Recent Advances in the Low-Field NMR Characterization of Polymeric Soft Materials Kay Saalwächter

Size: px
Start display at page:

Download "Recent Advances in the Low-Field NMR Characterization of Polymeric Soft Materials Kay Saalwächter"

Transcription

1 Recent Advances in the Low-Field NMR Characterization of Polymeric Soft Materials Kay Saalwächter Low-resolution proton time-domain NMR Basic experiments and industrial applications - Chemometrics - NMR cryoporometry Advanced experiments Examples: - polymer crystallization - domain sizes in block copolymers - structure and dynamics of elastomers - gelation Conclusions

2 Time-domain NMR typical FID of a liquid or a rubber: T 2 * ms (1/πT 2 * 0.5 khz) shim- (B 0 homogeneity-) limited! compare: σ = 5 ppm 20 MHz 5 ppm = 100 Hz! most important aspect: initial FID intensity = integrated signal! FT

3 Mobility contrast reflected in the FID frequency domain rigid organic solid (crystalline, below T g ) ~ 20 khz liquid, oil, polymer melt, elastomer ~ Hz time domain ~ 10 µs ~ 500 µs (shim!) e.g. semicrystalline polymer, block copolymer Σ two-component decay food industry applications: solid fat content (SFC) in greases water content in bread

4 Manipulation by pulse sequences B 0 T 1 process B 0 90 pulse apparent rd FID T 2 process (B (recycle delay) 0 inhom.) more sophisticated experiments: rd some pulse (sequence) some other pulse (sequence) FID fast (MHz) dynamics: measure T 1 inversion recovery rd 180 pulse τ I = f(τ) slow (khz) dynamics: measure real T 2 Hahn echo (alt.: CPMG, multiple echoes) rd now also: more reliable separation of multiple mobile components! τ amplitude 180 pulse I = f(τ) τ fast decay intermediate decay slow decay time τ N

5 Other industrial applications Pharmaceutical Ind. Petroleum Industry Medical Research e.g. moisture in powders (free & bound) Consumer Products e.g. total hydrogen content of distillates e.g. live mice analyzer Polymer Applications e.g. fluoride in toothpaste

6 Chemometrics e.g., water, oil, and protein contents in seeds via T 1 or T 2 (inv.rec. or CPMG) amplitude fast decay intermediate decay slow decay multi-exponential fitting can be ambiguous! time idea: find sub-curves by linear-algebra techiques (principal-component analysis, PCA): K fixed time points N reference samples (known contents), a n data vectors to model an unknown a, T can often be a 2xK matrix, 2 principal components (PC1,2) and subcurves (p 1,2 ) are sufficient! eigenvectors (subcurves) n N p 1 p 2 k K A P PC1 0 0 PC2 0 0 T residuals, noise E

7 Applications of chemometrics oil seed treatment: water content of fish: T 1 H.T. Pedersen, L. Munck, S.B. Engelsen, J. Am. Oil Chem. Soc.. 77 (2000), T 2 S.M. Jepsen, H.T. Pedersen, S.B. Engelsen, J. Sci.. Food Agric.. 79 (1999),

8 NMR cryoporometry Gibbs-Thompson: melting point depression of a finite-sized crystal: d 1 simple experiment: π/2 π d 2 rd τ τ remaining liquid (water) signal = f(t) reconstruct pore size distribution! NMR gas sorption (BET) J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett.. 71 (1993),

9 NMR cryoporometry decomposition of pore-size mixtures: J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett.. 71 (1993),

10 Advanced experiments polymer crystallinity and amorphous-phase mobility: measure dipolar-refocused FID and T 2 MSE-CPMG rd MSE FID τ τ τ I = f(nτ) domain sizes: measure spin diffusion improveddipolarfilter sequence rd selection spin diffusion τ diff MSE I mobile = f(τ diff ) network structure and dynamics: measure weak dipolar rd couplings MQ experiment I = f(τ DQ excitation DQ reconversion ) DQ τ DQ τ DQ

11 1 H NMR detection of polymer crystallization an old quantification problem dead time! f τ d c f a traditional partial solution solid echo x τ se ± y t=0 t=0 advanced solution mixed magic τ CPMG φ sandwich 1 echo φ 4 τ' 2τ 2τ τ τ initial φ 4 τ CPMG φ 4 t=0 N /2 φ 2 φ 3 φ 3 φ 3 φ 3 -φ 3 -φ 3 -φ 3 -φ 3 φ 2 τ' τ φ 2 τ φ τ φ 2 τ φ 2 τ φ 2 τ φ 2 τ φ τ φ 2 τ φ τ φ τ n MSE n MSE A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

12 Isothermal crystallization kinetics on the minispec poly(ε-caprolactone) at 40 C φ c dead time! magic echo improved method: signal / a.u. φ a t=0 N FID-CPMG 2½ h delay / ms signal / a.u t=0 N crystallinity MSE-CPMG amorphous phase mobility delay / ms A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

13 Polymer crystallization: the problem

14 Polymer crystallization: spherulitic lamellar growth µm-mm scale: spherulites sub-µm scale: lamellae

15 Polymer crystallization: possible scenarios reeling-in, adjacent re-entry solidification model, fringed micelles, no large-scale diffusion new ideas: Olmsted et al. 1998: spinodal-like process? Strobl 2000: mesomorphic pre-phase?

16 Field (in)dependence and morphology effect spp crystallized at differect T c f c = 21.6% f c = 24.5% 20 MHz norm. intensity f m = 64% f m = 61% T 50% 0.43 ms 0.2 T 50% 0.28 ms 500 MHz norm. intensity time / ms f c = 20.6% f c = 23.4% f m = 64% f m = 63% T 50% 0.30 ms } 100 µs 200 µs T c = 388 K 400 µs 100 µs 200 µs } T c = 368 K 400 µs T 50% 0.54 ms clear influence of morphology! lower T c faster cryst., solidificationtype more confined chains, faster relaxation time / ms A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

17 Crystallization isotherms lin crystalline fraction f f c secondary crystallization 0.00 phenomenological time dependence: Avrami equation f c (θ)=f [1-exp{-(Kθ) n }] n: growth dimensionality +1 for cont. nucleation +?for in-filling processes log crystalline fraction f f c E-3 1E crystallization time θ / s A(θ) 20µs slope = 3 crystalline fraction immobilized fraction crystallization time θ / s f c f ra equal trends for crystalline and immobilized fractions no indication for a multi-stage process A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

18 Domain sizes in phase-separated polymers domain sizes: measure spin diffusion dipolar filter sequence rd selection spin diffusion τ diff MSE I mobile = f(τ diff ) phase-separated system with mobility contrast intensity / a.u τ diff -dependent FIDs: compensate for fast T 1 relaxation at 20 MHz onlypossiblewith full MSE refocussing! ms time / ms spin diffusion time 0.5 ms 9.2 ms 23.0 ms 39.7 ms 68.7 ms ms

19 Spin diffusion in lamellar copolymer systems selected soft (PB) fraction intensity [a.u.] 1,0 0,8 0,6 0,4 0, , sqrt(t) [sqrt(ms)] d (2/ π)[d soft = eff t s,0 m ] ½ ~ 14.3 nm (t s,0 m ) ½ soft fraction in blend 14.3 nm TEM SBS/PS 40/60 Blend correlation with macroscopic properties (e.g. clarity ) HOPS project w/ Y. Thomann, R. Mülhaupt, BASF

20 NMR in networks: chain order parameter b(t) n S(n)

21 Segmental dynamics in networks reference direction time-dependent orientation correlation function C α (t) = <f(α)> t,n,n α(t) log C α ~1% fast segmental motions (ns µs) slow, cooperative processes (ms s) (?) log time n network chains, N segments each residual average orientation ~ backbone order parameter S b (local!) dependent on N -1 (~ crosslink density) changes with mechanical deformation!

22 The order parameter descriptor of uniaxial orientational order: S = P 2 (cos α) α α S = 1 S 0.7 S 0 S = 0.5 (NMR: average... is over time!)

23 Dynamic averaging of NMR interactions dipolar coupling tensor D γ i γ j /r ij 3 B 0 τ c (T) D stat = D zz 30 khz! ± D(β) static spectrum D xx β D yy D zz intermediate τ c 1/D zz D res S b fast-limit spectrum

24 Why multiple-quantum spectroscopy? D res ~ S b real system vs. ~ 1/T 2 * T 2* subject to non-dipolar effects multi-spin couplings slowdynamics order distributions ppm ppm more specific experiment! static dipolar doublequantum spectroscopy τ DQ τ DQ DQ excitation DQ reconversion

25 ideal real Transverse relaxation vs. MQ spectroscopy dipolar time evolution Φ = (2/3) Φ D res P 2 (cos β) τ spectra rd τ FT τ I = f(τ) FID/Hahn echo I dip = <cos Φ > structure structure + dynamics rd 0.5 DQ excitation τ DQ DQ MQ experiment I ΣMQ = <sin 2 Φ> + <cos 2 Φ> I ΣMQ DQ = <sin 2 Φ> DQ ΣMQ: dynamics only! DQ reconversion τ DQ 0.5 I = f(τ DQ) ndq = DQ/ΣMQ: structure only! freq. time τ mobile impurities (sol )

26 Magnitude and time dependence of S b S b D res n n C(t) = (1-S b2 ) P 2 (cos α(0)) P 2 (cos α(t)) +S b 2 n ~ MHz-scale pre-averaging; quasi-static order: cross-link density, S 1/N chain stretching/swelling distributions! n n β(t) ~ khz-scale slow motions; loss of correlation: cross-link mobility (?) or reptation of linear chains C(t) = S b 2 P 2 (cos β(0)) P 2 (cos β(t)) intermediate dynamics!

27 DQ data analysis order paramters monomodal PDMS network (47k), unswollen K simulated spin system: DQ intensity K 340K CH 3 semi-analytical fitting function monomer unit excitation time τ DQ / ms Si α α C C D res = 130 Hz S 3% KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468

28 Model case for a heterogeneous microstructure bimodal end-linked PDMS networks 0.6 linear superpositions of experimental data for net0 and net100 DQ intensity best-fit (monomodal) excitation time τ DQ % short chains: net0 (monomodal) net10 net20 net30 net50 net70 net90 net100 / ms 3.5 PDMS precursors: long chains: 47k short chains: 0.8k KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468

29 Fitting of chain order distributions/heterogeneities integral inversion by Tikhonov regularization (Weese and Honerkamp, 1992) relative amplitude % 90% % 50% % % 10% 0 0% D res / Hz KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468 KS, J. Am. Chem. Soc. 125 (2003), 14684

30 Chain order distributions in natural rubber rel. amplitude NR-A1 NR-A2 NR-A4 NR-A10 gamma distribution = expected result for Gaussian statistics <r 2 >= n l 2 0 r l D res /2π / khz no indication for an influence of Gaussian chain statistics! network chain polydispersity (exponential distribution) does not appear either! cooperativity/packing reduces/homogenizes conformational space direct implications for chain entropy!! KS, B. Herrero, M. A. López-Manchado, Macromolecules 38 (2005)

31 Quantitative modelling: NMR vs. swelling crosslink density x c ~ 1/M c ~ 1/N ~ S b ~ D res 1/M c (NMR) / mol/kg 1/M c + 1/M e NR-A NR-B 1/M e, NR slope = 2.05±0.06 slope = /M c (swelling) / mol/kg natural rubber: NMR overestimates order twice rescaling yields consistent results (M te = 10 kg/mol) semi-quantitative elastomer characterization! problems at the detail level validity of the Kuhn length model? of single-chain concepts in general? 1/M c + 1/M te KS, B. Herrero, M. A. López-Manchado, Macromolecules 38 (2005)

32 Chain dynamics: the Andersen-Weiss model I Gaussian (2nd-moment) assumption DQ experiment: τ DQ Φ A τ DQ Φ B I DQ = < sin Φ A sin Φ B > I ΣMQ = < sin Φ A sin Φ B > + < cos Φ A cos Φ B > comparison: Hahn echo relaxometry: Φ A τ echo ΦB I Hahn = < cos (Φ A + Φ B )> Gaussian distribution of interaction frequencies (mainly from the powder distribution) approximation of the trigonometric functions, simplification of the ensemble average: I DQ = sinh{<φ A Φ B >} exp{ <Φ A2 >} I ΣMQ = exp{<φ A Φ B >} exp{ <Φ A2 >} I Hahn = exp{ ½<(Φ A + Φ B )>} Φ = (2/3) Φ = τ D res P 2 (cos β t ) dt D res P 2 (cos β) τ KS, J. Chem. Phys. 120 (2004) 454 KS, A. Heuer, Macromolecules 39 (2006)

33 Experimental test of the Andersen-Weiss model calculate theoretical 1 H Hahn echo decay from experimental MQ data (natural rubber, 3 phr sulfur, 20 MHz spectrometer) rel. intensity experimental Hahn echo theoretical Hahn echo 12 C 38 C 130 C normalized DQ build-up evolution time / ms KS, A. Heuer, Macromolecules 39 (2006)

34 Chain dynamics: the Andersen-Weiss model II e.g. I DQ = sinh{<φ A Φ B >} exp{ <Φ A2 >} with Φ A,B = τ D res P 2 (cos α t ) dt requires integration of C(t) = P 2 (cos α 0 )P 2 (cos α t ) log C α S b 2 fast segmental motions (ns µs) slow, cooperative processes (ms s) old model: neglect fast processes C(t) = S b2 P 2 (cos β 0 )P 2 (cos β t ) = S b2 exp{ τ DQ /τ s } log time

35 Slow dynamics: temperature dependence vulcanized natural rubber, 3 phr sulfur normalized DQ build-up I ndq = I DQ /I ΣMQ I ΣMQ : exp. sum intensity decay I DQ : exp. DQ build-up successful normalization procedure! norm. intensity norm. intensity K 340K 403K ΣMQ DQ DQ evolution time / ms DQ evolution time / ms KS, A. Heuer, Macromolecules 39 (2006)

36 Slow-motion model 1 order parameter S b 0.1 ndq DQ ΣMQ T 0.01 g = 213 K temperature / K expected plateau for D res from DQ-buildup unphysical result from sum intensity decay correlation time τ c / ms e-3 τ slow (DQ) τ slow (ΣMQ) T g = 213 K temperature / K complete disagreement between the different τ c unphysical temperature dependence (not activated?) KS, A. Heuer, Macromolecules 39 (2006)

37 Fast and slow dynamics ΣMQ DQ ndq log C α S b 2 fast segmental motions (ns µs) slow, cooperative processes (ms s) old model: neglect fast processes new model: consider fast processes! importance of slow processes? log time

38 Better models K SMQ DQ exponential correlation function C(t) = (1-S b2 ) exp{-t/τ fast } + S b 2 exp. cf. τ fast norm. intensity exp. cf. τ fast,τ slow power-law cf. exponential correlation function with slow decay C(t) = (1-S b2 ) exp{-t/τ fast } + S b2 exp{-t/τ slow } DQ evolution time / ms power-law correlation function C(t) = (1-S b2 ) (τ 0 /t) κ + S b 2 for t > τ 0 validity/fitting limit! KS, A. Heuer, Macromolecules 39 (2006)

39 Better models correlation time τ c / ms power-law onset τ 0 / ms e-3 1e e-3 1e-4 1e-5 1e-6 WLF fit T g = 213 K temperature / K exponential correlation function C(t) = (1-S b2 ) exp{-t/τ fast } + S b 2 1e e-8 T g = 213 K temperature / K τ slow (DQ) τ slow (ΣMQ) τ fast (sim. fit) power-law exponent κ no evidence for a slow process! KS, A. Heuer, Macromolecules 39 (2006)

40 Comparison with melt dynamics natural rubber, 3 phr sulfur (A3) vs. unvulcanized (lin) 1.0 NR-A3 NR-lin ndq norm. intensity ΣMQ DQ 285K ΣMQ DQ 403K NR-A3 NR-lin K DQ evolution time / ms DQ evolution time / ms DQ evolution time / ms no observable "plateau" value for S b influence of reptation dynamics! (isotropization on a timescale τ d ) KS, A. Heuer, Macromolecules 39 (2006)

41 Comparison of permanent networks and melts lin. poly(butadiene), 50% cis, 45% trans Graf, Heuer, Spiess, PRL 80 (1998) 5738 order parameter S b ~ entanglement level S b,e T - T g / K NR-A3 NR-A04 NR-lin unobservable due to reptation! segmental averaging at T = T g + 50K probes a length scale << a "local packing" (Doi-Edwards: a ~ entanglement length, associated with τ e ) slow segmental averaging, important when conformational space is large! no proper timescale separation (τ e, τ R, τ d )?

42 Study of gelation increasing crosslink density ω melt/solution percolation threshold elastomer rheology: F(ω) G(ω) η(ω)

43 Rheological determination of the gel point Winter/Chambon: gel point = loss tangent [ tan δ(ω) = ω η(ω)/g(ω) ] becomes independent of frequency tan δ gel point r = rad/s 31.5 rad/s 19.9 rad/s 12.6 rad/s 7.9 rad/s 5.0 rad/s 3.15 rad/s 2.00 rad/s 1.26 rad/s 0.79 rad/s 0.50 rad/s bulk crosslinking of PDMS, varying stoichiometric ratio r time consuming! r

44 norm. intensity Gel point by low-field MQ NMR single-point detection of residual couplings comparisonwithrheology (Winter/Chambon) quantitative analysis: sol fraction, network properties bimodal structure at low conversion ΣMQ sol ndq DQ evolution time / ms r = 0.36 r = 0.41 r = 0.47 r = r = 0.56 r = 0.62 r = 0.67 ndq 5 ms sol fraction statistical linking (vulcanization) E-3 PDMS 441 PDMS 424 noise 1E r PDMS 441 PDMS r end-linking KS, M. Gottlieb, R. Liu, W. Oppermann, Macromolecules 40 (2007)

45 gel points Gelation kinetics by low-field MQ NMR ndq 4 ms gel point time / s gelation time / s DLS NMR c = 0.05 g/ml c = 0.04 g/ml c = 0.03 g/ml c = 0.02 g/ml τ NMR polymer concentration / g/ml gelation time constant / s dilute solutions of P(S-co-AMS) in toluene-d 8 real-time measurement of DQ intensities comparisonwithdls quantitative NMR analysis: 13-50% network chains 56-43% dangl. chains, loops, microgels 31-7% mobile sol KS, M. Gottlieb, R. Liu, W. Oppermann, Macromolecules 40 (2007)

46 Conclusions low field but high-end science easy set-up: insert sample, adjust gain, offset and 90 pulse, start polymer crystallinity, morphology, crystallization kinetics domain structures in block-copolymers in-depth elastomer characterization, new polymer physics detailed insights into gelation

47 Thanks very much... Andreas Maus Christopher Hertlein, G. Strobl (U Freiburg) Yi Thomann, R. Mülhaupt (U Freiburg) Jens-Uwe Sommer (ICSI Mulhouse/IPF Dresden) A. Vidal, B. Haidar, P. Ziegler, O. Spyckerelle (ICSI) Berta Herrero, M.A. López-Manchado (ICPT-CSIC, Madrid) Moshe Gottlieb (U of the Negev, Beer Sheva) Ruigang Liu, W. Oppermann (TU Clausthal) Landesstiftung Baden-Württemberg, DFG (SFBs 428 & 418), Fonds der Chemischen Industrie

Artifacts in Transverse Proton NMR Relaxation Studies of Elastomers. M(t) ) A exp{-t/t. B exp{-t/t 2B } + C exp{-t/t 2C } (1) qm 2 ) 9 (2)

Artifacts in Transverse Proton NMR Relaxation Studies of Elastomers. M(t) ) A exp{-t/t. B exp{-t/t 2B } + C exp{-t/t 2C } (1) qm 2 ) 9 (2) 1508 Macromolecules 2005, 38, 1508-1512 Artifacts in Transverse Proton NMR Relaxation Studies of Elastomers Kay Saalwa1 chter Institut für Makromolekulare Chemie, Universität Freiburg, Stefan-Meier-Str.

More information

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers Yefeng Yao, Robert Graf, Hans Wolfgang Spiess Max-Planck-Institute for Polymer Research, Mainz, Germany Leibniz Institut

More information

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham Structure, dynamics and heterogeneity: solid-state NMR of polymers Jeremy Titman, School of Chemistry, University of Nottingham Structure, dynamics and heterogeneity Structure Dynamics conformation, tacticity,

More information

3 Proton NMR on Cross-linked Polymers

3 Proton NMR on Cross-linked Polymers 3 Proton NMR on Cross-linked Polymers The type of molecular motion of a polymer sample is encoded in the shape of the transversal relaxation (T ) curve. T is therefore sensitive to the physical environment

More information

Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy

Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy Macromolecules 2009, 42, 263-272 263 Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy J. L. Valentín,*,, D. López, R. Hernández, C. Mijangos, and K. Saalwächter

More information

Chain Mobility in Crosslinked EPDM Rubbers. Comparison of 1 H NMR T 2 Relaxometry and Double-Quantum 1 H NMR

Chain Mobility in Crosslinked EPDM Rubbers. Comparison of 1 H NMR T 2 Relaxometry and Double-Quantum 1 H NMR Chapter 13 Chain Mobility in Crosslinked EPDM Rubbers. Comparison of 1 H NMR T 2 Relaxometry and Double-Quantum 1 H NMR Downloaded by Pieter Magusin on October 24, 2011 http://pubs.acs.org Pieter C. M.

More information

Polymer Dynamics in PEG-Silica Nanocomposites: Effects of Polymer Molecular Weight, Temperature and Solvent Dilution

Polymer Dynamics in PEG-Silica Nanocomposites: Effects of Polymer Molecular Weight, Temperature and Solvent Dilution pubs.acs.org/macromolecules Polymer Dynamics in PEG-Silica Nanocomposites: Effects of Polymer Molecular Weight, Temperature and Solvent Dilution So Youn Kim,, Henriette W. Meyer, Kay Saalwa chter,*, and

More information

Multiple-quantum NMR studies of polymer chain dynamics

Multiple-quantum NMR studies of polymer chain dynamics Multiple-quantum NMR studies of polymer chain dynamics Kay Saalwächter 1, 1 Institut für Physik NMR, Martin-Luther-Universität Halle-Wittenberg, D-612 Halle, Germany (Dated: September 1, 216) Multiple-quantum

More information

Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR

Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR 9650 Macromolecules 2005, 38, 9650-9660 Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR Kay Saalwa1 chter* Institut für Makromolekulare Chemie, Universität

More information

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends 4 Spin-echo, Spin-echo ouble Resonance (SEOR and Rotational-echo ouble Resonance (REOR applied on polymer blends The next logical step after analyzing and concluding upon the results of proton transversal

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Swelling Heterogeneities in End-Linked Model Networks: A Combined Proton Multiple-Quantum NMR and Computer Simulation Study

Swelling Heterogeneities in End-Linked Model Networks: A Combined Proton Multiple-Quantum NMR and Computer Simulation Study 8556 Macromolecules 2004, 37, 8556-8568 Swelling Heterogeneities in End-Linked Model Networks: A Combined Proton Multiple-Quantum NMR and Computer Simulation Study Kay Saalwa1 chter* and Felix Kleinschmidt

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

Author's personal copy

Author's personal copy Solid State Nuclear Magnetic Resonance 34 (2008) 125 141 Contents lists available at ScienceDirect Solid State Nuclear Magnetic Resonance journal homepage: www.elsevier.com/locate/ssnmr Spin-diffusion

More information

In situ Experiments in Material Science:

In situ Experiments in Material Science: In situ Experiments in Material Science: Rheo-Saxs, Rheo-Dielectric, Rheo-NMR, In situ-nmr Prof. Dr. M. Wilhelm Institute of Chemical and Polymer Chemistry Manfred.Wilhelm@kit.edu Fourier Transform-Rheology

More information

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks]

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] Using various chemistry, one can chemically crosslink polymer chains. With sufficient cross-linking, the polymer

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Quantification of Dynamics in the Solid-State

Quantification of Dynamics in the Solid-State Bernd Reif Quantification of Dynamics in the Solid-State Technische Universität München Helmholtz-Zentrum München Biomolecular Solid-State NMR Winter School Stowe, VT January 0-5, 206 Motivation. Solid

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites Supporting Information for Dynamics of Architecturally Engineered All- Polymer Nanocomposites Erkan Senses,,,,* Madhusudan Tyagi,, Madeleine Pasco, Antonio Faraone,* NIST Center for Neutron Research, National

More information

Trans-States-Repulsion Scenario of polymer crystallization

Trans-States-Repulsion Scenario of polymer crystallization Trans-States-Repulsion Scenario of polymer crystallization S. Stepanow University of Halle, Dept. Phys., D-06099 Halle, Germany 1. What is polymer crystallization? 1.1 Nucleation theories 2. The trans-states-repulsion

More information

Author's personal copy

Author's personal copy Journal of Magnetic Resonance 212 (2011) 204 215 Contents lists available at ScienceDirect Journal of Magnetic Resonance journal homepage: www.elsevier.com/locate/jmr BaBa-xy16: Robust and broadband homonuclear

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Dependence of Order and Dynamics in Polymers and Elastomers under Deformation Revealed by NMR Techniques

Dependence of Order and Dynamics in Polymers and Elastomers under Deformation Revealed by NMR Techniques Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXI International Meeting on Radio and Microwave Spectroscopy RAMIS 2005, Poznań-Bȩdlewo, Poland, April 24 28, 2005 Dependence of Order

More information

Table 1 Types of solvents with spherical and linear molecules absorbed in EPDM and the mass uptake Q w. EPDM rubber with various solvents (60 phr)

Table 1 Types of solvents with spherical and linear molecules absorbed in EPDM and the mass uptake Q w. EPDM rubber with various solvents (60 phr) normalized distributions normalized distributions Scientific report related to the implementation of project: Structure-dynamics-properties relationships and aging effects in nanocomposite elastomers and

More information

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR Robert Graf Max-Planck-Institut für Polymerforschung Mainz March 2 nd, 2005 Max Planck Institute for Polymer Research founded

More information

An Introduction to Polymer Physics

An Introduction to Polymer Physics An Introduction to Polymer Physics David I. Bower Formerly at the University of Leeds (CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xii xv 1 Introduction 1 1.1 Polymers and the scope of the book

More information

LOW-FIELD NMR STUDIES OF STRUCTURE AND DYNAMICS IN SEMICRYSTALLINE POLYMERS

LOW-FIELD NMR STUDIES OF STRUCTURE AND DYNAMICS IN SEMICRYSTALLINE POLYMERS LOW-FIELD NMR STUDIES OF STRUCTURE AND DYNAMICS IN SEMICRYSTALLINE POLYMERS Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) vorgelegt dem Institut für Physik der Naturwissenschaftlichen

More information

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory The Positive Muon as a Probe in Chemistry Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory I.McKenzie@rl.ac.uk µsr and Chemistry Properties of atoms or molecules containing

More information

Chapter 7. Entanglements

Chapter 7. Entanglements Chapter 7. Entanglements The upturn in zero shear rate viscosity versus molecular weight that is prominent on a log-log plot is attributed to the onset of entanglements between chains since it usually

More information

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS CHAPTER 8 MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS Reproduced with permission from: Li, B.; Esker, A. R. Molar Mass Dependent Growth of Poly(ε-caprolactone) Crystals

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber

Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber Macromolecules 2008, 41, 4717-4729 4717 Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber J. L. Valentín,*,, J. Carretero-González, I. Mora-Barrantes,

More information

Multi-scale studies of elastomer materials (in a tire tread) TERATEC 2013 Materials Science Session B. Schnell

Multi-scale studies of elastomer materials (in a tire tread) TERATEC 2013 Materials Science Session B. Schnell Multi-scale studies of elastomer materials (in a tire tread) TERATEC 13 Materials Science Session B. Schnell TERATEC - 6/6/13 Page : 1 / 7 Tire description A tire : a highly functional structure composed

More information

Supporting Information for

Supporting Information for Supporting Information for Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8 exploring the Li ion dynamics in LGPS Li electrolytes Alexander Kuhn, a Viola Duppel a and Bettina V. Lotsch* a,b a Max Planck Institute

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

1 General Introduction

1 General Introduction 1 General Introduction The topic of this thesis is the characterization of elastic phase in polymer blends by means of Solid-State Nuclear Magnetic Resonance Spectroscopy. In this chapter, after motivating

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews Advanced Quadrupolar NMR Sharon Ashbrook School of Chemistry, University of St Andrews Quadrupolar nuclei: revision single crystal powder ST 500 khz ST ω 0 MAS 1 khz 5 khz second-order broadening Example:

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Summary of 1D Experiment time domain data Fourier Transform (FT) frequency domain data or Transverse Relaxation Ensemble of Nuclear

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Dynamics from NMR Show spies Amide Nitrogen Spies Report On Conformational Dynamics Amide Hydrogen Transverse Relaxation Ensemble

More information

Notes. Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory (1) 3π 2 k B T D(T)N (2)

Notes. Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory (1) 3π 2 k B T D(T)N (2) 134 Macromolecules 2001, 34, 134-139 Notes Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory Oleksiy Byutner and Grant D. Smith* Department

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

CHARACTERIZATION OF INTERACTION BETWEEN OIL/BRINE/ROCK UNDER DIFFERENT ION CONDITIONS BY LOW FIELD SOLID-STATE NMR

CHARACTERIZATION OF INTERACTION BETWEEN OIL/BRINE/ROCK UNDER DIFFERENT ION CONDITIONS BY LOW FIELD SOLID-STATE NMR SCA2016-077 1/6 CHARACTERIZATION OF INTERACTION BETWEEN OIL/BRINE/ROCK UNDER DIFFERENT ION CONDITIONS BY LOW FIELD SOLID-STATE NMR Shijing XU 1, Xiaoliang WANG 2, Weifeng LV 1, Qingjie LIU 1, Jiazhong

More information

Filled elastomer mechanics and polymer dynamics modification near surfaces

Filled elastomer mechanics and polymer dynamics modification near surfaces Collaboration D. Long, PSotta (LPMA/ Lyon France) K. Saalwaechter (Halle) J. Oberdisse ( Montpellier France) S. Cantournet ( Ecole des Mines) A. Dequidt (I Chimie, Clermont ferrand ) Filled elastomer mechanics

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Alex Bain 1, Christopher Anand 2, Zhenghua Nie 3 1 Department of Chemistry & Chemical Biology 2 Department

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

Spin Track TD-NMR Spectrometer. Applications and Instrumentation Review

Spin Track TD-NMR Spectrometer. Applications and Instrumentation Review Spin Track TD-NMR Spectrometer Applications and Instrumentation Review "Spin Track" Time-Domain (TD) NMR spectrometer is a high quality time-domain NMR instrument with wide range of applications, advanced

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: dcdtbt vibration spectrum: Ground state blue vs Cation state red Intensity a.u. 1000 1100 1200 1300 1400 1500 1600 1700 Frequency cm^1 dcdtbt vibration spectrum: Ground state blue

More information

ALGORITHM OF ANALYSE OF SPIN-SPIN RELAXATION IN POLYBUTADIENE-C 6 H 12 AND POLYBUTADIENE-C 6 D 12 SOLUTIONS

ALGORITHM OF ANALYSE OF SPIN-SPIN RELAXATION IN POLYBUTADIENE-C 6 H 12 AND POLYBUTADIENE-C 6 D 12 SOLUTIONS ALGORITHM OF ANALYSE OF SPIN-SPIN RELAXATION IN POLYBUTADIENE-C 6 H 12 AND POLYBUTADIENE-C 6 D 12 SOLUTIONS M. Todica Babes-Bolyai University, Faculty of Physics, 3400 Cluj-Napoca. Abstract The comparative

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers r NMR Spectroscopy of Polymers Edited by ROGER N. IBBETT Courtaulds Research and Technology Coventry BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow New York Tokyo Melbourne

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Investigation of Molecular Structure of the Cortex of Wool Fibers

Investigation of Molecular Structure of the Cortex of Wool Fibers Investigation of Molecular Structure of the Cortex of Wool Fibers (Seed Project) Principal investigator: Mark Liff, Philadelphia University Participants: Ronald McNamara, University of Pennsylvania Michael

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

Protein Dynamics Relaxation techniques

Protein Dynamics Relaxation techniques Protein Dynamics Relaxation techniques Daniel Mathieu Bruker Users Meeting 2016, Karlsruhe Innovation with Integrity Proteins aren t exactly rock solid 10.11.2016 Users meeting 2016 2 Characterizing Dynamic

More information

Glass Transition as the Rheological Inverse of Gelation

Glass Transition as the Rheological Inverse of Gelation NNF Summer reading group, July 18 th 2017 Glass Transition as the Rheological Inverse of Gelation ACS Macromolecules 46, 2425-2432 (2013) H Henning Winter Department of Chemical Engineering and Department

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

Guideline for Rheological Measurements

Guideline for Rheological Measurements Guideline for Rheological Measurements Typical Measurements, Diagrams and Analyses in Rheology www.anton-paar.com General Information: = Measurement = Diagram = Analysis Important Rheological Variables:

More information

NUCLEAR MAGNETIC RESONANCE. Introduction. Vol. 10 NUCLEAR MAGNETIC RESONANCE 637

NUCLEAR MAGNETIC RESONANCE. Introduction. Vol. 10 NUCLEAR MAGNETIC RESONANCE 637 Vol. 10 NUCLEAR MAGNETIC RESONANCE 637 NUCLEAR MAGNETIC RESONANCE Introduction An important objective in materials science is the establishment of relationships between the microscopic structure or molecular

More information

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich, Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel N. A. Sergeev,

More information

Ion Transport in Dynamic Polymer Networks based on Metal-Ligand Coordination: Effect of Crosslinker Concentration Supporting Information

Ion Transport in Dynamic Polymer Networks based on Metal-Ligand Coordination: Effect of Crosslinker Concentration Supporting Information Ion Transport in Dynamic Polymer Networks based on Metal-Ligand Coordination: Effect of Crosslinker Concentration Supporting Information Gabriel E. Sanoja, 1, 2, Nicole S. Schauser, 3, Joshua M. Bartels,

More information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. +Vasiliev(Turku) 31 P NMR at low temperatures ( down to

More information

Supporting Information. Controlled Structure Evolution of Graphene Networks in Polymer Composites

Supporting Information. Controlled Structure Evolution of Graphene Networks in Polymer Composites Supporting Information Controlled Structure Evolution of Graphene Networks in Polymer Composites Stephen C. Boothroyd,,# David W. Johnson,,# Michael P. Weir, Carl D. Reynolds, James M. Hart, Andrew J.

More information

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) Polymers 1 Polymers Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) 2 If we consider a series of chains = 0 Except when i = j, and

More information

Polymer Gels. Boulder Lectures in Soft Matter Physics July 2012 Yitzhak Rabin

Polymer Gels. Boulder Lectures in Soft Matter Physics July 2012 Yitzhak Rabin Polymer Gels Boulder ectures in Soft Matter Physics July Yitzhak abin M. ubinstein and.h. Colby, Polymer Physics (Oxford, ), Chapters 6 and 7 P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell,

More information

Suspended Long-Lived NMR Echo in Solids

Suspended Long-Lived NMR Echo in Solids Suspended Long-Lived NMR Echo in Solids A. Turanov 1 and A.K. Khitrin 2 1 Zavoisky Physical-Technical Institute RAS, Kazan, 420029, Russia 2 Department of Chemistry, Kent State University, OH 44242, USA

More information

Polymer Physics MSE 458 / CHEM 482 Spring 2018

Polymer Physics MSE 458 / CHEM 482 Spring 2018 Polymer Physics MSE 458 / CHEM 482 Spring 2018 Instructor: Prof. A.L. Ferguson 204 MSEB (217) 300-2354 alf@illinois.edu Grader: Class: Location: 4101 MSEB Time: 2:00 3:20 pm Days: T, Th Sections: A3 (CRN-38260)

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

New Developments in Rheology for Reactive Processing

New Developments in Rheology for Reactive Processing New Developments in Rheology for Reactive Processing Philippe CASSAGNAU Laboratoire des Matériaux Polymères et Biomatériaux IMP: Ingénierie des Matériaux Polymères Université Claude Bernard Lyon 1 France

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides Mark S. Conradi Washington University Department of Physics St. Louis, MO 63130-4899 USA msc@physics.wustl.edu 1 Uses of Nuclear

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

Dynamics of Poly(vinyl butyral) studied by Dielectric Spectroscopy and

Dynamics of Poly(vinyl butyral) studied by Dielectric Spectroscopy and Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Dynamics of Poly(vinyl butyral) studied by Dielectric Spectroscopy and 1 H NMR

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange A McDermott, Columbia University Winter School in Biomolecular NMR, Stowe VT January 20-23 2008 Effects on NMR Spectra: Local,

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

H NMR Studies of Molecular Dynamics. Basis Seminar on June 25th by Cornelius Friedrichs

H NMR Studies of Molecular Dynamics. Basis Seminar on June 25th by Cornelius Friedrichs 2 H NMR Studies of Molecular Dynamics Basis Seminar on June 25th by Cornelius Friedrichs Outline 1. IntroducDon to 2 H nuclei 2. MoDons 3. SimulaDon of 2 H spectra 4. Line shape analysis in 1D spectra

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS 241 MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS Andrzej Kolinski,* Jeffrey Skolnick t and Robert Yaris Department of Chemistry, Washington University, St. Louis, MO 63130 ABSTRACT We present

More information

Molecular Dynamics in geometrical confinement F. Kremer

Molecular Dynamics in geometrical confinement F. Kremer Molecular Dynamics in geometrical confinement F. Kremer Coauthors: A. Huwe Universität Leipzig L. Hartmann Universität Leipzig A. Serghei Universität Leipzig A. Gräser Universität Chemnitz S. Spange Universität

More information