 Censored and Truncated Models Recall that a corner solution is an actual economic outcome, e.g. zero expenditure on health by a household

More information

Handout 12. Endogeneity & Simultaneous Equation Models

Handout 12. Endogeneity & Simultaneous Equation Models Handout 12. Endogeneity & Simultaneous Equation Models In which you learn about another potential source of endogeneity caused by the simultaneous determination of economic variables, and learn how to

More information

Spatial Regression Models: Identification strategy using STATA TATIANE MENEZES PIMES/UFPE

Spatial Regression Models: Identification strategy using STATA TATIANE MENEZES PIMES/UFPE Spatial Regression Models: Identification strategy using STATA TATIANE MENEZES PIMES/UFPE Intruduction Spatial regression models are usually intended to estimate parameters related to the interaction of

More information

sociology sociology Scatterplots Quantitative Research Methods: Introduction to correlation and regression Age vs Income

sociology sociology Scatterplots Quantitative Research Methods: Introduction to correlation and regression Age vs Income Scatterplots Quantitative Research Methods: Introduction to correlation and regression Scatterplots can be considered as interval/ratio analogue of cross-tabs: arbitrarily many values mapped out in -dimensions

More information

Graduate Econometrics Lecture 4: Heteroskedasticity

Graduate Econometrics Lecture 4: Heteroskedasticity Graduate Econometrics Lecture 4: Heteroskedasticity Department of Economics University of Gothenburg November 30, 2014 1/43 and Autocorrelation Consequences for OLS Estimator Begin from the linear model

More information

Meta-analysis of epidemiological dose-response studies

Meta-analysis of epidemiological dose-response studies Meta-analysis of epidemiological dose-response studies Nicola Orsini 2nd Italian Stata Users Group meeting October 10-11, 2005 Institute Environmental Medicine, Karolinska Institutet Rino Bellocco Dept.

More information

Problem Set 1 ANSWERS

Problem Set 1 ANSWERS Economics 20 Prof. Patricia M. Anderson Problem Set 1 ANSWERS Part I. Multiple Choice Problems 1. If X and Z are two random variables, then E[X-Z] is d. E[X] E[Z] This is just a simple application of one

More information

Heteroskedasticity Example

Heteroskedasticity Example ECON 761: Heteroskedasticity Example L Magee November, 2007 This example uses the fertility data set from assignment 2 The observations are based on the responses of 4361 women in Botswana s 1988 Demographic

More information

ECONOMICS AND ECONOMIC METHODS PRELIM EXAM Statistics and Econometrics August 2013

ECONOMICS AND ECONOMIC METHODS PRELIM EXAM Statistics and Econometrics August 2013 ECONOMICS AND ECONOMIC METHODS PRELIM EXAM Statistics and Econometrics August 2013 Instructions: Answer all six (6) questions. Point totals for each question are given in parentheses. The parts within

More information

Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data

Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data The 3rd Australian and New Zealand Stata Users Group Meeting, Sydney, 5 November 2009 1 Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data Dr Jisheng Cui Public Health

More information

From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models

From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models The Stata Journal (2002) 2, Number 3, pp. 301 313 From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models Mario A. Cleves, Ph.D. Department

More information