. *DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(12,20,0) /*matrix of means of RHS vars: edu, exp, error*/

Size: px
Start display at page:

Download ". *DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(12,20,0) /*matrix of means of RHS vars: edu, exp, error*/"

Transcription

1

2 . DEFINITIONS OF ARTIFICIAL DATA SET. mat m=(,,) /matrix of means of RHS vars: edu, exp, error/. mat c=(5,-.6, \ -.6,9, \,,.) /covariance matrix of RHS vars /. mat l m /displays matrix of means / c c c3 r. mat l c /displays covariance matrix/ symmetric c[3,3] c c c3 r 5 r r3.. drawnorm edu exp e,n(3) means(m) cov(c) (obs 3). Compare normal and lognormal distribution. g Y=exp(logY). gr Y,bin(4) norm saving($pathc\e,replace). gr logy,bin(4) norm saving($pathc\e,replace). gr using $pathc\e $pathc\e Fraction Fraction 49.8 Y logy

3 . ============= HETEROSKEDASTICITY ======================= References: Stata Reference Manual [N-R], regression diagnostic, pp.357- Stata Programming [P], _robust, pp.34 Wooldridge, Heteroskedasticity, pp.57 Kennedy, ch.8, pp Original error w/o heteroskedasticity. reg logy edu exp exp Source SS df MS Number of obs = F( 3, 36) =. Model Prob > F =. Residual R-squared = Adj R-squared =.35 Total Root MSE =.389 logy Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp _cons predict res,res. g res=res^. predict logy_h (option xb assumed; fitted values). gr res logy_h,xlab ylab yline() t("no heter") saving($pathc\e3,replace). mat se=sqrt(el(e(v),,)) /sqrt(diagonal elements of V-C)=std.error of the estimator /. mat l se symmetric se[,] c r.989. hettest / test using fitted values of logy / Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logy chi() =.9 Prob > chi =.676. hettest edu / test using edu / Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: edu chi() =.76 Prob > chi =.843. hettest,rhs / test using exp /

4 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: edu exp exp chi(3) = 3.34 Prob > chi =.345. Heteroskedastic error term: variance is function of edu. g e_a=sqrt(edu)e. gr e_a edu,xlab ylab yline() t("heter=f(edu)") saving($pathc\e4,replace). g logy_a=7.6+ edu.7 + exp.- exp.5 + e_a. reg logy_a edu exp exp Source SS df MS Number of obs = F( 3, 36) = 5.94 Model Prob > F =. Residual R-squared = Adj R-squared =.5 Total Root MSE =.6 logy_a Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp _cons predict logy_ah (option xb assumed; fitted values). predict res_a,res. g res_a=res_a^. gr res_a logy_ah,xlab ylab yline() t("heter=f(edu)") saving($pathc\e5,replace). hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logy_a chi() = 6.79 Prob > chi =.. hettest edu Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: edu chi() = 3.74 Prob > chi =.. reg res_a edu,noc / Note that coefficient on edu=var(e) / Source SS df MS Number of obs = F(, 39) = 7.55

5 Model Prob > F =. Residual R-squared = Adj R-squared =.333 Total Root MSE =.67 res_a Coef. Std. Err. t P> t [95% Conf. Interval] edu Heteroskedastic error term: variance =f(external var). g x=uniform() / Generate normaly distributed variable x /. g e_b=e(x+.) / Heteroskedastic error: variance =f(external variable x) /. gr e_b x,xlab ylab yline() t("heter=f(x)") saving($pathc\e6,replace). g logy_b=7.6+ edu.7 + exp.- exp.5 + e_b. reg logy_b edu exp exp Source SS df MS Number of obs = F( 3, 36) = Model Prob > F =. Residual R-squared = Adj R-squared =.488 Total Root MSE =.885 logy_b Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp _cons hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logy_b chi() = 3.8 Prob > chi =.5. hettest,rhs Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: edu exp exp chi(3) = 8.93 Prob > chi =.3. hettest x Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: x chi() = Prob > chi =.

6 . gr using $pathc\e3 $pathc\e4 $pathc\e5 $pathc\e6 No heter Heter=f(edu) Residuals e_a Fitted values Heter=f(edu) -4 5 edu 5 Heter=f(x) Residuals - e_b Fitted values -.5 x

7 . Heteroskedasticity robust estimate of coefficient V-C matrix: sandwich estimator. Heteroskedasticity robust estimate of coef. V-C matrix: sandwich estimator. reg logy_b edu exp exp,robust / Robust estimation of V-C matrix / Regression with robust standard errors Number of obs = 63 F( 3, 59) = Prob > F =. R-squared =.453 Root MSE =.9 Robust logy_b Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp _cons mat Vreg=e(V) / Robust coef. V-C matrix /. mat l Vreg symmetric Vreg[4,4] edu exp exp _cons edu 3.735e-6 exp -4.4e-8 3.9e-6 exp.573e e-8.878e-9 _cons e reg logy_b edu exp exp,mse / OLS w/o robust V_C / Source SS df MS Number of obs = F( 3, 63) =.6 Model Prob > F =. Residual R-squared = Adj R-squared =.456 Total Root MSE = logy_b Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp e-6 _cons predict res_b,res. mat D=e(V) / Non-robust V-C matrix /. mat l D symmetric D[4,4] edu exp exp _cons edu.9854 exp -.57e exp 5.6e e e-8 _cons

8 . matrix accum M = edu exp exp [iweight=res_b^] /Salami for the Sandwich/. mat l M symmetric M[4,4] edu exp exp _cons edu.856 exp exp _cons mat V=e(N)/(e(N)-e(df_m)-) DMD /Sandwich X'WX /. mat l V symmetric V[4,4] edu exp exp _cons edu 3.735e-6 exp -4.4e-8 3.9e-6 exp.573e e-8.878e-9 _cons e Compare martrix V and Vres. They are identical

9

10 Measurement Error in the Dependent Variable MEASUREMENT ERROR () y = β + β x + β x β x u () y = y + e K K + Suppose equation () represents the population model. Instead of observing y, we observe y, or y plus measurement error (e, where E[e ]=). y = β + βx + β x β K xk + ( u + e ) 443 Var ( v) σ u + σ e = (requires Cov(u, e )=) v To see the implications of measurement error in y, plug eq. () into eq. (). The OLS estimators of the β j will be affected to the extent that the composite error v is correlated with the explanatory variables. If the measurement error e is correlated with x, the OLS estimators will be biased and inconsistent. Under the classic error-in-variables assumption, Cov( y, e )=, and thus v and x are uncorrelated. Measurement Error in an Explanatory Variable (K=) (3) y = β + x + u β (4) x = x + e or Suppose instead that one of the explanatory variables is measured with error that is, we observe x instead of x in equation (3). (Again, E[e ]=). y = β + βx + ( u βe ) 443 plim ˆ Cov( x, v) β = β + Var( x ) v To see the implications of measurement error in x, plug eq. (4) into eq. (3). The OLS estimators of β will be affected to the extent that the composite error v is correlated with x. Under the classic error-in-variables assumption, Cov( x, e )=. Thus, Cov [( x + e )( u β e ] = β σ ( x, v) = E ) e Var ( x ) = Var( x ) + Var( e ) = σ x + σ e plim plim ˆ β ˆ β σ x β σ x + σ e = σ r β σ r + σ e = Under the classic error-in-variables assumption, it can be shown that the OLS estimator is inconsistent and (asymptotically) biased downward (as shown at left). The term multiplying β is called the attenuation bias (it is always <). When K> (and x is the only mismeasured variable), the attenuation bias is as shown at left ( r is the population error from the regression of x on all other explanatory variables).

11

12

13

14 . =========== ERRORS IN VARIABLES =========================. Case A: Error on logy. g error=invnorm(uniform()) / Measurement error/. g logyx=logy+.error / logy with error /. dotplot logy logyx, ny(5) saving($pathc\e7,replace). gr logy logyx logy,xlab ylab s(op) saving($pathc\e8,replace). reg logy edu exp exp / Model w/o error / Source SS df MS Number of obs = F( 3, 36) =. Model Prob > F =. Residual R-squared = Adj R-squared =.35 Total Root MSE =.389 logy Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp _cons reg logyx edu exp exp / Model with error in logy / See that edu coefficient is not changed, only std. error and R/ Source SS df MS Number of obs = F( 3, 36) = 7.44 Model Prob > F =. Residual R-squared = Adj R-squared =.9 Total Root MSE =.3744 logyx Coef. Std. Err. t P> t [95% Conf. Interval] edu exp exp _cons

15 . Case B: Stochastic error in edu. g edux=edu+error / Education years with error /. dotplot edu edux, ny(5) saving($pathc\e9,replace). gr edu edux edu,xlab(,9,3,8) ylab(,9,3,8) s(op) saving($pathc\e,replace). reg logy edu exp exp Residual R-squared =.36 logy Coef. Std. Err. t P> t [95% Conf. Interval] edu reg logy edux exp exp / See that edu coefficient is smaller/ Source SS df MS Number of obs = F( 3, 36) = 4.63 Model Prob > F =. Residual R-squared = Adj R-squared =.638 Total Root MSE =.35 logy Coef. Std. Err. t P> t [95% Conf. Interval] edux exp exp _cons corr edux error,cov / Bias ~ COV(edux,error)/VAR(eduX) / edux error edux error gr using $pathc\e7 $pathc\e8 $pathc\e9 $pathc\e

16 . Case C: systematic error =f(edu). g eduq=.8edu / Education years with error /. gr edu eduq edu,xlab(,9,3,8) ylab(,9,3,8) saving($pathc\e,replace). dotplot edu eduq, ny(5) saving($pathc\e,replace). reg logy edu exp exp / Pure regression / Source SS df MS Number of obs = 4 Residual R-squared =.36 logy Coef. Std. Err. t P> t [95% Conf. Interval] edu reg logy eduq exp exp / See that edu coefficient is larger/ Source SS df MS Number of obs = F( 3, 36) =. Model Prob > F =. Residual R-squared = Adj R-squared =.35 Total Root MSE =.389 logy Coef. Std. Err. t P> t [95% Conf. Interval] eduq exp exp _cons

17 . gr using $pathc\e $pathc\e 8 edu eduq edu edu eduq. locpoly logy edux,plot(scatter logy edu) Local polynomial smooth Degree: logy edux logy logy locpoly smooth: logy

Mediation Analysis: OLS vs. SUR vs. 3SLS Note by Hubert Gatignon July 7, 2013, updated November 15, 2013

Mediation Analysis: OLS vs. SUR vs. 3SLS Note by Hubert Gatignon July 7, 2013, updated November 15, 2013 Mediation Analysis: OLS vs. SUR vs. 3SLS Note by Hubert Gatignon July 7, 2013, updated November 15, 2013 In Chap. 11 of Statistical Analysis of Management Data (Gatignon, 2014), tests of mediation are

More information

Lecture 8: Instrumental Variables Estimation

Lecture 8: Instrumental Variables Estimation Lecture Notes on Advanced Econometrics Lecture 8: Instrumental Variables Estimation Endogenous Variables Consider a population model: y α y + β + β x + β x +... + β x + u i i i i k ik i Takashi Yamano

More information

Heteroskedasticity Example

Heteroskedasticity Example ECON 761: Heteroskedasticity Example L Magee November, 2007 This example uses the fertility data set from assignment 2 The observations are based on the responses of 4361 women in Botswana s 1988 Demographic

More information

Lab 11 - Heteroskedasticity

Lab 11 - Heteroskedasticity Lab 11 - Heteroskedasticity Spring 2017 Contents 1 Introduction 2 2 Heteroskedasticity 2 3 Addressing heteroskedasticity in Stata 3 4 Testing for heteroskedasticity 4 5 A simple example 5 1 1 Introduction

More information

Specification Error: Omitted and Extraneous Variables

Specification Error: Omitted and Extraneous Variables Specification Error: Omitted and Extraneous Variables Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 5, 05 Omitted variable bias. Suppose that the correct

More information

1 Linear Regression Analysis The Mincer Wage Equation Data Econometric Model Estimation... 11

1 Linear Regression Analysis The Mincer Wage Equation Data Econometric Model Estimation... 11 Econ 495 - Econometric Review 1 Contents 1 Linear Regression Analysis 4 1.1 The Mincer Wage Equation................. 4 1.2 Data............................. 6 1.3 Econometric Model.....................

More information

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like.

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like. Measurement Error Often a data set will contain imperfect measures of the data we would ideally like. Aggregate Data: (GDP, Consumption, Investment are only best guesses of theoretical counterparts and

More information

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1 Mediation Analysis: OLS vs. SUR vs. ISUR vs. 3SLS vs. SEM Note by Hubert Gatignon July 7, 2013, updated November 15, 2013, April 11, 2014, May 21, 2016 and August 10, 2016 In Chap. 11 of Statistical Analysis

More information

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation Michele Aquaro University of Warwick This version: July 21, 2016 1 / 31 Reading material Textbook: Introductory

More information

8. Nonstandard standard error issues 8.1. The bias of robust standard errors

8. Nonstandard standard error issues 8.1. The bias of robust standard errors 8.1. The bias of robust standard errors Bias Robust standard errors are now easily obtained using e.g. Stata option robust Robust standard errors are preferable to normal standard errors when residuals

More information

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

4 Instrumental Variables Single endogenous variable One continuous instrument. 2 Econ 495 - Econometric Review 1 Contents 4 Instrumental Variables 2 4.1 Single endogenous variable One continuous instrument. 2 4.2 Single endogenous variable more than one continuous instrument..........................

More information

Handout 11: Measurement Error

Handout 11: Measurement Error Handout 11: Measurement Error In which you learn to recognise the consequences for OLS estimation whenever some of the variables you use are not measured as accurately as you might expect. A (potential)

More information

Binary Dependent Variables

Binary Dependent Variables Binary Dependent Variables In some cases the outcome of interest rather than one of the right hand side variables - is discrete rather than continuous Binary Dependent Variables In some cases the outcome

More information

Lecture 8: Heteroskedasticity. Causes Consequences Detection Fixes

Lecture 8: Heteroskedasticity. Causes Consequences Detection Fixes Lecture 8: Heteroskedasticity Causes Consequences Detection Fixes Assumption MLR5: Homoskedasticity 2 var( u x, x,..., x ) 1 2 In the multivariate case, this means that the variance of the error term does

More information

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

4 Instrumental Variables Single endogenous variable One continuous instrument. 2 Econ 495 - Econometric Review 1 Contents 4 Instrumental Variables 2 4.1 Single endogenous variable One continuous instrument. 2 4.2 Single endogenous variable more than one continuous instrument..........................

More information

ECON2228 Notes 7. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 41

ECON2228 Notes 7. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 41 ECON2228 Notes 7 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 6 2014 2015 1 / 41 Chapter 8: Heteroskedasticity In laying out the standard regression model, we made

More information

Lecture#12. Instrumental variables regression Causal parameters III

Lecture#12. Instrumental variables regression Causal parameters III Lecture#12 Instrumental variables regression Causal parameters III 1 Demand experiment, market data analysis & simultaneous causality 2 Simultaneous causality Your task is to estimate the demand function

More information

Autocorrelation. Think of autocorrelation as signifying a systematic relationship between the residuals measured at different points in time

Autocorrelation. Think of autocorrelation as signifying a systematic relationship between the residuals measured at different points in time Autocorrelation Given the model Y t = b 0 + b 1 X t + u t Think of autocorrelation as signifying a systematic relationship between the residuals measured at different points in time This could be caused

More information

Course Econometrics I

Course Econometrics I Course Econometrics I 4. Heteroskedasticity Martin Halla Johannes Kepler University of Linz Department of Economics Last update: May 6, 2014 Martin Halla CS Econometrics I 4 1/31 Our agenda for today Consequences

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Heteroskedasticity. (In practice this means the spread of observations around any given value of X will not now be constant)

Heteroskedasticity. (In practice this means the spread of observations around any given value of X will not now be constant) Heteroskedasticity Occurs when the Gauss Markov assumption that the residual variance is constant across all observations in the data set so that E(u 2 i /X i ) σ 2 i (In practice this means the spread

More information

Maria Elena Bontempi Roberto Golinelli this version: 5 September 2007

Maria Elena Bontempi Roberto Golinelli this version: 5 September 2007 INSTRUMENTAL VARIABLES (IV) ESTIMATION A Maria Elena Bontempi e.bontempi@economia.unife.it Roberto Golinelli roberto.golinelli@unibo.it this version: 5 September 2007 1. The instrumental variables approach

More information

Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 07/11/2017 Structure This Week What is a linear model? How good is my model? Does

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Lab 07 Introduction to Econometrics

Lab 07 Introduction to Econometrics Lab 07 Introduction to Econometrics Learning outcomes for this lab: Introduce the different typologies of data and the econometric models that can be used Understand the rationale behind econometrics Understand

More information

Econometrics. 8) Instrumental variables

Econometrics. 8) Instrumental variables 30C00200 Econometrics 8) Instrumental variables Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Thery of IV regression Overidentification Two-stage least squates

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

Instrumental Variables, Simultaneous and Systems of Equations

Instrumental Variables, Simultaneous and Systems of Equations Chapter 6 Instrumental Variables, Simultaneous and Systems of Equations 61 Instrumental variables In the linear regression model y i = x iβ + ε i (61) we have been assuming that bf x i and ε i are uncorrelated

More information

(a) Briefly discuss the advantage of using panel data in this situation rather than pure crosssections

(a) Briefly discuss the advantage of using panel data in this situation rather than pure crosssections Answer Key Fixed Effect and First Difference Models 1. See discussion in class.. David Neumark and William Wascher published a study in 199 of the effect of minimum wages on teenage employment using a

More information

Fixed and Random Effects Models: Vartanian, SW 683

Fixed and Random Effects Models: Vartanian, SW 683 : Vartanian, SW 683 Fixed and random effects models See: http://teaching.sociology.ul.ie/dcw/confront/node45.html When you have repeated observations per individual this is a problem and an advantage:

More information

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page!

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Econometrics - Exam May 11, 2011 1 Exam Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Problem 1: (15 points) A researcher has data for the year 2000 from

More information

Problem Set 10: Panel Data

Problem Set 10: Panel Data Problem Set 10: Panel Data 1. Read in the data set, e11panel1.dta from the course website. This contains data on a sample or 1252 men and women who were asked about their hourly wage in two years, 2005

More information

Heteroskedasticity. Occurs when the Gauss Markov assumption that the residual variance is constant across all observations in the data set

Heteroskedasticity. Occurs when the Gauss Markov assumption that the residual variance is constant across all observations in the data set Heteroskedasticity Occurs when the Gauss Markov assumption that the residual variance is constant across all observations in the data set Heteroskedasticity Occurs when the Gauss Markov assumption that

More information

Econometrics. 9) Heteroscedasticity and autocorrelation

Econometrics. 9) Heteroscedasticity and autocorrelation 30C00200 Econometrics 9) Heteroscedasticity and autocorrelation Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Heteroscedasticity Possible causes Testing for

More information

ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics

ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. The Sharp RD Design 3.

More information

Sociology Exam 1 Answer Key Revised February 26, 2007

Sociology Exam 1 Answer Key Revised February 26, 2007 Sociology 63993 Exam 1 Answer Key Revised February 26, 2007 I. True-False. (20 points) Indicate whether the following statements are true or false. If false, briefly explain why. 1. An outlier on Y will

More information

Graduate Econometrics Lecture 4: Heteroskedasticity

Graduate Econometrics Lecture 4: Heteroskedasticity Graduate Econometrics Lecture 4: Heteroskedasticity Department of Economics University of Gothenburg November 30, 2014 1/43 and Autocorrelation Consequences for OLS Estimator Begin from the linear model

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Week 3: Simple Linear Regression

Week 3: Simple Linear Regression Week 3: Simple Linear Regression Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED 1 Outline

More information

THE MULTIVARIATE LINEAR REGRESSION MODEL

THE MULTIVARIATE LINEAR REGRESSION MODEL THE MULTIVARIATE LINEAR REGRESSION MODEL Why multiple regression analysis? Model with more than 1 independent variable: y 0 1x1 2x2 u It allows : -Controlling for other factors, and get a ceteris paribus

More information

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests ECON4150 - Introductory Econometrics Lecture 5: OLS with One Regressor: Hypothesis Tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 5 Lecture outline 2 Testing Hypotheses about one

More information

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser Simultaneous Equations with Error Components Mike Bronner Marko Ledic Anja Breitwieser PRESENTATION OUTLINE Part I: - Simultaneous equation models: overview - Empirical example Part II: - Hausman and Taylor

More information

1 Independent Practice: Hypothesis tests for one parameter:

1 Independent Practice: Hypothesis tests for one parameter: 1 Independent Practice: Hypothesis tests for one parameter: Data from the Indian DHS survey from 2006 includes a measure of autonomy of the women surveyed (a scale from 0-10, 10 being the most autonomous)

More information

sociology 362 regression

sociology 362 regression sociology 36 regression Regression is a means of modeling how the conditional distribution of a response variable (say, Y) varies for different values of one or more independent explanatory variables (say,

More information

Dealing With and Understanding Endogeneity

Dealing With and Understanding Endogeneity Dealing With and Understanding Endogeneity Enrique Pinzón StataCorp LP October 20, 2016 Barcelona (StataCorp LP) October 20, 2016 Barcelona 1 / 59 Importance of Endogeneity Endogeneity occurs when a variable,

More information

Problem set - Selection and Diff-in-Diff

Problem set - Selection and Diff-in-Diff Problem set - Selection and Diff-in-Diff 1. You want to model the wage equation for women You consider estimating the model: ln wage = α + β 1 educ + β 2 exper + β 3 exper 2 + ɛ (1) Read the data into

More information

ECON3150/4150 Spring 2016

ECON3150/4150 Spring 2016 ECON3150/4150 Spring 2016 Lecture 4 - The linear regression model Siv-Elisabeth Skjelbred University of Oslo Last updated: January 26, 2016 1 / 49 Overview These lecture slides covers: The linear regression

More information

Heteroskedasticity Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 30, 2015

Heteroskedasticity Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 30, 2015 Heteroskedasticity Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 30, 2015 These notes draw heavily from Berry and Feldman, and, to a lesser extent, Allison,

More information

Handout 12. Endogeneity & Simultaneous Equation Models

Handout 12. Endogeneity & Simultaneous Equation Models Handout 12. Endogeneity & Simultaneous Equation Models In which you learn about another potential source of endogeneity caused by the simultaneous determination of economic variables, and learn how to

More information

ECON3150/4150 Spring 2016

ECON3150/4150 Spring 2016 ECON3150/4150 Spring 2016 Lecture 6 Multiple regression model Siv-Elisabeth Skjelbred University of Oslo February 5th Last updated: February 3, 2016 1 / 49 Outline Multiple linear regression model and

More information

Lecture 14. More on using dummy variables (deal with seasonality)

Lecture 14. More on using dummy variables (deal with seasonality) Lecture 14. More on using dummy variables (deal with seasonality) More things to worry about: measurement error in variables (can lead to bias in OLS (endogeneity) ) Have seen that dummy variables are

More information

Answer all questions from part I. Answer two question from part II.a, and one question from part II.b.

Answer all questions from part I. Answer two question from part II.a, and one question from part II.b. B203: Quantitative Methods Answer all questions from part I. Answer two question from part II.a, and one question from part II.b. Part I: Compulsory Questions. Answer all questions. Each question carries

More information

Econometrics II Censoring & Truncation. May 5, 2011

Econometrics II Censoring & Truncation. May 5, 2011 Econometrics II Censoring & Truncation Måns Söderbom May 5, 2011 1 Censored and Truncated Models Recall that a corner solution is an actual economic outcome, e.g. zero expenditure on health by a household

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

ECON Introductory Econometrics. Lecture 13: Internal and external validity

ECON Introductory Econometrics. Lecture 13: Internal and external validity ECON4150 - Introductory Econometrics Lecture 13: Internal and external validity Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 9 Lecture outline 2 Definitions of internal and external

More information

Interpreting coefficients for transformed variables

Interpreting coefficients for transformed variables Interpreting coefficients for transformed variables! Recall that when both independent and dependent variables are untransformed, an estimated coefficient represents the change in the dependent variable

More information

Topic 7: Heteroskedasticity

Topic 7: Heteroskedasticity Topic 7: Heteroskedasticity Advanced Econometrics (I Dong Chen School of Economics, Peking University Introduction If the disturbance variance is not constant across observations, the regression is heteroskedastic

More information

SOCY5601 Handout 8, Fall DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS

SOCY5601 Handout 8, Fall DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS SOCY5601 DETECTING CURVILINEARITY (continued) CONDITIONAL EFFECTS PLOTS More on use of X 2 terms to detect curvilinearity: As we have said, a quick way to detect curvilinearity in the relationship between

More information

sociology 362 regression

sociology 362 regression sociology 36 regression Regression is a means of studying how the conditional distribution of a response variable (say, Y) varies for different values of one or more independent explanatory variables (say,

More information

Econometrics Midterm Examination Answers

Econometrics Midterm Examination Answers Econometrics Midterm Examination Answers March 4, 204. Question (35 points) Answer the following short questions. (i) De ne what is an unbiased estimator. Show that X is an unbiased estimator for E(X i

More information

Introductory Econometrics. Lecture 13: Hypothesis testing in the multiple regression model, Part 1

Introductory Econometrics. Lecture 13: Hypothesis testing in the multiple regression model, Part 1 Introductory Econometrics Lecture 13: Hypothesis testing in the multiple regression model, Part 1 Jun Ma School of Economics Renmin University of China October 19, 2016 The model I We consider the classical

More information

Эконометрика, , 4 модуль Семинар Для Группы Э_Б2015_Э_3 Семинарист О.А.Демидова

Эконометрика, , 4 модуль Семинар Для Группы Э_Б2015_Э_3 Семинарист О.А.Демидова Эконометрика, 2017-2018, 4 модуль Семинар 3 160418 Для Группы Э_Б2015_Э_3 Семинарист ОАДемидова * Stata program * copyright C 2010 by A Colin Cameron and Pravin K Trivedi * used for "Microeconometrics

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 48 Serial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics

Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics C1.1 Use the data set Wage1.dta to answer the following questions. Estimate regression equation wage =

More information

Statistical Inference with Regression Analysis

Statistical Inference with Regression Analysis Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Steven Buck Lecture #13 Statistical Inference with Regression Analysis Next we turn to calculating confidence intervals and hypothesis testing

More information

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models Applied Econometrics Lecture 3: Introduction to Linear Panel Data Models Måns Söderbom 4 September 2009 Department of Economics, Universy of Gothenburg. Email: mans.soderbom@economics.gu.se. Web: www.economics.gu.se/soderbom,

More information

Final Exam. 1. Definitions: Briefly Define each of the following terms as they relate to the material covered in class.

Final Exam. 1. Definitions: Briefly Define each of the following terms as they relate to the material covered in class. Name Answer Key Economics 170 Spring 2003 Honor pledge: I have neither given nor received aid on this exam including the preparation of my one page formula list and the preparation of the Stata assignment

More information

Problem Set 1 ANSWERS

Problem Set 1 ANSWERS Economics 20 Prof. Patricia M. Anderson Problem Set 1 ANSWERS Part I. Multiple Choice Problems 1. If X and Z are two random variables, then E[X-Z] is d. E[X] E[Z] This is just a simple application of one

More information

ECON Introductory Econometrics. Lecture 16: Instrumental variables

ECON Introductory Econometrics. Lecture 16: Instrumental variables ECON4150 - Introductory Econometrics Lecture 16: Instrumental variables Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 12 Lecture outline 2 OLS assumptions and when they are violated Instrumental

More information

ECON3150/4150 Spring 2015

ECON3150/4150 Spring 2015 ECON3150/4150 Spring 2015 Lecture 3&4 - The linear regression model Siv-Elisabeth Skjelbred University of Oslo January 29, 2015 1 / 67 Chapter 4 in S&W Section 17.1 in S&W (extended OLS assumptions) 2

More information

Section Least Squares Regression

Section Least Squares Regression Section 2.3 - Least Squares Regression Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Regression Correlation gives us a strength of a linear relationship is, but it doesn t tell us what it

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 54 erial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47 ECON2228 Notes 2 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 2 2014 2015 1 / 47 Chapter 2: The simple regression model Most of this course will be concerned with

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 5 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 44 Outline of Lecture 5 Now that we know the sampling distribution

More information

Lab 10 - Binary Variables

Lab 10 - Binary Variables Lab 10 - Binary Variables Spring 2017 Contents 1 Introduction 1 2 SLR on a Dummy 2 3 MLR with binary independent variables 3 3.1 MLR with a Dummy: different intercepts, same slope................. 4 3.2

More information

1 The basics of panel data

1 The basics of panel data Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Related materials: Steven Buck Notes to accompany fixed effects material 4-16-14 ˆ Wooldridge 5e, Ch. 1.3: The Structure of Economic Data ˆ Wooldridge

More information

Fortin Econ Econometric Review 1. 1 Panel Data Methods Fixed Effects Dummy Variables Regression... 7

Fortin Econ Econometric Review 1. 1 Panel Data Methods Fixed Effects Dummy Variables Regression... 7 Fortin Econ 495 - Econometric Review 1 Contents 1 Panel Data Methods 2 1.1 Fixed Effects......................... 2 1.1.1 Dummy Variables Regression............ 7 1.1.2 First Differencing Methods.............

More information

Econometrics I KS. Module 1: Bivariate Linear Regression. Alexander Ahammer. This version: March 12, 2018

Econometrics I KS. Module 1: Bivariate Linear Regression. Alexander Ahammer. This version: March 12, 2018 Econometrics I KS Module 1: Bivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: March 12, 2018 Alexander Ahammer (JKU) Module 1: Bivariate

More information

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 217, Chicago, Illinois Outline 1. Opportunities and challenges of panel data. a. Data requirements b. Control

More information

Lecture 3 Linear random intercept models

Lecture 3 Linear random intercept models Lecture 3 Linear random intercept models Example: Weight of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ) The response is measures at n different times, or under

More information

Control Function and Related Methods: Nonlinear Models

Control Function and Related Methods: Nonlinear Models Control Function and Related Methods: Nonlinear Models Jeff Wooldridge Michigan State University Programme Evaluation for Policy Analysis Institute for Fiscal Studies June 2012 1. General Approach 2. Nonlinear

More information

Practice 2SLS with Artificial Data Part 1

Practice 2SLS with Artificial Data Part 1 Practice 2SLS with Artificial Data Part 1 Yona Rubinstein July 2016 Yona Rubinstein (LSE) Practice 2SLS with Artificial Data Part 1 07/16 1 / 16 Practice with Artificial Data In this note we use artificial

More information

Econ 423 Lecture Notes

Econ 423 Lecture Notes Econ 423 Lecture Notes (hese notes are modified versions of lecture notes provided by Stock and Watson, 2007. hey are for instructional purposes only and are not to be distributed outside of the classroom.)

More information

Nonrecursive Models Highlights Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015

Nonrecursive Models Highlights Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 Nonrecursive Models Highlights Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 This lecture borrows heavily from Duncan s Introduction to Structural

More information

Problem Set #3-Key. wage Coef. Std. Err. t P> t [95% Conf. Interval]

Problem Set #3-Key. wage Coef. Std. Err. t P> t [95% Conf. Interval] Problem Set #3-Key Sonoma State University Economics 317- Introduction to Econometrics Dr. Cuellar 1. Use the data set Wage1.dta to answer the following questions. a. For the regression model Wage i =

More information

Econ 836 Final Exam. 2 w N 2 u N 2. 2 v N

Econ 836 Final Exam. 2 w N 2 u N 2. 2 v N 1) [4 points] Let Econ 836 Final Exam Y Xβ+ ε, X w+ u, w N w~ N(, σi ), u N u~ N(, σi ), ε N ε~ Nu ( γσ, I ), where X is a just one column. Let denote the OLS estimator, and define residuals e as e Y X.

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Spatial Regression. 3. Review - OLS and 2SLS. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 3. Review - OLS and 2SLS. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 3. Review - OLS and 2SLS Luc Anselin http://spatial.uchicago.edu OLS estimation (recap) non-spatial regression diagnostics endogeneity - IV and 2SLS OLS Estimation (recap) Linear Regression

More information

Empirical Application of Simple Regression (Chapter 2)

Empirical Application of Simple Regression (Chapter 2) Empirical Application of Simple Regression (Chapter 2) 1. The data file is House Data, which can be downloaded from my webpage. 2. Use stata menu File Import Excel Spreadsheet to read the data. Don t forget

More information

****Lab 4, Feb 4: EDA and OLS and WLS

****Lab 4, Feb 4: EDA and OLS and WLS ****Lab 4, Feb 4: EDA and OLS and WLS ------- log: C:\Documents and Settings\Default\Desktop\LDA\Data\cows_Lab4.log log type: text opened on: 4 Feb 2004, 09:26:19. use use "Z:\LDA\DataLDA\cowsP.dta", clear.

More information

Basic econometrics. Tutorial 3. Dipl.Kfm. Johannes Metzler

Basic econometrics. Tutorial 3. Dipl.Kfm. Johannes Metzler Basic econometrics Tutorial 3 Dipl.Kfm. Introduction Some of you were asking about material to revise/prepare econometrics fundamentals. First of all, be aware that I will not be too technical, only as

More information

GMM Estimation in Stata

GMM Estimation in Stata GMM Estimation in Stata Econometrics I Department of Economics Universidad Carlos III de Madrid Master in Industrial Economics and Markets 1 Outline Motivation 1 Motivation 2 3 4 2 Motivation 3 Stata and

More information

IV and IV-GMM. Christopher F Baum. EC 823: Applied Econometrics. Boston College, Spring 2014

IV and IV-GMM. Christopher F Baum. EC 823: Applied Econometrics. Boston College, Spring 2014 IV and IV-GMM Christopher F Baum EC 823: Applied Econometrics Boston College, Spring 2014 Christopher F Baum (BC / DIW) IV and IV-GMM Boston College, Spring 2014 1 / 1 Instrumental variables estimators

More information

Lecture 5. In the last lecture, we covered. This lecture introduces you to

Lecture 5. In the last lecture, we covered. This lecture introduces you to Lecture 5 In the last lecture, we covered. homework 2. The linear regression model (4.) 3. Estimating the coefficients (4.2) This lecture introduces you to. Measures of Fit (4.3) 2. The Least Square Assumptions

More information

Lecture 19. Common problem in cross section estimation heteroskedasticity

Lecture 19. Common problem in cross section estimation heteroskedasticity Lecture 19 Learning to worry about and deal with stationarity Common problem in cross section estimation heteroskedasticity What is it Why does it matter What to do about it Stationarity Ultimately whether

More information

Suggested Answers Problem set 4 ECON 60303

Suggested Answers Problem set 4 ECON 60303 Suggested Answers Problem set 4 ECON 60303 Bill Evans Spring 04. A program that answers part A) is on the web page and is named psid_iv_comparison.do. Below are some key results and a summary table is

More information

Testing methodology. It often the case that we try to determine the form of the model on the basis of data

Testing methodology. It often the case that we try to determine the form of the model on the basis of data Testing methodology It often the case that we try to determine the form of the model on the basis of data The simplest case: we try to determine the set of explanatory variables in the model Testing for

More information