Mixtures, I. Hard Sphere Mixtures*

Size: px
Start display at page:

Download "Mixtures, I. Hard Sphere Mixtures*"

Transcription

1 Proceedings of the Natioruil Academy of Scienccs Vol. 67, No. 4, pp , December 1970 One- and Two-Fluid van der Waals Theories of Liquid Mixtures, I. Hard Sphere Mixtures* Douglas Henderson and Peter J. Leonardt IBM RE-llSEARCH LABORATORY, SAN JOSE, CALIFORNIA 95114; AND DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA Communicated by Henry Eyring, September 23, 1970 Abstract. The equation of state of a mixture of hard spheres is calculated using the one- and two-fluid van der Waals theories and the three-fluid theory. The one-fluid theory is found to be in the best agreement with the machinesimulation results. In the course of writing a review article1 on the theory of liquid mixtures, we found that there has been virtually no systematic examinations of the many theories of mixtures that have been proposed. This has been because until recently the results of a theory could only be compared with experimental results; unfortunately, for these experimental systems, the interaction between the unlike molecules is not well known. As a result, in comparison with experiment the depth, E12, of the interaction between unlike molecules is taken to be an adjustable parameter. The excess thermodynamic properties are extremely sensitive to small changes in 812; hence, a number of the current theories of mixtures all fit experimental data with about equal success and with values of 812 that are both reasonable and very similar. Fortunately, recent quasi-experimental simulation studies on computers2-7 have provided data that can be used in a systematic study of the theory of liquid mixtures. In earlier papers8'9 we examined perturbation theory. In this note, we examine the so-called one- and two-fluid van der Waals (vdwl and vdw2) theories10-13 and the three-fluid theory14 for hard-sphere mixtures. Hard-sphere mixtures are extremely useful for testing theories of fluid mixtures because of their relative simplicity. However, this usefulness seems not to be fully appreciated. For example, Leland et al. have made extensive tests of the vdwl and vdw2 theories for experimental systems12'13 but made no test of these theories for hard-sphere mixtures even though the simulation results2-4 were available at the time. This is unfortunate because the comparison with experiment does not distinguish between these theories, whereas comparison with the simulation results for hard-sphere mixtures clearly shows the vdw1 theory to be the better. Some years ago Salsburg and Fickett15 examined hard-sphere mixtures and considered a theory which is equivalent, for hard-sphere mixtures, to the vdw1 theory. However, the results of the vdw2 theory and a comparison of the vdw1 and vdw2 theories have Ilot been reported elsewhere. 1818

2 VOL. 67, 1970 LIQUID-MIXTURE THEORIES 1819 One-fluid van der Waals Theory. The simplest and most widely used theories of liquid mixtures are those based on the principle of corresponding states The idea behind these theories is that if two substances separately obey this principle, their mixture may also be expected to obey it as if the mixture were a singlecomponent fluid (which we call the equivalent fluid) characterized by some suitable (composition-dependent) average potential parameter. In their further development, the corresponding states theories consider ideal mixtures of two (or even three) pseudo-components. The most successful of the corresponding states theories is that of Leland et al.9-1' which has come to be referred to as the van der Waals (vdw) theory although it is not tied to the vdw equation of state. To avoid confusion with theories based on the vdw equation of state we refer to the one- and two-fluid versions of this theory as the vdwl and vdw2 theories, respectively. We consider a binary mixture of N, hard spheres of diameter ala (species 1) and N2 hard spheres of diameter 0a22 (species 2) occupying a volume V. The potential energy of this system consists of a sum of intermolecular potentials, V(ri,.. rn) = Ej U(ai, aj; Rij), ii (1) where ai = 1 or 2 if molecule i is of species 1 or 2, Rij = Iri -rj, u(x,m;r) =uxy(r) = + o R<<dd =0 R>uf, (2) anid 012 = 1/2(ll + 022). (3) It is possible to consider nonadditive hard sphere mixtures where a12 is not given by (3). However, no simulation results are available for such systems. Thus, we consider only additive hard-sphere mixtures. Consider the well-known pressure equation for a hard-sphere mixture: pv 2 r NkT = p (4) where N = N, + N2, xi = Ni/N, p = N/V, and the gij(o-s) are the pair distribution functions of the mixture when hard spheres of species i and j are in contact. It should be kept in mind that the UgA are functions of the xi, p, and 022/0,, as well as oij even though we have not explicitly shown this. We now look for an approximation which will enable us to express this in terms of the properties of one or more pure substances. The most immediate suggestion is 5tsj(oij) = g(u) (5) for all i and j. Thus, pv 2r NkT Epy()ZXiXjaij'. (6) NkT =1+3~~~~~~~~i

3 1820 PHYSICS: HENDERSON AND LEONARD PROC. N. A. S. Eq. (6) is in one-fluid form if we interpret g(o) as the distribution function at contact corresponding to a fluid in which cr3 = E XjXjaij. (7) Once a has been chosen, the thermodynamic properties may be calculated from: A(p)/NkT = 0(pau) - 3 in af (8) or G(p)/NkT = 41(pa3/kT) - 3 in a, (9) where the functions 4 and V/ are determined from the equation of a single-component hard-sphere fluid. It is often asserted that (8) and (9) are equivalent. They are in the sense that they produce the same isotherm. That is, if we solve (8) for p by iterating until it gives the experimental p we obtain the same p that comes directly from substituting the experimental p into (9) and solving for p. In this note we use (8) and (9) in this manner and so we do obtain the same results from either (8) or (9). However, it is common to use (8) and (9) in another manner. We can fix p and calculate p from (8) or we can fix p and calculate p. When used in this manner, (8) and (9) may not give equivalent results. This can be seen in Fig. 1 p FIG. 1. Typical isotherm of a fluid A mixture at high densities. The solid line Pexpt - -is the experimental isotherm at constant concentration and the dotted line is the vdwl prediction. Pexpt P where we see that using (8) and fixing p = Pexpt we calculate point B with error in pressure AB while fixing p = pexpt and using (9) we calculate C with error in density AC. For hard spheres bp/bp > 1 and for most experimental situations bp/?p >> 1. Thus AB > AC for most applications and (9) is to be preferred to (8) even though there is only one unambiguous isotherm. In Fig. 1 we have compared the equations of state of a hard-sphere mixture for which U22/U11 = 5/3 computed from (7) and (8) and the Ree-Hoover'6 singlecomponent hard-sphere isotherms with the simulation results.2 The agreement is quite good.

4 VOL. 67, 1970 LIQUID-MIXTURE THEORIES 1821 Other possible mixing rules that can be used in place of (7) are: 3= E xoii3 (10) and a = Exixjeyij = E xffii, (11) where we have assumed that (3) is satisfied. The results of (10) and (11) when used with (8) and the Ree-Hoover isotherm are plotted in Fig. 1. Neither (10) nor (11) yields results as good as those obtained from (7). Eqs. (7) and (8) give the vdwl prescription for calculating the properties of a hard-sphere mixture. We shall see that the vdwl theory provides the best agreement with the simulation results. Two-Fluid van der Waals Theory. A two-fluid theory"3 can be obtained from (4) by means of the approximation 912(al2) = '/2{gn1(all) + 922(a22)}. (12) Thus, (4) becomes pv 27r NkT = 1 + fpe xici3'gii(yjj). (13) The gej are not the same in the mixture as in the pure fluid. In order that each term in (13) be of pure-fluid form we must assume that gin is the distribution function corresponding to a pure hard-sphere fluid with diameter Ad given by at3 = Ex.a3 (14) Thus, we have the vdw2 approximation: the equation of state is that of an ideal mixture of two pure-hard-sphere fluids whose diameter is given by (14). The question arises as to whether the mixing is at constant density, i.e., A (p)/nkt = xi in xi + E x,(pa3) - 3 x it in ot, (15) or at constant pressure, i.e., G(p)/NkT = xi in xi + E x4(pa3/kt) - 3 E xi in as. (16) In the vdwl approximation, we saw that mixing at constant density or at constant pressure gave the same isotherm. This is not the case in the vdw2 approximation. In practice we find that (16) gives better results than (15). Also p,t are the more natural variables for a theory of mixtures. Eqs. (14) and (15) [or (16)] give the vdw2 prescription for calculating the properties of a hard-sphere mixture. In Fig. 2, the results of the vdw1 and the vdw2 theories for a hard-sphere mixture for which a22/all = 5/3 are compared with the simulation results.2 The constant p version of the vdw2 theory is better than the constant p version, but neither is as good as the vdw1 theory.

5 1822 PHYSICS: HENDERSON AND LEONARD PROC. N. A. S. 6 ~ ~~I ~ 022/01 5/=l / Eq.(7) 4/- Eq.(10),',/ /,' FIG. 2. Equation of state of a hardz //,/ Eq.( 11) sphere mixture for o022/0'i1 = 5/3 and xi = >_2 /, = 1/2. The points give the simulation // 7 results (ref. 2) and the curves give the // _ o results calculated from Eqs. (7), (10), 2 ~ ~,' ~and (1 1) p Three-Fluid Theory. Scott'4 has observed that (4) is already in pure-fluid form if we assume that the gqi are equal in the mixture to their values in the respective pure fluids, and that g12(r) corresponds to that of a hard-sphere fluid with diameter 0'12. Once again we will find that the constant pressure version, G(p)NkT = xi in xi + E xixj,(pcj1/kt) - 3 E xixj In atj, (17) i ii ii is better than the constant density version, A(p)/NkT xxi in xi + E x-xj0(pa j3)-3 E xixj In aij (18) i ii ii In Fig. 3 the results of the three-fluid theory for hard-sphere mixtures for which 022/Tall = 5/3 are compared with the simulation results2 and with the vdwl and vdw2 results. The constant p version is better than the constant p version, but neither is as good as are the vdw1 and vdw2 results. Summary. We would like to emphasize that the simulation results are much more useful than the experimental results in assessing the relative merits of theories. For example, all three theories (Fig. 2) are about equally satisfactory in reproducing the experimental results"3" 7 (if E12 is adjusted), whereas comparison with the simulation results for hard-sphere mixtures shows the vdw1 results to be best. The vdw1 theory is clearly the best of the theories we have considered. In addition, the fact that the vdwl theory introduces no ambiguities between constant pressure and constant density makes it preferable to the other two theories. To our knowledge, this is the first paper to point out the superiority of the vdwl theory. However, the vdwl theory does not have a fully sound basis. The derivation of the vdw1 theory gives no insight into why the vdw1 theory yields better

6 VOL. 67, 1970 LIQUID-MIXTURE THEORIES F /, vdw2 022/a, 1=5/3// / /vdwl 4 _ / ///_ 4-~~~~I FIG. 3. Equation of state of a hardsphere mixture for o-22/c = 5/3 andx=xi x2= 1/2. The points give the simulation / /W2&3F results (ref. 2), the solid curves give the > constant pressure vdwl, vdw2, and three-fluid-theory results, and the broken curves give the constant density 2- vdw2 and three-fluid-theoryresults. X results than the vdw2 theory. Indeed, the derivation of the vdw2 theory would lead one to expect it to be an improvement over the vdw1 theory. In fact, it is still widely so regarded. But, even if the vdw1 theory cannot be put on a fully sound basis, it is a very useful approach. It is easy to use and gives very good results. Abbreviation: vdw1 and 2, van der Waals theories (one- and two-fluid, respectively). * Supported in part by grants from the Department of the Interior, Office of Saline Water, and the National Research Council of Canada. t National Research Council of Canada postdoctoral fellow. Present address: Department of Chemistry, University of Manchester, Manchester, England. 1 Henderson, D., and P. J. Leonard, in Physical Chemistry-An Advanced Treatise, eds. H. Eyring, D. Henderson, and W. Jost (New York: Academic Press, in press) vol. 8, chap Smith, E. B., and K. R. Lea, Trans. Faraday Soc., 59, 1535 (1963). 3 Alder, B. J., J. Chem. Phys., 40, 2724 (1964). 4Rotenberg, A., J. Chem. Phys., 43, 4377 (1965). 5 Singer, K., Chem. Phys. Lett., 3, 165 (1969). 6 Singer, J. V. L., and K. Singer, Mol. Phys. 19, 279 (1970). 7McDonald, I. R., Chem. Phys. Lett., 3, 241 (1969). 8 Henderson, D., and J. A. Barker, J. Chem. Phys., 49, 3377 (1968). 9Leonard, P. J., D. Henderson, and J. A. Barker, Trans. Faraday Soc., 66,2439 (1970). 10 Leland, T. W., Jr., P. S. Chappelear, and B. W. Gamson, Amer. Inst. Chem. Eng. J., 8, 482 (1962). 11 Leland, T. W., Jr., and P. S. Chappelear, Ind. Eng. Chem., 60, no. 7, 15 (1968). 12 Leland, T. W., Jr., J. S. Rowlinson, and G. A. Sather, Trans. Faraday Soc., 64, 1447 (1968). 13 Leland, T. W., Jr., J. S. Rowlinson, G. A. Sather, and I. D. Watson, Trans. Faraday Soc., 65, 2034 (1969). 14 Scott, R. L., J. Chem. Phys., 25, 193 (1956). 15 Salsburg, Z. W., and W. Fickett, Los Alamos Scientific Laboratory Report La-2667, Los Alamos, N.M. (1962). 16 Ree, F. H., and W. G. Hoover, J. Chem. Phys., 40, 939 (1964). 17 Rowlinson, J. S., Liquids and Liquid Mixtures, 2nd ed. (London: Butterworths, 1969).

RESEARCH NOTE. DOUGLAS HENDERSON? Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah USA

RESEARCH NOTE. DOUGLAS HENDERSON? Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah USA MOLECULAR PHYSICS, 1999, VOL. 96, No. 7, 1145-1149 RESEARCH NOTE A simple theory for the partial molar volumes of a binary mixture DOUGLAS HENDERSON? Department of Chemistry and Biochemistry, Brigham Young

More information

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Fluid Phase Equilibria 178 (2001) 87 95 Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Jian Chen a,, Jian-Guo Mi

More information

Theory of infinite dilution chemical potential

Theory of infinite dilution chemical potential Fluid Phase Equilibria Journal Volume 85, 141-151, 1993 141 Esam Z. Hamada and G.Ali Mansoorib, * a Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi

More information

NpT-ensemble Monte Carlo calculations for binary liquid mixtures

NpT-ensemble Monte Carlo calculations for binary liquid mixtures MOLECULAR PHYSICS, 1972, VOL. 23, No. 1, 41-58 NpT-ensemble Monte Carlo calculations for binary liquid mixtures by I. R. McDONALD Department of Chemistry, Royal Holloway College (University of London),

More information

Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory s statistical theory and hard sphere models

Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory s statistical theory and hard sphere models PRAMANA c Indian Academy of Sciences Vol. 70, No. 4 journal of April 2008 physics pp. 731 738 Speeds of sound and isothermal compressibility of ternary liquid systems: Application of Flory s statistical

More information

Variational Approach to the Equilibrium Thermodynamic Properties of Simple Liquids. I*

Variational Approach to the Equilibrium Thermodynamic Properties of Simple Liquids. I* THE JOURNAL OF CHEMICAL PHYSICS VOLUME 51, NUMBER 11 1 DECEMBER 1969 Variational Approach to the Equilibrium Thermodynamic Properties of Simple Liquids. I* G.Ali MANSOORi (1) AND Frank B. CANFIELD (2)

More information

Equation of state of additive hard-disk fluid mixtures: A critical analysis of two recent proposals

Equation of state of additive hard-disk fluid mixtures: A critical analysis of two recent proposals PHYSICAL REVIEW E 66, 0310 00 Equation of state of additive hard-disk fluid mixtures: A critical analysis of two recent proposals M. López de Haro* Centro de Investigación en Energía, UNAM, Temixco, Morelos

More information

Theory of Interfacial Tension of Partially Miscible Liquids

Theory of Interfacial Tension of Partially Miscible Liquids Theory of Interfacial Tension of Partially Miscible Liquids M.-E. BOUDH-HIR and G.A. MANSOORI * University of Illinois at Chicago (M/C 063) Chicago, Illinois USA 60607-7052 Abstract The aim of this work

More information

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State 23 Bulletin of Research Center for Computing and Multimedia Studies, Hosei University, 28 (2014) Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State Yosuke

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.60 Thermodynamics & Kinetics Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.60 Spring 2008 Lecture

More information

A Corresponding State Theory for the Viscosity of Liquids Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles

A Corresponding State Theory for the Viscosity of Liquids Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles A Corresponding State Theory for the Viscosity of Liquids Bull. Korean Chem. Soc. 2008, Vol. 29, No. 1 33 Articles A Corresponding State Theory for the Viscosity of Liquids Wonsoo Kim * and Sukbae Lee

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 2 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 2-6. Paraphrase: How

More information

Evaluation of the CPY and PYX approximations for short ranged anisotropie potentials

Evaluation of the CPY and PYX approximations for short ranged anisotropie potentials MOLECULAR PHYSICS, 1983, VOL. 50, NO. 5, 1133-1140 Evaluation of the CPY and PYX approximations for short ranged anisotropie potentials by P. T. CUMMINGS t Departments of Mechanical Engineering and Chemistry,

More information

Phase transitions of quadrupolar fluids

Phase transitions of quadrupolar fluids Phase transitions of quadrupolar fluids Seamus F. O Shea Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4 Girija S. Dubey Brookhaven National Laboratory, Upton, New

More information

Topic2540 Newton-Laplace Equation

Topic2540 Newton-Laplace Equation Topic540 Newton-Laplace Equation The Newton-Laplace Equation is the starting point for the determination of isentropic compressibilities of solutions [,] using the speed of sound u and density ρ; equation

More information

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions The aim of solution theory is to express the properties of liquid mixture in terms of intermolecular forces and liquid structure. The

More information

Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids

Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids PRAMANA c Indian Academy of Sciences Vol. 76, No. 6 journal of June 2011 physics pp. 901 908 Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids S B KHASARE and M

More information

Three Semi-empirical Analytic Expressions for the Radial Distribution Function of Hard Spheres

Three Semi-empirical Analytic Expressions for the Radial Distribution Function of Hard Spheres Commun. Theor. Phys. (Beijing, China) 4 (2004) pp. 400 404 c International Academic Publishers Vol. 4, No. 3, March 5, 2004 Three Semi-empirical Analytic Expressions for the Radial Distribution Function

More information

Fluid Phase Equilibria Journal

Fluid Phase Equilibria Journal 205 Fluid Phase Equilibria Journal Volume 43, Pages 205-212, 1988 STATISTICAL MECHANICAL TEST OF MHEMHS MODEL OF THE INTERACTION THIRD VIRIAL COEFFICIENTS ESAM Z. HAMAD and G. ALI MANSOORI Department of

More information

VAN DER WAALS MIXING RULES FOR CUBIC EQUATIONS OF STATE. APPLICATIONS FOR SUPERCRITICAL FLUID EXTRACTION MODELLING

VAN DER WAALS MIXING RULES FOR CUBIC EQUATIONS OF STATE. APPLICATIONS FOR SUPERCRITICAL FLUID EXTRACTION MODELLING Chemical Engineering Science, Volume 41, No. 5, pp.1303-1309, 1986 VAN DER WAALS MIXING RULES FOR CUBIC EQUATIONS OF STATE. APPLICATIONS FOR SUPERCRITICAL FLUID EXTRACTION MODELLING Department of Chemical

More information

Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory

Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory Ž. Fluid Phase Equilibria 154 1999 1 1 Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory Bing-Jian Zhang

More information

Lennard-Jones as a model for argon and test of extended renormalization group calculations

Lennard-Jones as a model for argon and test of extended renormalization group calculations JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 2 22 NOVEMBER 1999 Lennard-Jones as a model for argon and test of extended renormalization group calculations John A. White Department of Physics, American

More information

Molecular Thermodynamics of Adsorption Using a 2D- SAFT-VR-Mie Approach

Molecular Thermodynamics of Adsorption Using a 2D- SAFT-VR-Mie Approach Molecular Thermodynamics of Adsorption Using a 2D- SAFT-VR-Mie Approach Gerardo Campos, Jonatan Suaste, Andrew Haslam, George Jackson and Alejandro Gil-Villegas Outline Adsorption Statistical Associating

More information

A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform Phase Fluid

A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform Phase Fluid Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 231 237 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform

More information

A corresponding states approach for the prediction of surface tension of molten alkali halides

A corresponding states approach for the prediction of surface tension of molten alkali halides Fluid Phase Equilibria 183 184 (2001) 239 245 A corresponding states approach for the prediction of surface tension of molten alkali halides N. Galamba a, C.A. Nieto de Castro a,, I. Marrucho b, J.F. Ely

More information

Mean spherical model-structure of liquid argon

Mean spherical model-structure of liquid argon Prami0a, Vol. 6, No 5, 1976, pp. 284-290. Printed in ndia. Mean spherical model-structure of liquid argon R V GOPALA RAO and T NAMMALVAR Department of Physical Chemistry, Jadavpur University, Calcutta

More information

EQUATION OF STATE DEVELOPMENT

EQUATION OF STATE DEVELOPMENT EQUATION OF STATE DEVELOPMENT I. Nieuwoudt* & M du Rand Institute for Thermal Separation Technology, Department of Chemical Engineering, University of Stellenbosch, Private bag X1, Matieland, 760, South

More information

DENSITY AND SPEED OF SOUND OF BINARY MIXTURES OF ALIPHATIC ESTERS WITH N-METHYLACETAMIDE AT K

DENSITY AND SPEED OF SOUND OF BINARY MIXTURES OF ALIPHATIC ESTERS WITH N-METHYLACETAMIDE AT K DENSITY AND SPEED OF SOUND OF BINARY MIXTURES OF SOME AT 308.15 K * Department of Chemistry, Kakatiya University, Warangal, 506 009, Andhra Pradesh, India E-mail address: nallani_s@yahoo.com ABSTRACT The

More information

is more suitable for a quantitative description of the deviation from ideal gas behaviour.

is more suitable for a quantitative description of the deviation from ideal gas behaviour. Real and ideal gases (1) Gases which obey gas laws or ideal gas equation ( PV nrt ) at all temperatures and pressures are called ideal or perfect gases. Almost all gases deviate from the ideal behaviour

More information

Equations of State. Equations of State (EoS)

Equations of State. Equations of State (EoS) Equations of State (EoS) Equations of State From molecular considerations, identify which intermolecular interactions are significant (including estimating relative strengths of dipole moments, polarizability,

More information

On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models

On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 12 22 SEPTEMBER 1998 On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models Nobuyuki Matubayasi Institute

More information

The calculation of surface tensien for simple liquids

The calculation of surface tensien for simple liquids J. Phys. A: Gen. Phys., Vol. 5, January 1972. Printed in Great Britain The calculation of surface tensien for simple liquids M V BERRY, R F DURRANST and R EVANS H H Wills Physics Laboratory, Tyndall Avenue,

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Fourth Order Virial Equation of State of a Nonadditive Lennard - Jones Fluid

Fourth Order Virial Equation of State of a Nonadditive Lennard - Jones Fluid International Journal of omputational and Theoretical hemistry 2015; (4): 28- Published online October 9, 2015 (http://www.sciencepublishinggroup.com/j/ijctc) doi: 10.11648/j.ijctc.2015004.11 ISSN: 276-7286

More information

Prediction of surface tension of binary mixtures with the parachor method

Prediction of surface tension of binary mixtures with the parachor method Prediction of surface tension of binary mixtures with the parachor method Tomáš Němec 1,a Institute of Thermomechanics ASCR, v.v.i., Dolejškova, 18 Praha 8, Czech Republic Abstract. The parachor method

More information

Dense Fluid Theory of Mixtures

Dense Fluid Theory of Mixtures Dense Fluid Theory of Mixtures Esam Z. Hamad and G.Ali Mansoori * Department of hemical Engineering, University of llinois at hicago, (M/ 63), hicago, llinois 667-752 ABSTRAT Previous studies have indicated

More information

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies Supporting Information for Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies Shuntaro Chiba, 1* Tadaomi Furuta, 2 and Seishi

More information

A study on a mathematical model of gas in accumulator using van der Waals equation

A study on a mathematical model of gas in accumulator using van der Waals equation The 15th Scandinavian International Conference on Fluid Power, SICFP 17, June 7-9, 2017, Linköping, Sweden A study on a mathematical model of gas in accumulator using van der Waals equation Shuto Miyashita*,

More information

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function.

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function. Lecture #5 1 Lecture 5 Objectives: 1. Identify athermal and residual terms from the van der Waals mixture partition function.. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture

More information

Critical Properties of Isobaric Processes of Lennard-Jones Gases

Critical Properties of Isobaric Processes of Lennard-Jones Gases Critical Properties of Isobaric Processes of Lennard-Jones Gases Akira Matsumoto Department of Material Sciences, College of Integrated Arts Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531,

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Surface Tension of Saturated Vapors and the Equation of Eotuos

Surface Tension of Saturated Vapors and the Equation of Eotuos Howard University Digital Howard @ Howard University Department of Chemistry Faculty Publications Department of Chemistry 6-1-1931 and the Equation of Eotuos Leon J. Shereshefsky Howard University Follow

More information

S (13) Reference: FLUID 9791

S (13) Reference: FLUID 9791 Title: A Deduction of the MulticriticalityConditionsof, Mixturesfrom the Gibbs Tangent Plane Criterion Author: Nélio Henderson Wagner.F. Sacco Raimundo A. Rodrigues Jr PII: S0378-3812(13)00550-5 DOI: http://dx.doi.org/doi:10.1016/j.fluid.2013.09.043

More information

Fig. 3.1? Hard core potential

Fig. 3.1? Hard core potential 6 Hard Sphere Gas The interactions between the atoms or molecules of a real gas comprise a strong repulsion at short distances and a weak attraction at long distances Both of these are important in determining

More information

Velocity of sound isotherms in liquid krypton and xenon

Velocity of sound isotherms in liquid krypton and xenon Velocity of sound isotherms in liquid krypton and xenon C. C. LM, D. H. BOWMAN, AND RONALD A. AZZ Department of Physics, University of Waterloo, Waterloo, Otztario Received May 2, 1968 The velocity of

More information

The simultaneous prediction of vapor-liquid equilibrium and excess enthalpy. Kwon, Jung Hun. Thermodynamics and properties lab.

The simultaneous prediction of vapor-liquid equilibrium and excess enthalpy. Kwon, Jung Hun. Thermodynamics and properties lab. The simultaneous prediction of vapor-liquid equilibrium and excess enthalpy Kwon, Jung Hun. 2 Contents 1 A comparison of cubic EOS mixing rules for the simultaneous description of excess enthalpies and

More information

1 Points to Remember Subject: Chemistry Class: XI Chapter: States of matter Top concepts 1. Intermolecular forces are the forces of attraction and repulsion between interacting particles (atoms and molecules).

More information

pv m = RT + Bp The simplest equation for calculating fugacity, given an equation of state, is Z=1 + B RT p

pv m = RT + Bp The simplest equation for calculating fugacity, given an equation of state, is Z=1 + B RT p Chem 42/523 Chemical hermodynamics Homework Assignment # 5 1. *Assume O 2 gas obeys the virial equation pv m = R + Bp with B = 12.5 cm 3 mol 1 at 298.15 K. Calculate the fugacity of oxygen at p = 1. MPa

More information

On the Boyle temperature

On the Boyle temperature Indian Journal of Chemical Technology Vol. 1, September 1994, pp. 261-265 On the Boyle temperature Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev. Beer-Sheva. Israel

More information

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Minh Triet Dang, 1 Ana Vila Verde, 2 Van Duc Nguyen, 1 Peter G. Bolhuis, 3 and Peter Schall 1

More information

On the Calculation of the Chemical Potential. Using the Particle Deletion Scheme

On the Calculation of the Chemical Potential. Using the Particle Deletion Scheme On the Calculation of the Chemical Potential Using the Particle Deletion Scheme Georgios C. Boulougouris,2, Ioannis G. Economou and Doros. Theodorou,3,* Molecular Modelling of Materials Laboratory, Institute

More information

Quadratic mixing rules for equations of state. Origins and relationships to the virial expansion

Quadratic mixing rules for equations of state. Origins and relationships to the virial expansion 67 Fluid Phase Equilibria Journal Volume 91, Pages 67-76. 1993 Quadratic mixing rules for equations of state. Origins and relationships to the virial expansion Kenneth R. Hall * and Gustavo A. Iglesias-Silva

More information

Molecular simulation of adsorption from dilute solutions

Molecular simulation of adsorption from dilute solutions Vol. 52 No. 3/2005 685 689 on-line at: www.actabp.pl Molecular simulation of adsorption from dilute solutions Werner Billes Rupert Tscheliessnig and Johann Fischer Institut für Verfahrens- und Energietechnik

More information

Solubility of Supercritical CO 2 in Polystyrene during Foam Formation via Statistical Associated Fluid Theory (SAFT) Equation of State

Solubility of Supercritical CO 2 in Polystyrene during Foam Formation via Statistical Associated Fluid Theory (SAFT) Equation of State Journal of Minerals & Materials Characterization & Engineering, Vol. 9, No.5, pp.411-426, 2010 jmmce.org Printed in the USA. All rights reserved Solubility of Supercritical CO 2 in Polystyrene during Foam

More information

Close coupling results for inelastic collisions of NH3 and Ar. A stringent test of a spectroscopic potential

Close coupling results for inelastic collisions of NH3 and Ar. A stringent test of a spectroscopic potential 12 August 1994 ELSEVIER Chemical Physics Letters 226 ( 1994) 22-26 CHEMICAL PHYSICS LETTERS Close coupling results for inelastic collisions of NH3 and Ar. A stringent test of a spectroscopic potential

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Theoretical Evaluation of Ultrasonic Velocity in Binary Liquid Mixtures of Alcohols [S] + Benzene

Theoretical Evaluation of Ultrasonic Velocity in Binary Liquid Mixtures of Alcohols [S] + Benzene International Letters of Chemistry, Physics and Astronomy Online: 2013-09-21 ISSN: 2299-3843, Vol. 7, pp 18-35 doi:10.18052/www.scipress.com/ilcpa.7.18 2013 SciPress Ltd., Switzerland Theoretical Evaluation

More information

School of Chemical & Biological Engineering, Konkuk University

School of Chemical & Biological Engineering, Konkuk University School of Chemical & Biological Engineering, Konkuk University Chemistry is the science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical

More information

The Liquid Vapor Interface

The Liquid Vapor Interface Howard University Digital Howard @ Howard University Faculty Reprints 4-1-1932 The Liquid Vapor Interface Leon J. Shereshefsky Follow this and additional works at: http://dh.howard.edu/reprints Part of

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

PHASE EQUILIBRIUM CALCULATIONS OF HIGHLY POLAR SYSTEMS

PHASE EQUILIBRIUM CALCULATIONS OF HIGHLY POLAR SYSTEMS Fluid Phase Equilibria Journal Volume 32, Pages 139-149, 1987 139 PHASE EQUILIBRIUM CALCULATIONS OF HIGHLY POLAR SYSTEMS El-HOUARI BENMEKKI and G.ALI MANSOORI* Department of Chemical Engineering, University

More information

Les Houches School of Foam: Introduction to Coarsening

Les Houches School of Foam: Introduction to Coarsening Les Houches School of Foam: Introduction to Coarsening Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 What is Coarsening? (for a foam) Initial foam

More information

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation J. Comput. Chem. Jpn., Vol. 8, o. 3, pp. 97 14 (9) c 9 Society of Computer Chemistry, Japan An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation Yosuke KATAOKA* and Yuri YAMADA

More information

Thermodynamics of Liquid (Xenon + Methane) Mixtures

Thermodynamics of Liquid (Xenon + Methane) Mixtures J. Phys. Chem. B 2004, 108, 7377-7381 7377 Thermodynamics of Liquid (Xenon + Methane) Mixtures Lino M. B. Dias,, Eduardo J. M. Filipe, Clare McCabe, and Jorge C. G. Calado*, Centro de Química Estrutural,

More information

Real Gases. Sections (Atkins 6th Ed.), (Atkins 7-9th Eds.)

Real Gases. Sections (Atkins 6th Ed.), (Atkins 7-9th Eds.) Real Gases Sections 1.4-1.6 (Atkins 6th Ed.), 1.3-1.5 (Atkins 7-9th Eds.) Molecular Interactions Compression factor Virial coefficients Condensation Critical Constants Van der Waals Equation Corresponding

More information

Note on the Perturbation Equation of State of Barker and Henderson*

Note on the Perturbation Equation of State of Barker and Henderson* fhe JOURNAL OF CHEMICAL PHYSICS VOLUME S1, NUMBER 12 15 DECEMBER 1969 Note on the Perturbation Equation of State of Barker Henderson* G.Ali MANSOORI, (1) Joe A. PROVINE, (2) AND Frank B. CANFIELD (3) School

More information

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass Atomic Mass and Atomic Mass Number The mass of an atom is determined primarily by its most massive constituents: protons and neutrons in its nucleus. The sum of the number of protons and neutrons is called

More information

NATIONAL ACADEMY OF SCIENCES

NATIONAL ACADEMY OF SCIENCES PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES Volume 13 May 15, 1927 Number 5 A QUANTITATIVE TREATMENT OF DEVIATIONS FROM RAOULT'S LAW By JOzL H. HILDBBRAND CHEMICAL LABORATORY, UNIVERSIrY OF CALIFORNIA

More information

PREDICTION OF SATURATED LIQUID VOLUMES FROM A MODIFIED VAN DER WAALS EQUATION. By Charles R. Koppany

PREDICTION OF SATURATED LIQUID VOLUMES FROM A MODIFIED VAN DER WAALS EQUATION. By Charles R. Koppany PREDICTION OF SATURATED LIQUID VOLUMES FROM A MODIFIED VAN DER WAALS EQUATION Part 1 By Charles R. Koppany Introduction Over the past 40 years or so, closed cubic (in volume) equations of state have been

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications (Supporting Information: 33 pages) Hiroyasu Furukawa and Omar M. Yaghi Center

More information

Thermodynamics I - Enthalpy

Thermodynamics I - Enthalpy Thermodynamics I - Enthalpy Tinoco Chapter 2 Secondary Reference: J.B. Fenn, Engines, Energy and Entropy, Global View Publishing, Pittsburgh, 2003. 1 Thermodynamics CHEM 2880 - Kinetics An essential foundation

More information

The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride1

The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride1 The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride1 A. N. CAMPBELL AND R. M. CHATTEIUEE Department of Chemistry, University of Manitoba, Winnipeg,

More information

Vapour Liquid Equilibrium in Asymmetric Mixtures of n-alkanes with Ethane

Vapour Liquid Equilibrium in Asymmetric Mixtures of n-alkanes with Ethane Turk J Chem 26 (22), 481 489. c TÜBİTAK Vapour Liquid Equilibrium in Asymmetric Mixtures of n-alkanes with Ethane Anca DUTA Transylvania University, Chemistry Dept., I. Maniu 5, RO-22 Brasov-ROMANIA e-mail:

More information

Satish Chandra. Unit I, REAL GASES. Lecture Notes Dated: Dec 08-14, Vander-Waals Gas

Satish Chandra. Unit I, REAL GASES. Lecture Notes Dated: Dec 08-14, Vander-Waals Gas Vander-Waals Gas Lecture Notes Dated: Dec 08-14, 01 Many equations have been proposed which describe the pvt relations of real gases more accurately than does the equation of state of an ideal gas. Some

More information

International Journal of

International Journal of International Journal of Chemical, nvironmental and Pharmaceutical Research Vol. 2, No.2-3, 111-115 May-December, 2011 Acoustical and xcess Thermodynamical Parameters of Sesame Oil in Different Organic

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 2: Statistical Mechanical Model Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz W. M.

More information

A General Equation for Fitting Contact Area and Friction vs Load Measurements

A General Equation for Fitting Contact Area and Friction vs Load Measurements Journal of Colloid and Interface Science 211, 395 400 (1999) Article ID jcis.1998.6027, available online at http://www.idealibrary.com on A General Equation for Fitting Contact Area and Friction vs Load

More information

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2975-2979, Oct-Dec 2013 Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane +

More information

Binary Hard-Sphere Mixtures Within Spherical Pores

Binary Hard-Sphere Mixtures Within Spherical Pores Journal of the Korean Physical Society, Vol. 35, No. 4, October 1999, pp. 350 354 Binary Hard-Sphere Mixtures Within Spherical Pores Soon-Chul Kim Department of Physics, Andong National University, Andong

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Weighted density functional theory of the solvophobic effect

Weighted density functional theory of the solvophobic effect PHYSICAL REVIEW E, VOLUME 64, 021512 Weighted density functional theory of the solvophobic effect Sean X. Sun Department of Chemistry, University of California, Berkeley, California 94720 Received 24 July

More information

Adsorption properties of a colloid-polymer mixture confined in a slit pore

Adsorption properties of a colloid-polymer mixture confined in a slit pore PHYSICAL REVIEW E, VOLUME 64, 041507 Adsorption properties of a colloid-polymer mixture confined in a slit pore Soon-Chul Kim* Department of Physics, Andong National University, Andong, 760-749 Korea Peter

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Excess Entropy, Diffusion Coefficient, Viscosity Coefficient and Surface Tension of Liquid Simple Metals from Diffraction Data

Excess Entropy, Diffusion Coefficient, Viscosity Coefficient and Surface Tension of Liquid Simple Metals from Diffraction Data Materials Transactions, Vol. 43, No. 1 (2002) pp. 67 to 72 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Excess Entropy, Diffusion Coefficient, Viscosity Coefficient and Surface Tension

More information

Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid

Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid MOLECULAR PHYSICS, 1989, VOL. 68, No. 3, 629-635 Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid by E. N. RUDISILL and P. T. CUMMINGS

More information

Molecular dynamics investigation of thickness effect on liquid films

Molecular dynamics investigation of thickness effect on liquid films JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 14 8 OCTOBER 2000 Molecular dynamics investigation of thicness effect on liquid films Jian-Gang Weng, Seungho Par, a) Jennifer R. Lues, and Chang-Lin Tien

More information

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0154-05 Chinese Physics and IOP Publishing Ltd lectronic state and potential energy function for UH 2+* Wang Hong-Yan( Ψ) a)y,

More information

Thermodynamic properties of the S/L interfacial layer: Stabilization of the colloidal system in binary liquids

Thermodynamic properties of the S/L interfacial layer: Stabilization of the colloidal system in binary liquids Pure & Appl. Chern., Vol. 65, o. 5, pp. 91-96, 1993. Printed in Great Britain. @ 1993 UPAC Thermodynamic properties of the S/L interfacial layer: Stabilization of the colloidal system in binary liquids

More information

REV. CHIM. (Bucureºti) 58 Nr

REV. CHIM. (Bucureºti) 58 Nr 1069 High-Pressure Vapour-Liquid Equilibria of Carbon Dioxide + 1-Pentanol System Experimental Measurements and Modelling CATINCA SECUIANU*, VIOREL FEROIU, DAN GEANÃ Politehnica University Bucharest, Department

More information

Analytical study for mixing rules for refractive index and data analysis for some binary liquid mixtures

Analytical study for mixing rules for refractive index and data analysis for some binary liquid mixtures Analytical study for mixing rules for refractive index and data analysis for some binary liquid mixtures Sheeraz Akbar Assistant professor, Department of Physics, Vssd College,Kanpur,U.P.India ABSTRACT

More information

Kinetics of the thermal reactions of ethylene. Part 11. Ethylene-ethane mixtures

Kinetics of the thermal reactions of ethylene. Part 11. Ethylene-ethane mixtures Kinetics of the thermal reactions of ethylene. Part 11. Ethylene-ethane mixtures M. L. BOYD' AND M. H. BACK Chemistry Department, University of Ottawa, Ottawa, Canada Received November 21, 1967 Mixtures

More information

Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids

Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids VIOREL FEROIU*, OCTAVIAN PARTENIE, DAN GEANA Politehnica University of Bucharest, Department of Applied Physical Chemistry and

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Properties of real fluids in critical region: third virial coefficient

Properties of real fluids in critical region: third virial coefficient Indian J hys (February 2014) 88(2):185 191 DOI 10.1007/s12648-013-0402-5 ORIGINAL AER roperties of real fluids in critical region: third virial coefficient R Khordad*, B Mirhosseini and M M Mirhosseini

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Compressed liquid (sub-cooled liquid): A substance that it is

More information

Isotopic effect of Cl + 2 rovibronic spectra in the A X system

Isotopic effect of Cl + 2 rovibronic spectra in the A X system Vol 18 No 7, July 009 c 009 Chin. Phys. Soc. 1674-1056/009/1807)/74-05 Chinese Physics B and IOP Publishing Ltd Isotopic effect of Cl + rovibronic spectra in the A X system Wu Ling ) a)c), Yang Xiao-Hua

More information

Development of a General Method for Modeling Asphaltene Stability

Development of a General Method for Modeling Asphaltene Stability Energy & Fuels 2009, 23, 1147 1154 1147 Development of a General Method for Modeling Asphaltene Stability Francisco M. Vargas, Doris L. Gonzalez, Jefferson L. Creek, Jianxin Wang, Jill Buckley, George

More information