Particle in Uniform Electric or Gravitational Field

Size: px
Start display at page:

Download "Particle in Uniform Electric or Gravitational Field"

Transcription

1 Particle in Uniform Electric or Gravitational Field particle charge mass electron q e = e m e = kg proton q p = +e m p = kg neutron q n = m n = kg Elementar charge: e = C. Electric field equation of motion: F = m a force law: F = q E acceleration: a = (q/m) E E q q n = F e p F p F n = q e Gravitational field equation of motion: F = m a g m m m p n e force law: F = m g acceleration: a = g F p F n F e 1/9/215 [tsl24 1/15]

2 Projectile Motion in Electric Field electrostatic force: F = F = ee equation of motion: acceleration: a = velocit: v (t) = v cos θ F = me a a = e m e E a v (t) = v sin θ at position: (t) = v [cos θ]t (t) = v [sin θ]t 1 2 at2 height: h = v2 2a sin2 θ range: R = v2 a sin(2θ) m e qe = e v θ R h E 1/9/215 [tsl26 2/15]

3 Cathode Ra Tube 1/9/215 [tsl419 3/15]

4 Particle Projected Perpendicular to Uniform Electric Field A charged particle (m = 3kg, q = 1µC) is launched at t = with initial speed v = 2m/s in an electric field of magnitude E = N/C as shown. m q E 1m 1m v (a) Find the position of the particle at t 1 = 3s. (b) B what angle does the velocit vector turn between t = and t 1 = 3s? 1/9/215 [tsl27 4/15]

5 Particles Accelerated b Uniform Electric Field A uniform electric field E = N/C eists in the bo. (a) A charged particle of mass m 1 = kg is released from rest at = 3cm, =. It eits the bo at = 3cm, = 6cm after a time t 1 = s. Find the charge q 1. (b) A second charged particle of mass m 2 = kg is projected from position =, = 3cm with initial speed v = m/s. It eits the bo at = 3.9cm, = 6cm. Find the charge q 2. 6 [cm] 4 q 2 E 2 v 2 q [cm] 1/9/215 [tsl28 5/15]

6 Action and Reaction due to Coulomb Interaction Two particles with masses m 1, m 2 and charges q 1, q 2 are released from rest a distance r apart. We consider the following four distinct configurations: (a) m 1 = 1kg, m 2 = 1kg, q 1 = 1C, q 2 = 1C (b) m 1 = 1kg, m 2 = 1kg, q 1 = 1C, q 2 = 2C (c) m 1 = 1kg, m 2 = 2kg, q 1 = 1C, q 2 = 1C (d) m 1 = 1kg, m 2 = 2kg, q 1 = 1C, q 2 = 2C m 1 r q 1 m 2 q 2 Anwer the following questions for each configuration: (1) Is the force eperienced b particle 1 smaller than or equal to or larger than the force eperienced b particle 2? (2) Is the acceleration of particle 1 smaller than or equal to or larger than the acceleration of particle 2? 1/9/215 [tsl29 6/15]

7 Particle in Uniform Electric and Gravitational Field (1) A proton, a neutron, and an electron are dropped from rest in a vertical gravitational field g and in a horizontal electric field E as shown. Both fields are uniform. p n e g E h (a) Which particle travels the shortest distance? (b) Which particle travels the longest distance? (c) Which particle travels the shortest time? (d) Which particle reaches the highest speed? 1/9/215 [tsl25 7/15]

8 Particle in Uniform Electric and Gravitational Field (2) A proton, a neutron, and an electron are dropped from rest in a vertical gravitational field g and in a horizontal electric field E as shown. Both fields are uniform. g E (a) Which particle travels the shortest distance? (b) Which particle travels in a straight line? (c) Which particle travels the shortest time? (d) Which particle reaches the highest speed? e n p h h 1/9/215 [tsl42 8/15]

9 Is the Faster also the Quicker? Charged particles 1 and 2 are released from rest in a uniform electric field. (a) Which particle moves faster when it hits the wall? (b) Which particle reaches the wall more quickl? d = 2m 1 m = 1kg 1 q = 2C 1 E = 4N/C d = 1m 2 m = 1kg 2 q = 1C 2 1/9/215 [tsl372 9/15]

10 Intermediate Eam I: Problem #3 (Spring 6) Consider a region of uniform electric field as shown. A charged particle is projected at time t = with initial velocit as shown. Ignore gravit. (a) Find the components a and a of the acceleration at time t =. (b) Find the components v and v of the velocit at time t =. (c) Find the components v and v of the velocit at time t = 1.2s. (d) Find the components and of the position at time t = 1.2s. m =3g q = 6mC v = 2m/s 1/9/215 [tsl35 1/15]

11 Intermediate Eam I: Problem #3 (Spring 6) Consider a region of uniform electric field as shown. A charged particle is projected at time t = with initial velocit as shown. Ignore gravit. (a) Find the components a and a of the acceleration at time t =. (b) Find the components v and v of the velocit at time t =. (c) Find the components v and v of the velocit at time t = 1.2s. (d) Find the components and of the position at time t = 1.2s. Solution: (a) a = q m E = C kg (5N/C) = 1m/s2, a =. m =3g q = 6mC v = 2m/s 1/9/215 [tsl35 1/15]

12 Intermediate Eam I: Problem #3 (Spring 6) Consider a region of uniform electric field as shown. A charged particle is projected at time t = with initial velocit as shown. Ignore gravit. (a) Find the components a and a of the acceleration at time t =. (b) Find the components v and v of the velocit at time t =. (c) Find the components v and v of the velocit at time t = 1.2s. (d) Find the components and of the position at time t = 1.2s. Solution: (a) a = q m E = C kg (5N/C) = 1m/s2, a =. (b) v =, v = v = 2m/s. m =3g q = 6mC v = 2m/s 1/9/215 [tsl35 1/15]

13 Intermediate Eam I: Problem #3 (Spring 6) Consider a region of uniform electric field as shown. A charged particle is projected at time t = with initial velocit as shown. Ignore gravit. (a) Find the components a and a of the acceleration at time t =. (b) Find the components v and v of the velocit at time t =. (c) Find the components v and v of the velocit at time t = 1.2s. (d) Find the components and of the position at time t = 1.2s. Solution: (a) a = q m E = C kg (5N/C) = 1m/s2, a =. (b) v =, v = v = 2m/s. (c) v = a t = (1m/s 2 )(1.2s) = 12m/s, v = v = 2m/s. m =3g q = 6mC v = 2m/s 1/9/215 [tsl35 1/15]

14 Intermediate Eam I: Problem #3 (Spring 6) Consider a region of uniform electric field as shown. A charged particle is projected at time t = with initial velocit as shown. Ignore gravit. (a) Find the components a and a of the acceleration at time t =. (b) Find the components v and v of the velocit at time t =. (c) Find the components v and v of the velocit at time t = 1.2s. (d) Find the components and of the position at time t = 1.2s. Solution: (a) a = q m E = C kg (5N/C) = 1m/s2, a =. (b) v =, v = v = 2m/s. (c) v = a t = (1m/s 2 )(1.2s) = 12m/s, v = v = 2m/s. m =3g q = 6mC v = 2m/s (d) = 1 2 a t 2 =.5(1m/s 2 )(1.2s) 2 = 7.2m, = v t = (2m/s)(1.2s) = 2.4m. 1/9/215 [tsl35 1/15]

15 Unit Eam I: Problem #3 (Spring 7) Consider two regions of uniform electric field as shown. Charged particles of mass m = 2kg and charge q = 1C are projected at time t = with initial velocities as shown. Both particles will hit the screen eventuall. Ignore gravit. (a) At what time t 1 does the particle in region (1) hit the screen? (b) At what height 1 does the particle in region (1) hit the screen? (c) At what time t 2 does the particle in region (2) hit the screen? (d) At what height 2 does the particle in region (2) hit the screen? v = 2m/s (1) (2) screen v = 2m/s screen 8m 8m 1/9/215 [tsl361 11/15]

16 Unit Eam I: Problem #3 (Spring 7) Consider two regions of uniform electric field as shown. Charged particles of mass m = 2kg and charge q = 1C are projected at time t = with initial velocities as shown. Both particles will hit the screen eventuall. Ignore gravit. (a) At what time t 1 does the particle in region (1) hit the screen? (b) At what height 1 does the particle in region (1) hit the screen? (c) At what time t 2 does the particle in region (2) hit the screen? (d) At what height 2 does the particle in region (2) hit the screen? Solution: (a) 1 = 1 2 at2 1 with a = q m E = 2.5m/s2, 1 = 8m t 1 = 2.53s. v = 2m/s (1) (2) screen v = 2m/s screen 8m 8m 1/9/215 [tsl361 11/15]

17 Unit Eam I: Problem #3 (Spring 7) Consider two regions of uniform electric field as shown. Charged particles of mass m = 2kg and charge q = 1C are projected at time t = with initial velocities as shown. Both particles will hit the screen eventuall. Ignore gravit. (a) At what time t 1 does the particle in region (1) hit the screen? (b) At what height 1 does the particle in region (1) hit the screen? (c) At what time t 2 does the particle in region (2) hit the screen? (d) At what height 2 does the particle in region (2) hit the screen? Solution: (a) 1 = 1 2 at2 1 with a = q m E = 2.5m/s2, 1 = 8m t 1 = 2.53s. (b) 1 = v t 1 = 5.6m. v = 2m/s (1) (2) screen v = 2m/s screen 8m 8m 1/9/215 [tsl361 11/15]

18 Unit Eam I: Problem #3 (Spring 7) Consider two regions of uniform electric field as shown. Charged particles of mass m = 2kg and charge q = 1C are projected at time t = with initial velocities as shown. Both particles will hit the screen eventuall. Ignore gravit. (a) At what time t 1 does the particle in region (1) hit the screen? (b) At what height 1 does the particle in region (1) hit the screen? (c) At what time t 2 does the particle in region (2) hit the screen? (d) At what height 2 does the particle in region (2) hit the screen? Solution: (a) 1 = 1 2 at2 1 with a = q m E = 2.5m/s2, 1 = 8m t 1 = 2.53s. (b) 1 = v t 1 = 5.6m. (c) 2 = v t 2 t 2 = 8m 2m/s = 4s. v = 2m/s (1) (2) 8m screen v = 2m/s 8m screen 1/9/215 [tsl361 11/15]

19 Unit Eam I: Problem #3 (Spring 7) Consider two regions of uniform electric field as shown. Charged particles of mass m = 2kg and charge q = 1C are projected at time t = with initial velocities as shown. Both particles will hit the screen eventuall. Ignore gravit. (a) At what time t 1 does the particle in region (1) hit the screen? (b) At what height 1 does the particle in region (1) hit the screen? (c) At what time t 2 does the particle in region (2) hit the screen? (d) At what height 2 does the particle in region (2) hit the screen? Solution: (a) 1 = 1 2 at2 1 with a = q m E = 2.5m/s2, 1 = 8m t 1 = 2.53s. (b) 1 = v t 1 = 5.6m. (c) 2 = v t 2 (d) 2 = 1 2 at2 2 = 2m. t 2 = 8m 2m/s = 4s. v = 2m/s (1) (2) 8m screen v = 2m/s 8m screen 1/9/215 [tsl361 11/15]

20 Electric Dipole Field L E E + q +q p E =» kq ( L/2) 2 kq ( + L/2) 2 ( + L/2) 2 = kq ( L/2) 2 ( L/2) 2 ( + L/2) 2 2kqL 3 = 2kp 3 (for L) = 2kqL ( 2 L 2 /4) 2 Electric dipole moment: p = q L Note the more rapid deca of the electric field with distance from an electric dipole ( r 3 ) than from an electric point charge ( r 2 ). The dipolar field is not radial. 1/9/215 [tsl23 12/15]

21 Water Molecule 1/9/215 [tsl51 13/15]

22 Force and Torque on Electric Dipole The net force on an electric dipole in a uniform electric field vanishes. However, this dipole eperiences a torque τ = p L that tends to align the vector p with the vector E. Now consider an electric dipole that is alread aligned (locall) with a nonuniform electric field. This dipole eperiences a net force that is alwas in the direction where the field has the steepest increase. 1/9/215 [tsl328 14/15]

23 Electric Quadrupole Field L = L E E + +q 2q +q p p 2 1 E = = kq 2 kq ( L) 2 + kq ( + L) 2 + k( 2q) kqL2 4 2L + 3L2 2 + = 3kQ 4 (for L) = kq 2 1 " 1 L 2L + 3L2 2 q « L «# 2 2 «2 +q Electric quadrupole moment: Q = 2qL 2 Different quadrupole configuration: L L +q q. 1/9/215 [tsl327 15/15]

02. Electric Field II

02. Electric Field II Universit of Rhode Island DigitalCommons@URI PHY 24: Elementar Phsics II Phsics Course Materials 215 2. Electric Field II Gerhard Müller Universit of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Electric Potential of Charged Rod

Electric Potential of Charged Rod Electric Potential of Charged Rod Charge per unit length: λ = Q/L y dq = λ d Charge on slice d: dq = λd dv d L Electric potential generated by slice d: dv = kdq = kλd Electric potential generated by charged

More information

Work and Energy. v f. v i. F(x ) F(x ) x f. Consider a block of mass m moving along the x-axis. Conservative force acting on block: F = F(x) Z xf

Work and Energy. v f. v i. F(x ) F(x ) x f. Consider a block of mass m moving along the x-axis. Conservative force acting on block: F = F(x) Z xf Work and Energy Consider a block of mass m moving along the x-axis. Conservative force acting on block: F = F(x) Work done by F(x) on block: W if = Kinetic energy of block: K = 1 2 mv2 Potential energy

More information

( ) 2 ( kg) ( 9.80 m/s 2

( ) 2 ( kg) ( 9.80 m/s 2 Chapitre 1 Charges et champs électriques [9 au 1 mai] DEVOIR : 1.78, 1.84, 1.56, 1.90, 1.71 1.1. Charge électrique et structure de la matière À lire rapidement. Concepts déjà familiers. 1.. Conducteurs,

More information

Chapter 27. Gauss s Law

Chapter 27. Gauss s Law Chapter 27 Gauss s Law Electric Flux Field lines penetrating an area A perpendicular to the field The product of EA is the flux, Φ In general: Φ E = E A sin θ Electric

More information

CHAPTER 22. The Electric Field I: Discrete Charge Distributions

CHAPTER 22. The Electric Field I: Discrete Charge Distributions CHAPTER 1* If the sign convention for charge were changed so that the charge on the electron were positive and the charge on the proton were negative, would Coulomb's law still be written the same? Yes

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

PHYS102 Previous Exam Problems. Electric Fields

PHYS102 Previous Exam Problems. Electric Fields PHYS102 Previous Exam Problems CHAPTER 22 Electric Fields Electric field Point charge in an electric field Electric dipole 1. Two identical charges, each of charge Q, are positioned at points A (5.0 m,

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Electric Fields, Dipoles and Torque Challenge Problem Solutions

Electric Fields, Dipoles and Torque Challenge Problem Solutions Electric Fields, Dipoles and Torque Challenge Problem Solutions Problem 1: Three charges equal to Q, +Q and +Q are located a distance a apart along the x axis (see sketch). The point P is located on the

More information

2. E A 3. E A 4. E A 5. E A

2. E A 3. E A 4. E A 5. E A west (mrw3223) HW 23 lyle (16001) 1 This print-out should have 32 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Reading assignment: Hecht

More information

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References Phys102 Lecture 2 Phys102 Lecture 2-1 Coulomb s Law Key Points Coulomb s Law The electric field (E is a vector!) References SFU Ed: 21-5,6,7,8,9,10. 6 th Ed: 16-6,7,8,9,+. Phys102 Lecture 2 Phys102 Lecture

More information

Lecture 2 Electric Fields Ch. 22 Ed. 7

Lecture 2 Electric Fields Ch. 22 Ed. 7 1 2 Lecture 2 Electric Fields Ch. 22 Ed. 7 Cartoon - Analogous to gravitational field Topics Electric field = Force per unit Charge Electric Field Lines Electric field from more than 1 charge Electric

More information

05. Electric Potential I

05. Electric Potential I University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 05. Electric Potential I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the 1) A small sphere with a mass of 441 g is moving upward along the vertical +y-axis when it encounters

More information

(a) What is the magnitude of the electric force between the proton and the electron?

(a) What is the magnitude of the electric force between the proton and the electron? .3 Solved Problems.3. Hydrogen Atom In the classical model of the hydrogen atom, the electron revolves around the proton with a radius of r = 053. 0 0 m. The magnitude of the charge of the electron and

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

Physics 2020: Sample Problems for Exam 1

Physics 2020: Sample Problems for Exam 1 Physics 00: Sample Problems for Eam 1 1. Two particles are held fied on the -ais. The first particle has a charge of Q 1 = 6.88 10 5 C and is located at 1 = 4.56 m on the -ais. The second particle has

More information

Uniform Electric Fields

Uniform Electric Fields Uniform Electric Fields The figure shows an electric field that is the same in strength and direction at every point in a region of space. This is called a uniform electric field. The easiest way to produce

More information

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

Physics 22: Homework 1

Physics 22: Homework 1 Physics 22: Homework 1 The following problems encompass the topics of charge, as well as electrostatic forces, torques, and fields. 1. What is the total charge of all the electrons in 1.2 mol of diatomic

More information

Test Review FQ3eso_U5_4_Electric field_test_review

Test Review FQ3eso_U5_4_Electric field_test_review Test Review FQ3eso_U5_4_Electric field_test_review Identify the letter of the choice that best completes the statement or answers the question. 1.- In which diagram do the field lines best represent the

More information

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force Exercises Question.: What is the force between two small charged spheres having charges of 2 0 7 C and 3 0 7 C placed 30 cm apart in air? Answer.: Repulsive force of magnitude 6 0 3 N Charge on the first

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

27 the electric field

27 the electric field 27 the electric field With every point in space near the earth we can associate a gravitational field vector g (see Eq. 16-12). This is the gravitational acceleration that a test body, placed at that point

More information

Solutions Midterm Exam 1 October 3, surface. You push to the left on the right block with a constant force F.

Solutions Midterm Exam 1 October 3, surface. You push to the left on the right block with a constant force F. Problem 1 (2.5 points) Two blocks of mass m 1 and m 3, connected by a rod of mass m 2, are sitting on a frictionless surface. You push to the left on the right block with a constant force F. What is the

More information

Phys 102 Lecture 3 The Electric field

Phys 102 Lecture 3 The Electric field Phys 102 Lecture 3 The Electric field 1 Today we will... Learn about the electric field Apply the superposition principle Ex: Dipole, line of charges, plane of charges Represent the E field using electric

More information

Lecture 2 Electric Fields Chp. 22 Ed. 7

Lecture 2 Electric Fields Chp. 22 Ed. 7 Lecture Electric Fields Chp. Ed. 7 Cartoon - Analogous to gravitational field Warm-up problems, Physlet Topics Electric field Force per unit Charge Electric Field Lines Electric field from more than 1

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

PHYS 1444 Section 02. Lecture #3

PHYS 1444 Section 02. Lecture #3 PHYS 1444 Section 0 Chapter 1 Electric Fields Electric Dipoles Lecture #3 Tuesday Jan 5, 011 Dr. Andrew Brandt Homework on Ch 1 is due 9pm Thursday, Jan. 7 1 Angle: After calculating magnitudes, take x+y

More information

Problems set # 2 Physics 169 February 11, 2015

Problems set # 2 Physics 169 February 11, 2015 Prof. Anchordoqui Problems set # 2 Phsics 169 Februar 11, 2015 1. Figure 1 shows the electric field lines for two point charges separated b a small distance. (i) Determine the ratio q 1 /q 2. (ii) What

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

LECTURE 13 ELECTRIC FIELDS. Instructor: Kazumi Tolich

LECTURE 13 ELECTRIC FIELDS. Instructor: Kazumi Tolich LECTURE 13 ELECTRIC FIELDS Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 19.4 to 19.5. Electric field Electric field lines Electric field 3 If a charge q " experiences an electric force F at a

More information

Questions Chapter 22 Electric Fields

Questions Chapter 22 Electric Fields Questions Chapter 22 Electric Fields 22-1 What is Physics? 22-2 The Electric Field 22-3 Electric Field Lines 22-4 Electric Field due to a Point Charge 22-5 Electric Field due to an Electric Dipole 22-6

More information

Phys 102 Lecture 3 The Electric field

Phys 102 Lecture 3 The Electric field Phys 102 Lecture 3 The Electric field 1 Today we will... Learn about the electric field Apply the superposition principle Ex: Dipole, line of charges, plane of charges Represent the E field using electric

More information

Physics The Motion of Charged Particles in Electric Fields Figure 1 use considerations of energy to analyze its motion Figure 2

Physics The Motion of Charged Particles in Electric Fields Figure 1 use considerations of energy to analyze its motion Figure 2 Physics 12 The Motion of Charged Particles in Electric Fields In Figure 1, the charge q 1 experiences a Coulomb force, to the right in this case, whose magnitude is given by It simply means that if q 1,

More information

Physics Worksheet Electrostatics, Electric Fields and Potential Section: Name: Electric Charges

Physics Worksheet Electrostatics, Electric Fields and Potential Section: Name: Electric Charges Electric Charges 1. The fundamental rule of all electrical phenomena is: Like charges, opposite charges 2. Thomson s cathode ray experiment proved that: _ 3. Millikan s oil drop experiment proved that:

More information

PHY 2049 FALL 2000 EXAM 1

PHY 2049 FALL 2000 EXAM 1 PHY 09 FALL 000 EXAM 1 1. Figure below shows three arrangements of electric field lines. A proton is released from point X. It is accelerated by the electric field toward point Y. Points X and Y have eual

More information

( ) 2. = kq 1 q 2 r 2. Analysis: F E. k q 1. Solution: F E % 8.99!10 9 ( (1.00!10 )4 C )(1.00!10 )5 C ) $ (2.00 m) 2 F E

( ) 2. = kq 1 q 2 r 2. Analysis: F E. k q 1. Solution: F E % 8.99!10 9 ( (1.00!10 )4 C )(1.00!10 )5 C ) $ (2.00 m) 2 F E Section 7.: Coulomb s Law Tutorial 1 Practice, page 33 1. Given: q 1 1.00 10 4 C; q 1.00 10 5 C; r.00 m; k 8.99 10 9 N m /C Required: Analysis: Solution: # N m % 8.99 10 9 ( (1.00 10 )4 C )(1.00 10 )5

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

and Discrete Charge Distributions

and Discrete Charge Distributions Module 03: Electric Fields and Discrete Charge Distributions 1 Module 03: Outline Review: Electric Fields Charge Dipoles 2 Last Time: Gravitational & Electric Fields 3 Gravitational & Electric Fields SOURCE:

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

21.4 Electric Field and Electric Forces

21.4 Electric Field and Electric Forces 21.4 Electric Field and Electric Forces How do charged particles interact in empty space? How do they know the presence of each other? What goes on in the space between them? Body A produces an electric

More information

Chapter 21 Electric Charge and Electric Field

Chapter 21 Electric Charge and Electric Field Chapter 21 Electric Charge and Electric Field 21-1 Static Electricity; Electric Charge and Its Conservation Objects can be charged by rubbing 21-1 Static Electricity; Electric Charge and Its Conservation

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

Phys 102 Lecture 4 Electric potential energy & work

Phys 102 Lecture 4 Electric potential energy & work Phys 102 Lecture 4 Electric potential energy & work 1 Today we will... Learn about the electric potential energy Relate it to work Ex: charge in uniform electric field, point charges Apply these concepts

More information

PAPER 1 EXAM QUESTIONS 28 October 2014

PAPER 1 EXAM QUESTIONS 28 October 2014 PAPER 1 EXAM QUESTIONS 28 Octobe014 Lesson Description In this lesson we revise: Forces and Newton s Laws Light Electrostatics Electric Circuits Challenge Question Two point charges, Q and Q, a distance

More information

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get

More information

Physics 12 January 2004 Provincial Examination

Physics 12 January 2004 Provincial Examination Physics 12 January 2004 Provincial Examination ANSWER KEY / SCORING GUIDE Organizers CURRICULUM: Sub-Organizers 1. Vector Kinematics in Two Dimensions A, B and Dynamics and Vector Dynamics C, D 2. Work,

More information

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number. Name: Physics Chapter 16 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: e = 1.6"10 #19 C mass electron = 9.11"10 #31

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

Near the surface of the earth, we agreed to call the force of gravity of constant.

Near the surface of the earth, we agreed to call the force of gravity of constant. Electric Fields 1. A field 2. Field lines 3. The Electric Field 4. Field from a dipole 5. Line charge 6. Other configurations Near the surface of the earth, we agreed to call the force of gravity of constant.

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field? EXERCISES Conceptual Questions 1. Explain why a neutral object can be attracted to a charged object. Why can this neutral object not be repelled by a charged object? 2. What is the function of an electroscope?

More information

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Magnetic Field Lecture 13 Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 28 Magnetic Fields In this chapter we will cover the following topics:

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

Motion of Charged Particles in Electric Fields. Part A Motion of a charged particle due to the presence of another charged particle

Motion of Charged Particles in Electric Fields. Part A Motion of a charged particle due to the presence of another charged particle Motion of Charged Particles in Electric Fields We will be looking at two situations in which a charged particle is moving in an electric field. The first situation occurs when the motion of the charged

More information

ELASTIC STRINGS & SPRINGS

ELASTIC STRINGS & SPRINGS ELASTIC STRINGS & SPRINGS Question 1 (**) A particle of mass m is attached to one end of a light elastic string of natural length l and modulus of elasticity 25 8 mg. The other end of the string is attached

More information

Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate.

Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate. Electrostatics Test Review Hons. All work must be shown,including givens, equations used, and units. Draw diagrams as appropriate. 1. If a charged rod A attracts another rod B, you can conclude that a.

More information

Chapter 21 Electric Charge and the Electric Field

Chapter 21 Electric Charge and the Electric Field Chapter 21 Electric Charge and the Electric Field 1 Electric Charge Electrostatics is the study of charges when they are stationery. Figure 1: This is Fig. 21.1 and it shows how negatively charged objects

More information

Samples of solutions to conceptual problems from chapter 18 Cutnell & Johnson 7E

Samples of solutions to conceptual problems from chapter 18 Cutnell & Johnson 7E Samples of solutions to conceptual problems from chapter 8 Cutnell & Johnson. A metallic object is given a positive charge by the process of induction, as illustrated in Figure 8.8. (a) Does the mass of

More information

Problem Solving Session 1: Electric Dipoles and Torque

Problem Solving Session 1: Electric Dipoles and Torque MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving Session 1: Electric Dipoles and Torque Section Table (if applicable) Group Members Introduction: In the first problem you

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

AP* Electrostatics Free Response Questions

AP* Electrostatics Free Response Questions AP* Electrostatics Free Response Questions 1987 Q2 Object I, shown above, has a charge of +3 10 6 coulomb and a mass of 0.0025 kilogram. (a) What is the electric potential at point P, 0.30 meter from object

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

01. Introduction and Electric Field I

01. Introduction and Electric Field I University of Rhode Island DigitalCommons@URI PHY 204: lementary Physics II Physics Course Materials 2015 01. Introduction and lectric Field I Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

Supplemental Questions 12U

Supplemental Questions 12U Supplemental Questions 12U Gravitational, Electric and Magnetic Fields Questions A satellite of mass 5.00x10² kg is in a circular orbit of radius 2r around Earth. Then it is moved to a circular orbit radius

More information

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C 1. The figure below shows 4 point charges located on a circle centered about the origin. The exact locations of the charges on the circle are not given. What can you say about the electric potential created

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

Phys 0175 Midterm Exam II Solutions Feb 25, m e te rs

Phys 0175 Midterm Exam II Solutions Feb 25, m e te rs Phys 075 Midterm Eam II Solutions Feb 25, 2009. (6 pts) Locations F and G are just outside two uniformly charged large metal plates, which are 3 cm apart. Measured along the path indicated by the dotted

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

4 r 2. r 2. Solved Problems

4 r 2. r 2. Solved Problems CHAP. 24] COULOMB'S LAW AND ELECTRIC FIELDS 233 AN ELECTRIC FIELD is said to exist at any point in space when a test charge, placed at that point, experiences an electrical force. The direction of the

More information

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012 Electrostatics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the

More information

Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin.

Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin. Coordinator: Saleem Rao Monday, May 01, 2017 Page: 1 Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin. A) 1.38

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

Physics 208 Exam 1 Oct. 3, 2007

Physics 208 Exam 1 Oct. 3, 2007 1 Name: Student ID: Section #: Physics 208 Exam 1 Oct. 3, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed

More information

Introductory Physics for Scientists and Engineers (II) PHY2049

Introductory Physics for Scientists and Engineers (II) PHY2049 Introductory Physics for Scientists and Engineers (II) PHY2049 Beatriz Roldán Cuenya Department of Physics, University of Central Florida http://physics.ucf.edu/~roldan Book: University Physics (Vol 2),

More information

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions PHY2049 Spring 2009 Profs. D. Acosta, A. Rinzler, S. Hershfield Exam 1 Solutions 1. What is the flux through the right side face of the shown cube if the electric field is given by E = 2xî + 3yĵ and the

More information

Council of Student Organizations De La Salle University Manila

Council of Student Organizations De La Salle University Manila Council of Student Organizations De La Salle University Manila PHYENG2 Quiz 1 Problem Solving: 1. (a) Find the magnitude and direction of the force of +Q on q o at (i) P 1 and (ii) P 2 in Fig 1a below.

More information

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 Name: Date: 1. A loop of current-carrying wire has a magnetic dipole moment of 5 10 4 A m 2. The moment initially is aligned

More information

PH 222-3A Spring 2007

PH 222-3A Spring 2007 PH -3A Spring 7 ELECTRIC FIELDS Lectures,3 Chapter (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter Electric Fields In this chapter we will introduce the concept of an electric

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Electric fields are responsible for the electric currents that flow through your computer and the nerves in your body. Electric fields also line up polymer molecules to form the images in a liquid crystal

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

Physics 11 Fall 2012 Practice Problems 6

Physics 11 Fall 2012 Practice Problems 6 Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Change the following questions to an ADDITION problem. 1. 4m E 6m W km N 5.0 km E m/s S 7.0 m/s S 3.

Change the following questions to an ADDITION problem. 1. 4m E 6m W km N 5.0 km E m/s S 7.0 m/s S 3. Change the following questions to an ADDITION problem. 1. 4m E 6m W 1. 2. 16.0 km N 5.0 km E 2. 3. 15 m/s S 7.0 m/s S 3. Solve the following. Show the vectors being added and the resultant vector (VR).

More information

Electric Force and Electric Field Practice Problems PSI AP Physics 1

Electric Force and Electric Field Practice Problems PSI AP Physics 1 Electric Force and Electric Field Practice Problems PSI AP Physics 1 Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

(ii) no horizontal force acting (1) (hence) no (horizontal) acceleration (1) [or correct application of Newton s First law] 3

(ii) no horizontal force acting (1) (hence) no (horizontal) acceleration (1) [or correct application of Newton s First law] 3 1. (a) (i) P Q (ii) no horizontal force acting (1) (hence) no (horizontal) acceleration (1) [or correct application of Newton s First law] 3 (1) (b) (i) (use of v 2 = u 2 + 2as gives) 32 2 = (0) + 2 9.81

More information

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets.

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets. Chapter Problems Magnetic Fields 1. Draw the Magnetic Field lines created by the below bar magnet. S N 2. Draw the Magnetic Field lines created by the below two bar magnets S N N S 3. Draw the Magnetic

More information

Physics 208, Spring 2016 Exam #2

Physics 208, Spring 2016 Exam #2 Physics 208, Spring 2016 Exam #2 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES.

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES. !! www.clutchprep.com CONCEPT: HOW MAGNETS WORK Forever ago we found metals that would attract each other. First found in island of Magnesia named. - Most common are iron (Fe), cobalt (Co), nickel (Ni),

More information

Physics 2049 Exam 1 Spring 2002

Physics 2049 Exam 1 Spring 2002 Physics 49 Exam 1 Spring q r1 q1 r13 q3 1. In the figure q 1 = 3µC, q = 4µC, q 3 = 5µC, r 1 = 9m, r 13 = 1m. Compute the magnitude of the total force on q 3. F 3NET = F 31 + F 3 = kq 3q 1 î + kq ( 3q )

More information

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1

Phys102 Second Major-133 Zero Version Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Coordinator: A.A.Naqvi Tuesday, August 05, 2014 Page: 1 Q1. igure 1 shows four situations in which a central proton (P) is surrounded by protons or electrons fixed in place along a half-circle. The angles

More information