Complex Network Dynamics:

Size: px
Start display at page:

Download "Complex Network Dynamics:"

Transcription

1 Complex Network Dynamcs: Theory & Applcaton Yur Mastrenko E-mal: Lecture 2

2 Network Scence Complex networks versus Dynamcal networks Oscllatory networks Ensembles of oscllators Structure Topology Dynamcs or versus or Actvty

3 We want to study Emergent network dynamcs In phlosophy, system theory, scence, and art, EMERGENCE s the way how complex systems and patterns arse out of a multplcty of relatvely smple nteractons. Wkpeda

4 Chmera stare n network of 100x100x100 oscllators n 3Dm cube. Two ncoherent rolls n coherent surroundng

5 What s a network? Network: a set of nodes joned by lnks oscllators connectons node, oscllator lnk, connecton A network wth N=8 nodes and K=10 lnks (Newman, 2005) - mathematcally, network s a graph - there s dynamcs n each node/oscllator - our task: to study collectve dynamcs of the network

6 We need dfferental equatons or terated maps

7 Network: Coupled oscllators Two types of dynamcal systems for networks: Dfferental equatons: dx dt f ( x ) couplng terms Dfference equatons (terated maps): x x 1 x 1 network x t1 f ( x t ) couplng terms M M f ( x) : R R - nonlnear functon

8 Nonlnear Dynamcs of Networks - regular (statonary, perodc,or quasperodc) - chaotc (strange attractors, chmera states)

9 THE ESSENCE OF CHAOS Process (dynamcs) determnstc fully determned by ntal state and system equatons Long-term behavor unpredctable butterfly effect CHAOS = senstve dependence on ntal condtons

10 CHAOS = BUTTERFLY EFFECT Henr Poncaré: (1880) It so happens that small dfferences n the ntal state of the system can lead to very large dfferences n ts fnal state. A small error n the former could then produce an enormous one n the latter. Predcton becomes mpossble, and the system appears to behave randomly. Ray Bradbury A Sound of Thunder (1952)

11 EXAMPLES OF CHAOTIC SYSTEMS the solar system (Poncare) the weather (Lorenz) turbulence n fluds populaton growth lots and lots of other systems HOT APPLICATIONS neuronal networks of the bran (dynamcal chaos) gene regulatory networks (spatal chaos)

12 WEATHER UNPREDICTIBILITY Edward Lorenz: (1963) Dffcultes n the weather forecast are not related to the complexty of the Earths clmate but to CHAOS n the global weather dynamcs (gven by nonlnear equatons).

13 LORENTZ ATTRACTOR (1963) butterfly effect a trajectory n the phase space The Lorenz attractor s generated by the system of 3 dfferental equatons dx/dt= -10x +10y dy/dt= 28x - y -xz dz/dt= -8/3z +xy.

14 Dynamcs of oscllators placed n a network: Coupled oscllators Dynamcal system: a system of one or more varables whch evolve n tme accordng to a gven rule Two types of dynamcal systems: Dfferental equatons: dx dt f ( x ) couplng terms Dfference equatons (terated maps): x x 1 x 1 network x t1 f ( x t ) couplng terms M M f ( x) : R R - nonlnear functon

15

16 Networks of terated maps

17

18 Networks of chaotc maps: Coherent states x t1 f ( x t ) 2P P j-p [ f ( x t j ) f ( x t )] f ( x) ax(1 x), a 3.8 (chaotc map) Parameter regons of coherence couplng strength σ C O H E R E N C E N = 100 oscllators Chaotc synchronzaton couplng radus r = P/N Space-temporal chaos couplng radus r = P/N

19 Network of Lorenz systems: Travelng waves ) 1,..., ( ) ( 2 ) ( 2 N cz y x z y y P xz y bx y x x P ay ax x j P P j j P P j a = 10, b = 28, c = 8/3 Lorenz attractor Chaotc synchronzaton Space-temporal chaos σ = 16, r = 0.1, N = 100 σ = 13.3, r = 0.1, N = 100 σ = 13.8, r = 0.05, N = 300

20 Network of Rössler systems: Chmera states ) ( 2 z j P P j x x P y x ) 1,..., ( N z x cz b z ay x y

21 Neuronal Networks Human bran: ~ neurons - how complex are neuronal networks n the bran? - are they locally or globally coupled? - strength of couplng between ndvdual neurons? - exctatory and nhbtory neurons, why so? How to get modellng? 21

22 22

23

24 24

25 - bdrectonal connectons are more common than one can expected, f the network connectons be random - connecton strength dstrbuton dffers sgnfcantly from random and characterzed by a long tal - synaptc weghts are concentrated among few strong synaptc connectons Neuronal connectvty represents a skeleton of stronger connectons n the sea of weaker ones! 25

26 26

27 The next UNIT to model (The Neocortcal - column ) (1mm 3 ) Sze of a pn head

28 Cortcal column and neuronal mcrocrcuts 28

29 29

30 Why do we need to buld a model? I have all these data n the cortex - cell types, ther frng propertes, dendrtc exctablty, connectvty, synaptc dynamcs But I don t Understand t. I need to model t. Bert Sakmann Nobel Prze n Physology and Medcne, 1991 Unversty of Hedelberg 30

31 How can one model neuronal networks? Kss - detaled Kss reduced Rodn Brancus

32 Hodgkn-Huxley model (1952) lan Lloyd odgkn Andrew Feldng Huxley The H&H model; (1) Bophyscal, (2) Compact, (3) Predctve

33 Network of Hodgkn-Huxley neurons Synaptc current Couplng functon

34 Network of Hodgkn-Huxley neurons : Chmera state TIME

35 Chmera state can reflect workng memory n neuronal networks Bell-shaped perssted neural actvty Network archtecture Space-temporal network actvty n a bump state Renart, Song, Wang "Robust spatal workng memory (Neuron 2003)

Rhythmic activity in neuronal ensembles in the presence of conduction delays

Rhythmic activity in neuronal ensembles in the presence of conduction delays Rhythmc actvty n neuronal ensembles n the presence of conducton delays Crstna Masoller Carme Torrent, Jord García Ojalvo Departament de Fsca Engnyera Nuclear Unverstat Poltecnca de Catalunya, Terrassa,

More information

Chaotic Phase Synchronization for Visual Selection

Chaotic Phase Synchronization for Visual Selection Internatonal Jont Conference on Neural Networks IJCNN 2009 Chaotc Phase Synchronzaton for Vsual Selecton Fabrco A. Breve¹ Lang Zhao¹ Marcos G. Qules¹ Elbert E. N. Macau² fabrco@cmc.usp.br zhao@cmc.usp.br

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

California State Science Fair

California State Science Fair Calforna State Scence Far Mathematcal Modelng of Real World Systems Part 1 -- Explorng on Chaos on Your Computer Edward Ruth drruth@x.netcom.com 1) Introducton Mathematcs s the language that scentsts use

More information

Wavelet chaotic neural networks and their application to continuous function optimization

Wavelet chaotic neural networks and their application to continuous function optimization Vol., No.3, 04-09 (009) do:0.436/ns.009.307 Natural Scence Wavelet chaotc neural networks and ther applcaton to contnuous functon optmzaton Ja-Ha Zhang, Yao-Qun Xu College of Electrcal and Automatc Engneerng,

More information

Lecture 3: Boltzmann distribution

Lecture 3: Boltzmann distribution Lecture 3: Boltzmann dstrbuton Statstcal mechancs: concepts Ams: Dervaton of Boltzmann dstrbuton: Basc postulate of statstcal mechancs. All states equally lkely. Equal a-pror probablty: Statstcal vew of

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

Lecture 23: Artificial neural networks

Lecture 23: Artificial neural networks Lecture 23: Artfcal neural networks Broad feld that has developed over the past 20 to 30 years Confluence of statstcal mechancs, appled math, bology and computers Orgnal motvaton: mathematcal modelng of

More information

Failing feedback as a mechanism to generate epileptic seizures

Failing feedback as a mechanism to generate epileptic seizures Falng feedback as a mechansm to generate epleptc sezures Kostas Tsakals Department of Electrcal Engneerng Arzona State Unversty tsakals@asu.edu Collaboraton Credts Prof. Leon Iasemds (Harrngton Dept. of

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Dynamical Systems and Information Theory

Dynamical Systems and Information Theory Dynamcal Systems and Informaton Theory Informaton Theory Lecture 4 Let s consder systems that evolve wth tme x F ( x, x, x,... That s, systems that can be descrbed as the evoluton of a set of state varables

More information

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits Watcharn Jantanate, Peter A. Chayasena, Sarawut Sutorn Odd/Even Scroll Generaton wth Inductorless Chua s and Wen Brdge Oscllator Crcuts Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * School

More information

Unsupervised Learning

Unsupervised Learning Unsupervsed Learnng Kevn Swngler What s Unsupervsed Learnng? Most smply, t can be thought of as learnng to recognse and recall thngs Recognton I ve seen that before Recall I ve seen that before and I can

More information

Supplementary material 1

Supplementary material 1 Supplementary materal 1 to Correlated connectvty and the dstrbuton of frng rates n the neocortex by Alexe Koulakov, Tomas Hromadka, and Anthony M. Zador The emergence of log-normal dstrbuton n neural nets.

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Mathematical Equivalence of Two Common Forms of Firing Rate Models of Neural Networks

Mathematical Equivalence of Two Common Forms of Firing Rate Models of Neural Networks NOTE Communcated by Terrence Sejnowsk Mathematcal Equvalence of Two Common Forms of Frng Rate Models of Neural Networks Kenneth D Mller ken@neurotheorycolumbaedu Center for Theoretcal Neuroscence, Dept

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

The Chaotic Robot Prediction by Neuro Fuzzy Algorithm (2) = θ (3) = ω. Asin. A v. Mana Tarjoman, Shaghayegh Zarei

The Chaotic Robot Prediction by Neuro Fuzzy Algorithm (2) = θ (3) = ω. Asin. A v. Mana Tarjoman, Shaghayegh Zarei The Chaotc Robot Predcton by Neuro Fuzzy Algorthm Mana Tarjoman, Shaghayegh Zare Abstract In ths paper an applcaton of the adaptve neurofuzzy nference system has been ntroduced to predct the behavor of

More information

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator Latest Trends on Crcuts, Systems and Sgnals Scroll Generaton wth Inductorless Chua s Crcut and Wen Brdge Oscllator Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * Abstract An nductorless Chua

More information

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane A New Scramblng Evaluaton Scheme based on Spatal Dstrbuton Entropy and Centrod Dfference of Bt-plane Lang Zhao *, Avshek Adhkar Kouch Sakura * * Graduate School of Informaton Scence and Electrcal Engneerng,

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Meteorological experience from the Olympic Games of Torino 2006

Meteorological experience from the Olympic Games of Torino 2006 Meteorologcal experence from the lympc Games of Torno 6 ARPA PIEMTE th CM General Meetng Moscow, 6- eptember ummary Multmodel general Theory Models & Varables Multmodel calculaton: case of precptaton Recommendatons

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Visual Attention Shift based on Image Segmentation Using Neurodynamic System

Visual Attention Shift based on Image Segmentation Using Neurodynamic System IJCSI Internatonal Journal of Computer Scence Issues, Vol. 8, Issue, January 20 ISSN (Onlne): 694-084 8 Vsual Attenton Shft based on Image Segmentaton Usng Neurodynamc System Ljuan Duan, Chunpeng Wu, Famng

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

Multiple Choice. Choose the one that best completes the statement or answers the question.

Multiple Choice. Choose the one that best completes the statement or answers the question. ECON 56 Homework Multple Choce Choose the one that best completes the statement or answers the queston ) The probablty of an event A or B (Pr(A or B)) to occur equals a Pr(A) Pr(B) b Pr(A) + Pr(B) f A

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOG (IJEET) Internatonal Journal of Electrcal Engneerng and Technology (IJEET), ISSN 976 6(Prnt), ISSN 976 6(Onlne) Volume, Issue, February (), pp.

More information

Basic concepts and definitions in multienvironment

Basic concepts and definitions in multienvironment Basc concepts and defntons n multenvronment data: G, E, and GxE Marcos Malosett, Danela Bustos-Korts, Fred van Eeuwk, Pter Bma, Han Mulder Contents The basc concepts: ntroducton and defntons Phenotype,

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Performing Modulation Scheme of Chaos Shift Keying with Hyperchaotic Chen System

Performing Modulation Scheme of Chaos Shift Keying with Hyperchaotic Chen System 6 th Internatonal Advanced echnologes Symposum (IAS 11), 16-18 May 011, Elazığ, urkey Performng Modulaton Scheme of Chaos Shft Keyng wth Hyperchaotc Chen System H. Oğraş 1, M. ürk 1 Unversty of Batman,

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

Networks of Neurons (Chapter 7)

Networks of Neurons (Chapter 7) CSE/NEUBEH 58 Networks of Neurons (Chapter 7) Drawng by Ramón y Cajal Today s Agenda F Computaton n Networks of Neurons Feedforward Networks: What can they do? Recurrent Networks: What more can they do?

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Problem Set 6: Trees Spring 2018

Problem Set 6: Trees Spring 2018 Problem Set 6: Trees 1-29 Sprng 2018 A Average dstance Gven a tree, calculate the average dstance between two vertces n the tree. For example, the average dstance between two vertces n the followng tree

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

Project 1 Modeling of Epidemics

Project 1 Modeling of Epidemics 532 Chapter 7 Nonlinear Differential Equations and tability ection 7.5 Nonlinear systems, unlike linear systems, sometimes have periodic solutions, or limit cycles, that attract other nearby solutions.

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Dynamic Systems on Graphs

Dynamic Systems on Graphs Prepared by F.L. Lews Updated: Saturday, February 06, 200 Dynamc Systems on Graphs Control Graphs and Consensus A network s a set of nodes that collaborates to acheve what each cannot acheve alone. A network,

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem Fndng he Rghtmost Egenvalues of Large Sparse Non-Symmetrc Parameterzed Egenvalue Problem Mnghao Wu AMSC Program mwu@math.umd.edu Advsor: Professor Howard Elman Department of Computer Scences elman@cs.umd.edu

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Data Assimilation Research Testbed Tutorial. Section 7: Some Additional Low-Order Models

Data Assimilation Research Testbed Tutorial. Section 7: Some Additional Low-Order Models Data Assimilation Research Testbed Tutorial Section 7: Some Additional Low-Order Models Version.: September, 6 /home/jla/dart_tutorial/dart/tutorial/section7/tut_section7.fm 1 7/13/7 Low-order models in

More information

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

10.34 Fall 2015 Metropolis Monte Carlo Algorithm 10.34 Fall 2015 Metropols Monte Carlo Algorthm The Metropols Monte Carlo method s very useful for calculatng manydmensonal ntegraton. For e.g. n statstcal mechancs n order to calculate the prospertes of

More information

Information-Geometric Studies on Neuronal Spike Trains

Information-Geometric Studies on Neuronal Spike Trains Computatonal Neuroscence ESPRC Workshop --Warwck Informaton-Geometrc Studes on Neuronal Spke Trans Shun-ch Amar Shun-ch Amar RIKEN Bran Scence Insttute Mathematcal Neuroscence Unt Neural Frng x1 x2 x3

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March TURBULENT FLOW A BEGINNER S APPROACH Tony Saad March 2004 http://tsaad.uts.edu - tsaad@uts.edu CONTENTS Introducton Random processes The energy cascade mechansm The Kolmogorov hypotheses The closure problem

More information

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels

Grand canonical Monte Carlo simulations of bulk electrolytes and calcium channels Grand canoncal Monte Carlo smulatons of bulk electrolytes and calcum channels Thess of Ph.D. dssertaton Prepared by: Attla Malascs M.Sc. n Chemstry Supervsor: Dr. Dezső Boda Unversty of Pannona Insttute

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Randomly Connected Networks Have Short Temporal Memory

Randomly Connected Networks Have Short Temporal Memory ARTICLE Communcated by John Hertz Randomly Connected Networks Have Short Temporal Memory Edward Wallace ewwallace@gmal.com Department of Bochemstry and Molecular Bophyscs, Unversty of Chcago, Chcago, IL

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Predator-Prey Dynamics for Rabbits, Trees, and Romance

Predator-Prey Dynamics for Rabbits, Trees, and Romance Predator-Prey Dynamcs for Rabbts, Trees, and Romance Julen Clnton Sprott Department of Physcs Unversty of Wsconsn - Madson sprott@physcs.wsc.edu.. Introducton The Lotka-Volterra equatons represent a smple

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION STATIC ANALYSIS OF TWO-LERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION Ákos József Lengyel István Ecsed Assstant Lecturer Emertus Professor Insttute of Appled Mechancs Unversty of Mskolc Mskolc-Egyetemváros

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

CIE4801 Transportation and spatial modelling Trip distribution

CIE4801 Transportation and spatial modelling Trip distribution CIE4801 ransportaton and spatal modellng rp dstrbuton Rob van Nes, ransport & Plannng 17/4/13 Delft Unversty of echnology Challenge the future Content What s t about hree methods Wth specal attenton for

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information