7. NETWORK FLOW II. Minimum cut application (RAND 1950s) Maximum flow application (Tolstoǐ 1930s) Max-flow and min-cut applications

Size: px
Start display at page:

Download "7. NETWORK FLOW II. Minimum cut application (RAND 1950s) Maximum flow application (Tolstoǐ 1930s) Max-flow and min-cut applications"

Transcription

1 Minimum cu applicaion (RAND 90). NETWORK FLOW II Free world goal. Cu upplie (if Cold War urn ino real war). Lecure lide by Kevin Wayne Copyrigh 00 Pearon-Addion Weley biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion hp:// La updaed on //8 : AM rail nework connecing Sovie Union wih Eaern European counrie (map declaified by Penagon in 999) Maximum flow applicaion (Toloǐ 90) Max-flow and min-cu applicaion Sovie Union goal. Maximize flow of upplie o Eaern Europe. flow capaciy rail nework connecing Sovie Union wih Eaern European counrie (map declaified by Penagon in 999) Max-flow and min-cu problem are widely applicable model. Daa mining. Open-pi mining. Biparie maching. Nework reliabiliy. Baeball eliminaion. Image egmenaion. Nework conneciviy. Markov random field. Diribued compuing. Securiy of aiical daa. Egaliarian able maching. Nework inruion deecion. Muli-camera cene reconrucion. Senor placemen for homeland ecuriy. Many, many, more. liver and hepaic vacularizaion egmenaion

2 Maching SECTION.. NETWORK FLOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion Def. Given an undireced graph G = (V, E), ube of edge M E i a maching if each node appear in a mo one edge in M. Max maching. Given a graph G, find a max-cardinaliy maching. Biparie maching Biparie maching: max-flow formulaion Def. A graph G i biparie if he node can be pariioned ino wo ube L and R uch ha every edge connec a node in L wih a node in R. Biparie maching. Given a biparie graph G = (L R, E), find a maxcardinaliy maching. Creae digraph Gʹ = (L R {, }, Eʹ ). Direc all edge from L o R, and aign infinie (or uni) capaciy. Add uni-capaciy edge from o each node in L. Add uni-capaciy edge from each node in R o. ' G ' ' ' ' ' ' ' L ' R ' maching: -', -', -', -' L R 8

3 Max-flow formulaion: proof of correcne Max-flow formulaion: proof of correcne Theorem. Max cardinaliy of a maching in G = value of max flow in Gʹ. Pf. Given a max maching M of cardinaliy k. Conider flow f ha end uni on each of he k correponding pah. f i a flow of value k. Theorem. Max cardinaliy of a maching in G = value of max flow in Gʹ. Pf. Le f be a max flow in Gʹ and le k denoe i value. Inegraliy heorem k i inegral and can aume f i 0. Conider M = e of edge from L o R wih f (e) =. - each node in L and R paricipae in a mo one edge in M - M = k : apply flow-value lemma o cu (L {}, R {}) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' G ' ' G G ' ' G 9 0 Nework flow II: quiz Perfec maching in biparie graph Wha i running ime of Ford Fulkeron algorihm o find a maximum maching in a biparie graph wih L = R = n? A. O(m + n) B. O(mn) C. O(mn ) D. O(m n) Def. Given a graph G = (V, E), a ube of edge M E i a perfec maching if each node appear in exacly one edge in M. Q. When doe a biparie graph have a perfec maching? Srucure of biparie graph wih perfec maching. Clearly, we mu have L = R. Which oher condiion are neceary? Which oher condiion are ufficien?

4 Perfec maching in biparie graph Hall marriage heorem Noaion. Le S be a ube of node, and le N(S) be he e of node adjacen o node in S. Obervaion. If a biparie graph G = (L R, E) ha a perfec maching, hen N(S) S for all ube S L. Pf. Each node in S ha o be mached o a differen node in N(S). Theorem. [Frobeniu 9, Hall 9] Le G = (L R, E) be a biparie graph wih L = R. Then, graph G ha a perfec maching iff N(S) S for all ube S L. Pf. Thi wa he previou obervaion. ' ' S = {,, } ' S = {,, } ' N(S) = { ', ' } N(S) = { ', ' } ' ' ' ' ' ' no perfec maching no perfec maching Hall marriage heorem Biparie maching Pf. Suppoe G doe no have a perfec maching. Formulae a a max-flow problem and le (A, B) be a min cu in Gʹ. By max-flow min-cu heorem, cap(a, B) < L. Define L A = L A, L B = L B, R A = R A. cap(a, B) = L B + R A R A < L A. Min cu can ue edge N(L A ) R A. N(L A ) R A < L A. Chooe S = L A. G ' LA = {,, } A ' LB = {, } RA = {', '} ' N(LA) = {', '} Problem. Given a biparie graph, find a max-cardinaliy maching. year wor cae echnique dicovered by 9 O(m n) augmening pah Ford Fulkeron 9 O(m n / ) blocking flow Hopcrof Karp, Karzanov 00 O(n.8 ) fa marix muliplicaion Mucha Sankowi 0 Õ(m 0/ ) elecrical flow Mądry 0xx running ime for finding a max-cardinaliy maching in a biparie graph wih n node and m edge ' '

5 Nework flow II: quiz Nonbiparie maching Which of he following are properie of he graph G = (V, E)? A. G ha a perfec maching. B. Hall condiion i aified: N(S) S for all ube S V. C. Boh A and B. Problem. Given an undireced graph, find a max-cardinaliy maching. Srucure of nonbiparie graph i more complicaed. Bu well underood. [Tue Berge formula, Edmond Galai] Bloom algorihm: O(n ). [Edmond 9] Be known: O(m n / ). [Micali Vazirani 980, Vazirani 99] D. Neiher A nor B. PATHS, TREES, AND FLOWERS JACK EDMONDS COMBINATORICA Akadmiai Kiad - Springer-Verlag COMBINATORICA (i) (99) -09. Inroducion. A graph G for purpoe here i a finie e of elemen called verice and a finie e of elemen called edge uch ha each edge mee exacly wo verice, called he end-poin of he edge. An edge i aid o join i end-poin. A maching in G i a ube of i edge uch ha no wo mee he ame verex. We decribe an efficien algorihm for finding in a given graph a maching of maximum cardinaliy. Thi problem wa poed and parly olved by C. Berge; ee Secion. and.8. A THEORY OF ALTERNATING PATHS AND BLOSSOMS FOR PROVING CORRECTNESS OF THE O(v/-VE) GENERAL GRAPH MAXIMUM MATCHING ALGORITHM VIJAY V. VAZIRANI Received December 0, 989 Revied June, 99 8 Hiorical ignificance (Jack Edmond 9) HACKATHON PROBLEM. Digreion. An explanaion i due on he ue of he word "efficien algorihm." Fir, wha I preen i a concepual decripion of an algorihm and no a paricular formalized algorihm or "code." For pracical purpoe compuaional deail are vial. However, my purpoe i only o how a aracively a I can ha here i an efficien algorihm. According o he dicionary, "efficien" mean "adequae in operaion or performance." Thi i roughly he meaning I wan in he ene ha i i conceivable for maximum maching o have no efficien algorihm. Perhap a beer word i "good." I am claiming, a a mahemaical reul, he exience of a good algorihm for finding a maximum cardinaliy maching in a graph. There i an obviou finie algorihm, bu ha algorihm increae in difficuly exponenially wih he ize of he graph. I i by no mean obviou wheher or no here exi an algorihm whoe difficuly increae only algebraically wih he ize of he graph. Hackahon problem. Hackahon aended by n Harvard uden and n Princeon uden. Each Harvard uden i friend wih exacly k > 0 Princeon uden; each Princeon uden i friend wih exacly k Harvard uden. I i poible o arrange he hackahon o ha each Princeon uden pair program wih a differen friend from Harvard? Mahemaical reformulaion. Doe every k-regular biparie graph have a perfec maching? Ex. Boolean hypercube. -regular biparie graph ʹ ʹ ʹ ʹ 9

6 Edge-dijoin pah SECTION.. NETWORK FLOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion Def. Two pah are edge-dijoin if hey have no edge in common. Edge-dijoin pah problem. Given a digraph G = (V, E) and wo node and, find he max number of edge-dijoin pah. Ex. Communicaion nework. digraph G Edge-dijoin pah Edge-dijoin pah Def. Two pah are edge-dijoin if hey have no edge in common. Edge-dijoin pah problem. Given a digraph G = (V, E) and wo node and, find he max number of edge-dijoin pah. Ex. Communicaion nework. Max-flow formulaion. Aign uni capaciy o every edge. Theorem. Max number of edge-dijoin pah = value of max flow. Pf. Suppoe here are k edge-dijoin pah P,, P k. Se f (e) = if e paricipae in ome pah P j ; ele e f (e) = 0. Since pah are edge-dijoin, f i a flow of value k. digraph G edge-dijoin pah

7 Edge-dijoin pah Nework conneciviy Max-flow formulaion. Aign uni capaciy o every edge. Theorem. Max number of edge-dijoin pah = value of max flow. Pf. Suppoe max flow value i k. Inegraliy heorem here exi 0 flow f of value k. Conider edge (, u) wih f(, u) =. - by flow conervaion, here exi an edge (u, v) wih f(u, v) = - coninue unil reach, alway chooing a new edge Def. A e of edge F E diconnec from if every pah ue a lea one edge in F. Nework conneciviy. Given a digraph G = (V, E) and wo node and, find min number of edge whoe removal diconnec from. Produce k (no necearily imple) edge-dijoin pah. can eliminae cycle o ge imple pah in O(mn) ime if deired (flow decompoiion) 8 Menger heorem Menger heorem Theorem. [Menger 9] The max number of edge-dijoin pah equal he min number of edge whoe removal diconnec from. Pf. Suppoe he removal of F E diconnec from, and F = k. Every pah ue a lea one edge in F. Hence, he number of edge-dijoin pah i k. Theorem. [Menger 9] The max number of edge-dijoin pah equal he min number of edge whoe removal diconnec from. Pf. Suppoe max number of edge-dijoin pah i k. Then value of max flow = k. Max-flow min-cu heorem here exi a cu (A, B) of capaciy k. Le F be e of edge going from A o B. F = k and diconnec from. A 9 0

8 Nework flow II: quiz Edge-dijoin pah in undireced graph How o find he max number of edge-dijoin pah in an undireced graph? A. Solve he edge-dijoin pah problem in a digraph (by replacing each undireced edge wih wo aniparallel edge). Def. Two pah are edge-dijoin if hey have no edge in common. Edge-dijoin pah problem in undireced graph. Given a graph G = (V, E) and wo node and, find he max number of edge-dijoin pah. B. Solve a max flow problem in an undireced graph. C. Boh A and B. D. Neiher A nor B. digraph G Edge-dijoin pah in undireced graph Edge-dijoin pah in undireced graph Def. Two pah are edge-dijoin if hey have no edge in common. Edge-dijoin pah problem in undireced graph. Given a graph G = (V, E) and wo node and, find he max number of edge-dijoin pah. Def. Two pah are edge-dijoin if hey have no edge in common. Edge-dijoin pah problem in undireced graph. Given a graph G = (V, E) and wo node and, find he max number of edge-dijoin pah. digraph G ( edge-dijoin pah) digraph G ( edge-dijoin pah)

9 Edge-dijoin pah in undireced graph Edge-dijoin pah in undireced graph Max-flow formulaion. Replace each edge wih wo aniparallel edge and aign uni capaciy o every edge. Obervaion. Two pah P and P may be edge-dijoin in he digraph bu no edge-dijoin in he undireced graph. if P ue edge (u, v) and P ue i aniparallel edge (v, u) Max-flow formulaion. Replace each edge wih wo aniparallel edge and aign uni capaciy o every edge. Lemma. In any flow nework, here exi a maximum flow f in which for each pair of aniparallel edge e and eʹ : eiher f (e) = 0 or f (eʹ) = 0 or boh. Moreover, inegraliy heorem ill hold. Pf. [ by inducion on number of uch pair ] Suppoe f (e) > 0 and f (eʹ) > 0 for a pair of aniparallel edge e and eʹ. Se f (e) = f (e) δ and f (eʹ) = f (eʹ) δ, where δ = min { f (e), f (eʹ) }. f i ill a flow of he ame value bu ha one fewer uch pair. Edge-dijoin pah in undireced graph More Menger heorem Max-flow formulaion. Replace each edge wih wo aniparallel edge and aign uni capaciy o every edge. Lemma. In any flow nework, here exi a maximum flow f in which for each pair of aniparallel edge e and eʹ : eiher f (e) = 0 or f (eʹ) = 0 or boh. Moreover, inegraliy heorem ill hold. Theorem. Max number of edge-dijoin pah = value of max flow. Pf. Similar o proof in digraph; ue lemma. Theorem. Given an undireced graph and wo node and, he max number of edge-dijoin pah equal he min number of edge whoe removal diconnec and. Theorem. Given an undireced graph and wo nonadjacen node and, he max number of inernally node-dijoin pah equal he min number of inernal node whoe removal diconnec and. Theorem. Given a direced graph wih wo nonadjacen node and, he max number of inernally node-dijoin pah equal he min number of inernal node whoe removal diconnec from. 8

10 Nework flow II: quiz SECTION.. NETWORK FLOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion Which exenion o max flow can be eaily modeled? A. Muliple ource and muliple ink. B. Undireced graph. C. Lower bound on edge flow. D. All of he above. 0 Muliple ource and ink Muliple ource and ink: max-flow formulaion Def. Given a digraph G = (V, E) wih edge capaciie c(e) 0 and muliple ource node and muliple ink node, find max flow ha can be en from he ource node o he ink node. Add a new ource node and ink node. For each original ource node i add edge (, i) wih capaciy. For each original ink node j, add edge ( j, ) wih capaciy. Claim. correpondence beween flow in G and Gʹ. flow nework G 9 flow nework G

11 <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> <laexi ha_bae="pytgza9jrkrgivbvmuulm=">aaaceicbvbdsymxfehjxxjqpvgtlqhum8ukggiupclvoqvkmnc0njmmyupgezw/xwvf9fcjmah9qjhpozc09ssgfxtb8agrlyyurx9bwnubmvnhfbqhkoxannfciskggiwilbcgwjiueugvv9bgtgcq+ksafelmgez+ipqfmmiflebjhdgwvcikmlz0vngduc0po/pt+mcstukopz0yvsujo0gzfxbcadhpijqbfpnv9wcrenmrcfhljrofyyh9khkuxeketlbend9ga9dxxlwfblev/eazlgba+koqtmphsxlrzkixfmdb/olat/9ndrozfiluraufx+uovnhuwdjugaoxwlgr/q+upzldopqzmyazsjp0sxkewweocogvtzfazowzupeicjodpojdxkyonhjbd0iyr+uuuyrwjlcyv/ytfia+maaxhwcmnwjmevbjxau//wexumde</laexi> Circulaion wih upplie and demand Circulaion wih upplie and demand: max-flow formulaion Def. Given a digraph G = (V, E) wih edge capaciie c(e) 0 and node demand d(v), a circulaion i a funcion f(e) ha aifie: For each e E: 0 f (e) c(e) (capaciy) For each v V: f(e) f(e) = d(v) (flow conervaion) e v e v Add new ource and ink. For each v wih d(v) < 0, add edge (, v) wih capaciy d(v). For each v wih d(v) > 0, add edge (v, ) wih capaciy d(v). Claim. G ha circulaion iff Gʹ ha max flow of value D = d(v) = v : d(v)>0 v : d(v)<0 d(v) flow nework G 8 (upply node) 8 flow nework G 8 upply aurae all edge leaving and enering flow capaciy / / / 0 / / / / / 0 (demand node) 0 (ranhipmen node) demand Circulaion wih upplie and demand Circulaion wih upplie, demand, and lower bound Inegraliy heorem. If all capaciie and demand are ineger, and here exi a circulaion, hen here exi one ha i ineger-valued. Pf. Follow from max-flow formulaion + inegraliy heorem for max flow. Theorem. Given (V, E, c, d), here doe no exi a circulaion iff here exi a node pariion (A, B) uch ha Σ v B d(v) > cap(a, B). Pf kech. Look a min cu in Gʹ. demand by node in B exceed upply of node in B plu max capaciy of edge going from A o B Def. Given a digraph G = (V, E) wih edge capaciie c(e) 0, lower bound (e) 0, and node demand d(v), a circulaion f(e) i a funcion ha aifie: For each e E : (e) f (e) c(e) (capaciy) For each v V : f(e) f(e) = d(v) (flow conervaion) e v e v Circulaion problem wih lower bound. Given (V, E,, c, d), doe here exi a feaible circulaion?

12 Circulaion wih upplie, demand, and lower bound Max-flow formulaion. Model lower bound a circulaion wih demand. Send (e) uni of flow along edge e. Updae demand of boh endpoin. lower bound upper bound capaciy v [, 9] w v w d(v) d(w) d(v) + d(w) flow nework G flow nework G Theorem. There exi a circulaion in G iff here exi a circulaion in Gʹ. Moreover, if all demand, capaciie, and lower bound in G are ineger, hen here exi a circulaion in G ha i ineger-valued. Pf kech. f (e) i a circulaion in G iff f ʹ(e) = f (e) (e) i a circulaion in Gʹ. SECTION.8. NETWORK FLOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion Survey deign Deign urvey aking n conumer abou n produc. Can urvey conumer i abou produc j only if hey own i. Ak conumer i beween c i and c iʹ queion. Ak beween p j and p jʹ conumer abou produc j. Goal. Deign a urvey ha mee hee pec, if poible. Biparie perfec maching. Special cae when c i = c iʹ = p j = p jʹ =. one urvey queion per produc Survey deign Max-flow formulaion. Model a a circulaion problem wih lower bound. Add edge (i, j) if conumer j own produc i. Add edge from o conumer j. Add edge from produc i o. Add edge from o. All demand = 0. Ineger circulaion feaible urvey deign. [0, ] all upplie and demand are 0 [0, ] ʹ [c, c ʹ] ʹ [p, p ʹ] ʹ ʹ 9 conumer produc 0

13 Airline cheduling Airline cheduling.. N ETWORK F LOW II Complex compuaional problem faced by airline carrier. Mu produce chedule ha are efficien in erm of equipmen uage, biparie maching crew allocaion, and cuomer aifacion. dijoin pah One of large conumer of high-powered algorihmic echnique. exenion o max flow urvey deign Toy problem. Manage fligh crew by reuing hem over muliple fligh. airline cheduling Inpu: e of k fligh for a given day. image egmenaion Fligh i leave origin oi a ime i and arrive a deinaion di a ime fi. projec elecion SECTION.9 even in preence of unpredicable even, uch a weaher and breakdown Minimize number of fligh crew. baeball eliminaion Airline cheduling Airline cheduling: running ime Circulaion formulaion. [o ee if c crew uffice] Theorem. The airline cheduling problem can be olved in O(k log k) ime. For each fligh i, include wo node ui and vi. Pf. Add ource wih demand c, and edge (, ui) wih capaciy. k = number of fligh. Add ink wih demand c, and edge (vi, ) wih capaciy. c = number of crew (unknown). For each i, add edge (ui, vi) wih lower bound and capaciy. O(k) node, O(k) edge. if fligh j reachable from i, add edge (vi, uj) wih capaciy. A mo k crew needed. crew can begin day wih any fligh u a mo k augmenaion per circulaion problem. Overall ime = O(k log k). [0, ] u u ue c crew [, ] binary earch for opimal value c* Value of he flow i beween 0 and k. v [0, ] c olve lg k circulaion problem. crew can end day wih any fligh c v Remark. Can olve in O(k) ime by formulaing a minimum flow problem. v [0, ] u fligh i performed v ame crew can do fligh and

14 <laexi ha_bae="yqarqjdbdiekqhdxxfrk+jrru=">aaacqhicbvfda9wfjw9rysu9ewymoi+glwwiiddmowxwywpimyrlauvqkc+lnlje/9zfhkow9lugusdufcqlbklhubryc8c/fe/qdbduphj9+qy/vxpmijymeafkuxxpxquoxsltifjb8kyjsxbudenpvdfcwlekrmlleesm/ruv9fxzmnlqqqnzzwwfipj+nxwgporfk+qiuxhf++yl+zxwyflxyxewen0mfgfkp8p9aenchmkldmdgp0w/arjrgoxvuqjt/iaarmabrcvwicyprubz0vvayfxqyn8hgujglkir9jphphzax9vczxlikaoqzvnzjavrf8aowx/rahywyzxmzvdsbwon+t9wul8kkmkniukzbg8ibfcdjnpbue9ibxk/wc+zzrz9xae8gq+9plouetftgywcq/rbfenoz+bfxhhw/jbh8hj0crplfkcvcrjcahir8jsmyjpz8cxrbbva8fboowkno0ngxnllmlmplvnncq==</laexi> <laexi ha_bae="yqarqjdbdiekqhdxxfrk+jrru=">aaacqhicbvfda9wfjw9rysu9ewymoi+glwwiiddmowxwywpimyrlauvqkc+lnlje/9zfhkow9lugusdufcqlbklhubryc8c/fe/qdbduphj9+qy/vxpmijymeafkuxxpxquoxsltifjb8kyjsxbudenpvdfcwlekrmlleesm/ruv9fxzmnlqqqnzzwwfipj+nxwgporfk+qiuxhf++yl+zxwyflxyxewen0mfgfkp8p9aenchmkldmdgp0w/arjrgoxvuqjt/iaarmabrcvwicyprubz0vvayfxqyn8hgujglkir9jphphzax9vczxlikaoqzvnzjavrf8aowx/rahywyzxmzvdsbwon+t9wul8kkmkniukzbg8ibfcdjnpbue9ibxk/wc+zzrz9xae8gq+9plouetftgywcq/rbfenoz+bfxhhw/jbh8hj0crplfkcvcrjcahir8jsmyjpz8cxrbbva8fboowkno0ngxnllmlmplvnncq==</laexi> <laexi ha_bae="yqarqjdbdiekqhdxxfrk+jrru=">aaacqhicbvfda9wfjw9rysu9ewymoi+glwwiiddmowxwywpimyrlauvqkc+lnlje/9zfhkow9lugusdufcqlbklhubryc8c/fe/qdbduphj9+qy/vxpmijymeafkuxxpxquoxsltifjb8kyjsxbudenpvdfcwlekrmlleesm/ruv9fxzmnlqqqnzzwwfipj+nxwgporfk+qiuxhf++yl+zxwyflxyxewen0mfgfkp8p9aenchmkldmdgp0w/arjrgoxvuqjt/iaarmabrcvwicyprubz0vvayfxqyn8hgujglkir9jphphzax9vczxlikaoqzvnzjavrf8aowx/rahywyzxmzvdsbwon+t9wul8kkmkniukzbg8ibfcdjnpbue9ibxk/wc+zzrz9xae8gq+9plouetftgywcq/rbfenoz+bfxhhw/jbh8hj0crplfkcvcrjcahir8jsmyjpz8cxrbbva8fboowkno0ngxnllmlmplvnncq==</laexi> <laexi ha_bae="yqarqjdbdiekqhdxxfrk+jrru=">aaacqhicbvfda9wfjw9rysu9ewymoi+glwwiiddmowxwywpimyrlauvqkc+lnlje/9zfhkow9lugusdufcqlbklhubryc8c/fe/qdbduphj9+qy/vxpmijymeafkuxxpxquoxsltifjb8kyjsxbudenpvdfcwlekrmlleesm/ruv9fxzmnlqqqnzzwwfipj+nxwgporfk+qiuxhf++yl+zxwyflxyxewen0mfgfkp8p9aenchmkldmdgp0w/arjrgoxvuqjt/iaarmabrcvwicyprubz0vvayfxqyn8hgujglkir9jphphzax9vczxlikaoqzvnzjavrf8aowx/rahywyzxmzvdsbwon+t9wul8kkmkniukzbg8ibfcdjnpbue9ibxk/wc+zzrz9xae8gq+9plouetftgywcq/rbfenoz+bfxhhw/jbh8hj0crplfkcvcrjcahir8jsmyjpz8cxrbbva8fboowkno0ngxnllmlmplvnncq==</laexi> Airline cheduling: pomorem Remark. We olved a oy problem. Real-world problem model counle oher facor: Union regulaion: e.g., fligh crew can only fly cerain number of hour in given inerval. Need opimal chedule over planning horizon, no ju one day. Deadheading ha a co. Fligh don alway leave or arrive on chedule. Simulaneouly opimize boh fligh chedule and fare rucure. Meage. Our oluion i a generally ueful echnique for efficien reue of limied reource bu rivialize real airline cheduling problem. Flow echnique ueful for olving airline cheduling problem (and are widely ued in pracice). Running an airline efficienly i a very difficul problem. SECTION.0. NETWORK FLOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion Image egmenaion Image egmenaion Image egmenaion. Divide image ino coheren region. Cenral problem in image proceing. Ex. Separae human and robo from background cene. Foreground / background egmenaion. Label each pixel in picure a belonging o foreground or background. V = e of pixel, E = pair of neighboring pixel. a i 0 i likelihood pixel i in foreground. b i 0 i likelihood pixel i in background. p ij 0 i eparaion penaly for labeling one of i and j a foreground, and he oher a background. Goal. Accuracy: if a i > b i in iolaion, prefer o label i in foreground. Smoohne: if many neighbor of i are labeled foreground, we hould be inclined o label i a foreground. Find pariion (A, B) ha maximize: foreground background i A a i + j B b j (i,j) E A {i,j} = p ij 8

15 Image egmenaion Image egmenaion Formulae a min-cu problem. Formulae a min-cu problem G ʹ = (Vʹ, Eʹ). Maximizaion. Include node for each pixel. No ource or ink. Ue wo aniparallel edge inead of Undireced graph. undireced edge. Turn ino minimizaion problem. ai + Maximizing bj i A pij wo aniparallel edge in G Add ource o correpond o foreground. pij Add ink o correpond o background. pij pij j B (i,j) E A {i,j} = <laexi ha_bae="yqarqjdbdiekqhdxxfrk+jrru=">aaacqhicbvfda9wfjw9rysu9ewymoi+glwwiiddmowxwywpimyrlauvqkc+lnlje/9zfhkow9lugusdufcqlbklhubryc8c/fe/qdbduphj9+qy/vxpmijymeafkuxxpxquoxsltifjb8kyjsxbudenpvdfcwlekrmlleesm/ruv9fxzmnlqqqnzzwwfipj+nxwgporfk+qiuxhf++yl+zxwyflxyxewen0mfgfkp8p9aenchmkldmdgp0w/arjrgoxvuqjt/iaarmabrcvwicyprubz0vvayfxqyn8hgujglkir9jphphzax9vczxlikaoqzvnzjavrf8aowx/rahywyzxmzvdsbwon+t9wul8kkmkniukzbg8ibfcdjnpbue9ibxk/wc+zzrz9xae8gq+9plouetftgywcq/rbfenoz+bfxhhw/jbh8hj0crplfkcvcrjcahir8jsmyjpz8cxrbbva8fboowkno0ngxnllmlmplvnncq==</laexi> i equivalen o minimizing ai + i V a conan edge in G aj bj ai j V bj + i A j B i pij (i,j) E pij j bi A {i,j} = <laexi ha_bae="auxnyvhvalgguwikq8vr+gri=">aaac8icbvhbahxenvublc9lhvgwbyc0zmoasaukpzchoonydlllpza8vrxpbms8xmvrvpa/9khc/bas8boidpcmmgwkuzkoa9ly/jnvnrdyedh9fvl0wxdztsxhmxklk9uxijfayeuouqmrfpgwlqyxow8uplx+xwgj0+qrljmxidkkzhkdc0vdp9qjskeplctx0ehgcoeriwwwmjjkurlrcsgfgozazockulwcfnowpzewndjfvivgprufuaxehqcyvi8dyvdovetudoehlv8qsutfylgekpw/ae/lkezdzdlegw8oua8fvqicbdvodpmpi9fglwxy8a+l+gkybolvl0nyiznhzctywotfwkykeuylvllmfkjuugoxqrcfiyzxadnjhnozqvxk/rxjhrpjbjlqnienmoyhvgcuhwlrqwvelwbcsxhomgufzwdau9m8lwxffdinkfruwivurjqivzmzb0opc9gf/lte/kqjnfnlbxpi+8ckcki+kzmyjnwcibonydwc/eh+9p9astlvznkyf+/figdmnq==</laexi> aj + or alernaively bi + j B i A pij G (i,j) E A {i,j} = <laexi ha_bae="lol9igpggvvnrymdybyzmo=">aaacqhicbvfdb9mwfhuypkbjbeelmiqhomvckeqqjaqmh8vgkugvueslbkwv/knr+ck/sbdlzj9e98m+zgopriui0gde/+gfbjqpnzx99ry/u89jwhpncuyiyxal0dhwkm8kawylumcznefgye0vufulgumilqmrecou+l/v/uliqfkcfhk8ntdepyao0bnsxa+ayglbudf9drfl9njf+xeldb0yz+auqnw8mpqbkpqpkwqg0anra8jhioac9uaf9qtsmocifbavnfkn0jdukvcbhkkjqhbjxywtxgldoxfw+hxeluq80uqrqjarhwdmmm+nx9pby/butflvjlplmxduyb8nzyfwqyqusoeadpmpqsxq+mzirbutsa8an8hcffum8/zdqunebfo0lupbc9numfkd+mmaymnzc8phe0jl+9hwer/zcji/jkjpynjetlxmijjwmfobfbs/c+eoniq/uqwwnxkbui9rjm0h</laexi> 9 0 Image egmenaion Grabcu image egmenaion Conider min cu (A, B) in G ʹ. Grabcu. [ Roher Kolmogorov Blake 00 ] A = foreground. cap(a, B) = aj + j B bi + i A pij if i and j on differen ide, pij couned exacly once (i,j) E i A, j B <laexi ha_bae="gcrfvkznab/z8lqbnechacxuvom=">aaacvhicbvhawfjw9ryanr9hizlwlhkqdlxgplo+0ygchsuijzhlmajjbjlgglgvxtbgybdbumhc+xk0lwy0ng+e/+dho8dppnj/8xkvnbvjsmywxotmqugbvcdwkvcw0upkkvegxxfxqqwp0yljcw9unzggbwosvq/gcgjymypokdqcz+0tmvimrwiruc0bprmgfq8ku9qsbpe8vu9vnfaixlirirzdfaxy/qrrnxwcfucbqhycgpyrukphcrpd8ixkfjcb+ehriqzshw8ynjwslswcwrmnawkgduw8eronfibugvthuvkkjqznbxztaazxlujldtyiksmowmnwekprmyp9p09loduokqk0qfhbafykdmngez8iwdpameauvdxvfnmbwqjscrrplus8vznuegk+yxqxxbzzvfb+cedmbhjw+d8nunlvknxllhiqkn8gx+uoyiqw8dhvxp/mxvmxdfa+leuxwzl/cybl0fu=</laexi> GrabCu Ineracive Foreground Exracion uing Ieraed Graph Cu Preciely he quaniy we wan o minimize. Caren Roher aj i A pij Vladimir Kolmogorov Microof Reearch Cambridge, UK Andrew Blake Figure : Three example of GrabCu. The uer drag a recangle looely around an objec. The objec i hen exraced auomaically. j Abrac bi G The problem of efficien, ineracive foreground/background egmenaion in ill image i of grea pracical imporance in image ediing. Claical image egmenaion ool ue eiher exure (colour) informaion, e.g. Magic Wand, or edge (conra) informaion, e.g. Inelligen Scior. Recenly, an approach baed on opimizaion by graph-cu ha been developed which uccefully combine boh ype of informaion. In hi paper we exend he graph-cu approach in hree repec. Fir, we have developed a more powerful, ieraive verion of he opimiaion. Secondly, he power of he ieraive algorihm i ued o implify ubanially he uer ineracion needed for a given qualiy of reul. Thirdly, a robu algorihm for border maing ha been developed o eimae imulaneouly he alpha-mae around an objec boundary and he colour of foreground pixel. We how ha for moderaely difficul free of colour bleeding from he ource background. In general, degree of ineracive effor range from ediing individual pixel, a he labour-inenive exreme, o merely ouching foreground and/or background in a few locaion.. Previou approache o ineracive maing In he following we decribe briefly and compare everal ae of he ar ineracive ool for egmenaion: Magic Wand, Inelligen Scior, Graph Cu and Level Se and for maing: Baye Maing and Knockou. Fig. how heir reul on a maing ak, ogeher wih degree of uer ineracion required o achieve hoe reul. Magic Wand ar wih a uer-pecified poin or region o compue a region of conneced pixel uch ha all he eleced pixel fall wihin ome adjuable olerance of he colour aiic of he pecified region. While he uer inerface i raighforward, finding

16 Projec elecion (maximum weigh cloure problem) SECTION.. NETWORK FLOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion projec elecion baeball eliminaion Projec wih prerequiie. Se of poible projec P : projec v ha aociaed revenue pv. Se of prerequiie E : (v, w) E mean w i a prerequiie for v. A ube of projec A P i feaible if he prerequiie of every projec in A alo belong o A. Projec elecion problem. Given a e of projec P and prerequiie E, chooe a feaible ube of projec o maximize revenue. MANAGEMENT SCIENCE Vol., No., July, 9 Prined in U.SA. MAXIMAL CLOSURE OF A GRAPH AND APPLICATIONS TO COMBINATORIAL PROBLEMS* JEAN-CLAUDE PICARD Ecole Polyechnique, Monreal can be poiive or negaive Thi paper generalize he elecion problem dicued by J. M. Rhy [], J. D. Murchland [9], M. L. Balinki [] and P. Hanen []. Given a direced graph G, a cloure of G i defined a a ube of node uch ha if a node belong o he cloure all i ucceor alo belong o he e. If a real number i aociaed o each node of G a maximal cloure i defined a a cloure of maximal value. Projec elecion: prerequiie graph Projec elecion: min-cu formulaion Prerequiie graph. Add edge (v, w) if w i a prerequiie for v. Min-cu formulaion. Aign a capaciy of o each prerequiie edge. Add edge (, v) wih capaciy p v if p v > 0. Add edge (v, ) wih capaciy p v if p v < 0. For noaional convenience, define p = p = 0. w w u w p u p w p y y z p z v x v x p v p x { v, w, x } i feaible { v, x } i infeaible v x

17 Projec elecion: min-cu formulaion Open-pi mining Claim. (A, B) i min cu iff A { } i an opimal e of projec. Open-pi mining. [udied ince early 90] Infinie capaciy edge enure A { } i feaible. Max revenue becaue: cap(a, B) = Block of earh are exraced from urface o rerieve ore. pv + v B : pv >0 <laexi ha_bae="jovugo0bjapbuezlcgplwao=">aaacjicbvfntxxehuwl0kfhlioiskfo9qekh8knbluvgpaarpiedweinijarfyc/ozeixepccsgaky09vvjzzlr0ley/mkea+vxraen88/bd+w+9uaywrccbyldvllduuuoajcm8nbzliq8sg9+vplkvonc/bzgzhgb/sciifj08llrtcdi+/wmkoxpvxphzwwznrzauuilhhoikx8njpnceyrzqfe/wxl0uph0onkvqusos9ccqiflbfnsxxmy8zkwrosahuhpdkdq0krklkrtomhh0hbxw9wkhmgbprwecxh0+egcmkpgpp9pfhyzllzlnplxunarfyq8rnekdjqiuhsewjwytqoflemvloylrufqgexvvqgrjmlgvyxdkup9ucy9plwbtgfdyrbdk+dyngkm9hscf+fys/9btvkucgdbrojjycygalx/yf+w+aaewvhqfagjcxmrzuwel/usnefg==</laexi> = a conan pv Can remove block v unil boh block w and x are removed. pv v : pv >0 <laexi ha_bae="h0rdhkrdwfuvwoeplp+ycwevvu=">aaacbicbvdrshbfjwqqnepdhwpyasi0dzderreuyrqrvghwxyzicznbdpmgwzlfpffpffbugteyfyqnnhvvzikzjs/mpdw/iw+hfpeaxaxx8pry/psprkrbwpszc0qqbflkhrezwzeiu8im9/vfrvgivqfdkwzcb/rcigfj0dfrtmid8ndokqvzmjzjcrgefadnwtrgiblfgxeh/pqkhlmokyqfoxxe8b8eunm0zqonxmyseweocahulw9wm+oxbduigmfumepil9gz0hnet9ovvcd8dmbhazrbdxb0fbenseyccaerndcq8n9alfhqb+qojxhbnmwvuapvedcqbgwpiqncgonecmledrfkipzu/oumz8pljlrtpaodyrxdkeolsdoyzew8udzubwku9onb9m8l9lx9o9yahbzyfnznxsbypxgt+y8ej98by9elnjwnpfpp+crqimma==</laexi> Each block v ha ne value pv = value of ore proceing co. ( pv ) v A : pv <0 v A minimizing hi i equivalen o maximizing revenue w u pu w pw py A pv y z v pz x v px x 8 Baeball eliminaion. N ETWORK F LOW II biparie maching dijoin pah exenion o max flow urvey deign airline cheduling image egmenaion SECTION. projec elecion baeball eliminaion 0

18 Baeball eliminaion problem Baeball eliminaion problem Q. Which eam have a chance of finihing he eaon wih he mo win? i eam win loe o play ATL PHI NYM MON 0 Alana 8 8 Philly New York Monreal 8 0 Monreal i mahemaically eliminaed. Monreal finihe wih 80 win. Alana already ha 8 win. Remark. Thi i he only reaon por wrier appear o be aware of condiion are ufficien bu no neceary! Q. Which eam have a chance of finihing he eaon wih he mo win? i eam win loe o play ATL PHI NYM MON 0 Alana 8 8 Philly New York Monreal 8 0 Philadelphia i mahemaically eliminaed. Philadelphia finihe wih 8 win. Eiher New York or Alana will finih wih 8 win. Obervaion. Anwer depend no only on how many game already won and lef o play, bu on whom hey re again. Baeball eliminaion problem Baeball eliminaion problem: max-flow formulaion Curren anding. Se of eam S. Diinguihed eam z S. Team x ha won w x game already. Team x and y play each oher r xy addiional ime. Can eam finih wih mo win? Aume eam win all remaining game w + r win. Divvy remaining game o ha all eam have w + r win. Baeball eliminaion problem. Given he curren anding, i here any oucome of he remaining game in which eam z finihe wih he mo (or ied for he mo) win? game lef beween and eam can ill win hi many more game SIAM REVIEW Vol. 8, No., July, 9 0 w + r w g POSSIBLE WINNERS IN PARTIALLY COMPLETED TOURNAMENTS* BENJAMIN L. SCHWARTZ. Inroducion. In hi paper, we hall inveigae cerain queion in ournamen cheduling. For definiene, we hall ue he erminology of baeball. We hall be concerned wih he caegorizaion of eam ino hree clae during he cloing day of he eaon. A eam may be definiely eliminaed from pennan poibiliy; i may be in conenion, or i may have clinched he championhip. I will be our convenion ha a eam ha can poibly ie for he pennan i conidered ill in conenion. In hi paper neceary and ufficien condiion are developed o claify any eam properly ino he appropriae caegory. We game node (each pair of eam oher han ) eam node (each eam oher han )

19 Baeball eliminaion problem: max-flow formulaion Baeball eliminaion: explanaion for por wrier Theorem. Team no eliminaed iff max flow aurae all edge leaving. Pf. Inegraliy heorem each remaining game beween x and y added o number of win for eam x or eam y. Capaciy on (x, ) edge enure no eam win oo many game. Q. Which eam have a chance of finihing he eaon wih he mo win? i eam win loe o play NYY BAL BOS TOR DET 0 New York Balimore 8 0 Boon game lef beween and 0 0 eam can ill win hi many more game Torono 0 0 Deroi g w + r w game node (each pair of eam oher han ) eam node (each eam oher han ) AL Ea (Augu 0, 99) Deroi i mahemaically eliminaed. Deroi finihe wih win. Win for R = { NYY, BAL, BOS, TOR } = 8. Remaining game among { NYY, BAL, BOS, TOR } = =. Average eam in R win 0/ =. game. Baeball eliminaion: explanaion for por wrier Baeball eliminaion: explanaion for por wrier Cerificae of eliminaion. # remaining game!# " win #! $ " $ $ # T S, w(t ) := w i i T, g(t ) := g x y {x,y} T, Theorem. [Hoffman Rivlin 9] Team z i eliminaed iff here exi a ube T* uch ha w(t*)+ g(t*) w z + g z < T* Pf. w(t*)+ g(t*) Suppoe here exi T* S uch ha w z + g z <. T* Then, he eam in T* win a lea (w(t*) + g(t*)) / T* game on average. Thi exceed he maximum number ha eam z can win. Pf. Ue max-flow formulaion, and conider min cu (A, B). Le T* = eam node on ource ide A of min cu. Oberve ha game node x y A iff boh x T* and y T*. - infinie capaciy edge enure if x y A, hen boh x A and y A - if x A and y A bu x y A, hen adding x y o A decreae he capaciy of he cu by g xy y g xy x y x w z + r z w x 8

20 Baeball eliminaion: explanaion for por wrier Pf. Ue max-flow formulaion, and conider min cu (A, B). Le T* = eam node on ource ide A of min cu. Oberve ha game node x y A iff boh x T* and y T*. Since eam z i eliminaed, by max-flow min-cu heorem, g(s {z}) > cap(a, B) capaciy of game edge leaving capaciy of eam edge enering!## "### $ = g(s {z}) g(t*)!# #" ## $ + (w z + g z w x ) x T* = g(s {z}) g(t*) w(t*) + T* (w z + g z ) Rearranging erm: w z + g z < w(t*)+ g(t*) T* 9

7. NETWORK FLOW II. Soviet rail network (1950s) Max-flow and min-cut applications. "Free world" goal. Cut supplies (if cold war turns into real war).

7. NETWORK FLOW II. Soviet rail network (1950s) Max-flow and min-cut applications. Free world goal. Cut supplies (if cold war turns into real war). Sovie rail nework (9). NETWORK FLOW II "Free world" goal. Cu upplie (if cold war urn ino real war). Lecure lide by Kevin Wayne Copyrigh Pearon-Addion Weley Copyrigh Kevin Wayne hp://www.c.princeon.edu/~wayne/kleinberg-ardo

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching Chaper. Biparie Maching Nework Flow Slide by Kein Wayne. Copyrigh 00 Pearon-Addion Weley. All righ reered. Maching Biparie Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node

More information

Matching. Slides designed by Kevin Wayne.

Matching. Slides designed by Kevin Wayne. Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie

More information

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching

7.5 Bipartite Matching. Chapter 7. Network Flow. Matching. Bipartite Matching Chaper. Biparie Maching Nework Flow Slide by Kevin Wayne. Copyrigh PearonAddion Weley. All righ reerved. Maching Biparie Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURE 0 Nework Flow Applicaion Biparie maching Edge-dijoin pah Adam Smih 0//0 A. Smih; baed on lide by E. Demaine, C. Leieron, S. Rakhodnikova, K. Wayne La ime: Ford-Fulkeron

More information

3/3/2015. Chapter 7. Network Flow. Maximum Flow and Minimum Cut. Minimum Cut Problem

3/3/2015. Chapter 7. Network Flow. Maximum Flow and Minimum Cut. Minimum Cut Problem // Chaper Nework Flow Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nonrivial applicaion /

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 Sovie Rail Nework, 1 Reference: On he hiory of he ranporaion and maximum flow problem. Alexander Schrijver in Mah Programming, 1: 3,. Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic

More information

Network Flow Applications

Network Flow Applications Hopial problem Neork Flo Applicaion Injured people: n Hopial: k Each peron need o be brough o a hopial no more han 30 minue aay Each hopial rea no more han n/k" people Gien n, k, and informaion abou people

More information

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges.

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges. Sovie Rail Nework, haper Nework Flow Slide by Kevin Wayne. opyrigh Pearon-ddion Weley. ll righ reerved. Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming,

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 7.1 Nework Flow Sovie Rail Nework, 19 Reerence: On he hiory o he ranporaion and maximum low problem. lexander Schrijver in Mah Programming, 91: 3, 00. (See Exernal Link ) Maximum Flow and Minimum Cu Max

More information

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem.

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem. Maximum Flow and Minimum Cu CS lgorihm Deign Inrucor: rur Czumaj Lecure Nework Max and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy.

More information

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

CSE 421 Introduction to Algorithms Winter The Network Flow Problem

CSE 421 Introduction to Algorithms Winter The Network Flow Problem CSE 42 Inroducion o Algorihm Winer 202 The Nework Flow Problem 2 The Nework Flow Problem 5 a 4 3 x 3 7 6 b 4 y 4 7 6 c 5 z How much uff can flow from o? 3 Sovie Rail Nework, 955 Reference: On he hiory

More information

Maximum Flow and Minimum Cut

Maximum Flow and Minimum Cut // Sovie Rail Nework, Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nework Flow Flow nework.

More information

Algorithms. Algorithms 6.4 MAXIMUM FLOW

Algorithms. Algorithms 6.4 MAXIMUM FLOW Algorihm ROBERT SEDGEWICK KEVIN WAYNE 6.4 MAXIMUM FLOW Algorihm F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE hp://alg4.c.princeon.edu inroducion Ford Fulkeron algorihm maxflow mincu heorem analyi

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem MAXIMUM FLOW inroducion Ford-Fulkeron algorihm maxflow-mincu heorem Mincu problem Inpu. An edge-weighed digraph, ource verex, and arge verex. each edge ha a poiive capaciy capaciy 9 10 4 15 15 10 5 8 10

More information

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques Algorihm Deign Technique CS : Nework Flow Dan Sheldon April, reedy Divide and Conquer Dynamic Programming Nework Flow Comparion Nework Flow Previou opic: deign echnique reedy Divide and Conquer Dynamic

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network. Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURES 17 Nework Flow Dualiy of Max Flow and Min Cu Algorihm: Ford-Fulkeron Capaciy Scaling Sofya Rakhodnikova S. Rakhodnikova; baed on lide by E. Demaine, C. Leieron, A. Smih,

More information

CSE 521: Design & Analysis of Algorithms I

CSE 521: Design & Analysis of Algorithms I CSE 52: Deign & Analyi of Algorihm I Nework Flow Paul Beame Biparie Maching Given: A biparie graph G=(V,E) M E i a maching in G iff no wo edge in M hare a verex Goal: Find a maching M in G of maximum poible

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005 CS 473G Lecure 1: Max-Flow Algorihm and Applicaion Fall 200 1 Max-Flow Algorihm and Applicaion (November 1) 1.1 Recap Fix a direced graph G = (V, E) ha doe no conain boh an edge u v and i reveral v u,

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

16 Max-Flow Algorithms and Applications

16 Max-Flow Algorithms and Applications Algorihm A proce canno be underood by opping i. Underanding mu move wih he flow of he proce, mu join i and flow wih i. The Fir Law of Mena, in Frank Herber Dune (196) There a difference beween knowing

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

introduction Ford-Fulkerson algorithm

introduction Ford-Fulkerson algorithm Algorihm ROBERT SEDGEWICK KEVIN WAYNE. MAXIMUM FLOW. MAXIMUM FLOW inroducion inroducion Ford-Fulkeron algorihm Ford-Fulkeron algorihm Algorihm F O U R T H E D I T I O N maxflow-mincu heorem analyi of running

More information

Today: Max Flow Proofs

Today: Max Flow Proofs Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

introduction Ford-Fulkerson algorithm

introduction Ford-Fulkerson algorithm Algorihm ROBERT SEDGEWICK KEVIN WAYNE. MAXIMUM FLOW. MAXIMUM FLOW inroducion inroducion Ford-Fulkeron algorihm Ford-Fulkeron algorihm Algorihm F O U R T H E D I T I O N maxflow-mincu heorem analyi of running

More information

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 7 Network Flow Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 7.5 Bipartite Matching Matching Matching. Input: undirected graph G = (V, E). M E is a matching

More information

Maximum Flow. Contents. Max Flow Network. Maximum Flow and Minimum Cut

Maximum Flow. Contents. Max Flow Network. Maximum Flow and Minimum Cut Conen Maximum Flow Conen. Maximum low problem. Minimum cu problem. Max-low min-cu heorem. Augmening pah algorihm. Capaciy-caling. Shore augmening pah. Princeon Univeriy COS Theory o Algorihm Spring Kevin

More information

They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956]

They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956] 6. Inroducion... 6. The primal-dual algorihmn... 6 6. Remark on he primal-dual algorihmn... 7 6. A primal-dual algorihmn for he hore pah problem... 8... 9 6.6 A primal-dual algorihmn for he weighed maching

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 208 Midterm Exam Anticipate having midterm graded at this point Look for comments on Piazza Common Mistakes Average, Max,

More information

Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne.

Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne. Conen Conen. Maximum flow problem. Minimum cu problem. Max-flow min-cu heorem. Augmening pah algorihm. Capaciy-caling. Shore augmening pah. Chaper Maximum How do we ranpor he maximum amoun daa from ource

More information

Average Case Lower Bounds for Monotone Switching Networks

Average Case Lower Bounds for Monotone Switching Networks Average Cae Lower Bound for Monoone Swiching Nework Yuval Filmu, Toniann Piai, Rober Robere, Sephen Cook Deparmen of Compuer Science Univeriy of Torono Monoone Compuaion (Refreher) Monoone circui were

More information

20/20 20/20 0/5 0/5 20/20 20/20 5/5 0/5 0/5 5/5 0/20 25/30 20/20 30/30 20/20 0/5 5/5 20/20 0/5 0/5 15/20 15/25 20/20 10/10

20/20 20/20 0/5 0/5 20/20 20/20 5/5 0/5 0/5 5/5 0/20 25/30 20/20 30/30 20/20 0/5 5/5 20/20 0/5 0/5 15/20 15/25 20/20 10/10 Annoncemen CSEP Applied Algorihm Richard Anderon Lecre 9 Nework Flow Applicaion Reading for hi week 7.-7.. Nework flow applicaion Nex week: Chaper 8. NP-Compleene Final exam, March 8, 6:0 pm. A UW. hor

More information

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 7 Network Flow Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 7.5 Bipartite Matching Bipartite Matching Bipartite matching. Input: undirected, bipartite graph

More information

Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a.

Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a. Flow nework, flow, maximum flow Can inerpre direced graph a flow nework. Maerial coure hrough ome yem from ome ource o ome ink. Source produce maerial a ome eady rae, ink conume a ame rae. Example: waer

More information

Please Complete Course Survey. CMPSCI 311: Introduction to Algorithms. Approximation Algorithms. Coping With NP-Completeness. Greedy Vertex Cover

Please Complete Course Survey. CMPSCI 311: Introduction to Algorithms. Approximation Algorithms. Coping With NP-Completeness. Greedy Vertex Cover Pleae Complee Coure Survey CMPSCI : Inroducion o Algorihm Dealing wih NP-Compleene Dan Sheldon hp: //owl.oi.uma.edu/parner/coureevalsurvey/uma/ Univeriy of Maachue Slide Adaped from Kevin Wayne La Compiled:

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Maximum Flow 5/6/17 21:08. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Maximum Flow 5/6/17 21:08. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Maximm Flo 5/6/17 21:08 Preenaion for e ih he exbook, Algorihm Deign and Applicaion, by M. T. Goodrich and R. Tamaia, Wiley, 2015 Maximm Flo χ 4/6 4/7 1/9 2015 Goodrich and Tamaia Maximm Flo 1 Flo Neork

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

April 3, The maximum flow problem. See class notes on website.

April 3, The maximum flow problem. See class notes on website. 5.05 April, 007 The maximum flow problem See cla noe on webie. Quoe of he day You ge he maxx for he minimum a TJ Maxx. -- ad for a clohing ore Thi wa he mo unkinde cu of all -- Shakepeare in Juliu Caear

More information

Selfish Routing. Tim Roughgarden Cornell University. Includes joint work with Éva Tardos

Selfish Routing. Tim Roughgarden Cornell University. Includes joint work with Éva Tardos Selfih Rouing Tim Roughgarden Cornell Univeriy Include join work wih Éva Tardo 1 Which roue would you chooe? Example: one uni of raffic (e.g., car) wan o go from o delay = 1 hour (no congeion effec) long

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Price of Stability and Introduction to Mechanism Design

Price of Stability and Introduction to Mechanism Design Algorihmic Game Theory Summer 2017, Week 5 ETH Zürich Price of Sabiliy and Inroducion o Mechanim Deign Paolo Penna Thi i he lecure where we ar deigning yem which involve elfih player. Roughly peaking,

More information

Network Flows UPCOPENCOURSEWARE number 34414

Network Flows UPCOPENCOURSEWARE number 34414 Nework Flow UPCOPENCOURSEWARE number Topic : F.-Javier Heredia Thi work i licened under he Creaive Common Aribuion- NonCommercial-NoDeriv. Unpored Licene. To view a copy of hi licene, vii hp://creaivecommon.org/licene/by-nc-nd/./

More information

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 11/22/17 6:11 AM

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 11/22/17 6:11 AM 7. NETWORK FLOW I max-flow and min-cu problem Ford Fulkeron algorihm max-flow min-cu heorem capaciy-caling algorihm hore augmening pah blocking-flow algorihm imple uni-capaciy nework Lecure lide by Kevin

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 Ch7. Network Flow Soviet Rail Network, 955 Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 9: 3, 2002. 2 Maximum Flow and Minimum Cut

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 11/22/17 6:11 AM

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 11/22/17 6:11 AM 7. NETWORK FLOW I max-flow and min-cu problem Ford Fulkeron algorihm max-flow min-cu heorem capaciy-caling algorihm hore augmening pah blocking-flow algorihm imple uni-capaciy nework Lecure lide by Kevin

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Selfish Routing and the Price of Anarchy. Tim Roughgarden Cornell University

Selfish Routing and the Price of Anarchy. Tim Roughgarden Cornell University Selfih Rouing and he Price of Anarchy Tim Roughgarden Cornell Univeriy 1 Algorihm for Self-Inereed Agen Our focu: problem in which muliple agen (people, compuer, ec.) inerac Moivaion: he Inerne decenralized

More information

Maximum Flow in Planar Graphs

Maximum Flow in Planar Graphs Maximum Flow in Planar Graph Planar Graph and i Dual Dualiy i defined for direced planar graph a well Minimum - cu in undireced planar graph An - cu (undireced graph) An - cu The dual o he cu Cu/Cycle

More information

7.5 Bipartite Matching

7.5 Bipartite Matching 7. Bipartite Matching Matching Matching. Input: undirected graph G = (V, E). M E is a matching if each node appears in at most edge in M. Max matching: find a max cardinality matching. Bipartite Matching

More information

7. NETWORK FLOW II. bipartite matching disjoint paths extensions to max flow 3D Memory Reliability survey design airline scheduling image segmentation

7. NETWORK FLOW II. bipartite matching disjoint paths extensions to max flow 3D Memory Reliability survey design airline scheduling image segmentation 7. NETWORK FLOW II bipartite matching disjoint paths extensions to max flow 3D Memory Reliability survey design airline scheduling image segmentation Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison

More information

23 Maximum Flows and Minimum Cuts

23 Maximum Flows and Minimum Cuts A proce canno be underood by opping i. Underanding mu move wih he flow of he proce, mu join i and flow wih i. The Fir Law of Mena, in Frank Herber Dune (196) Conrary o expecaion, flow uually happen no

More information

Lecture 26. Lucas and Stokey: Optimal Monetary and Fiscal Policy in an Economy without Capital (JME 1983) t t

Lecture 26. Lucas and Stokey: Optimal Monetary and Fiscal Policy in an Economy without Capital (JME 1983) t t Lecure 6. Luca and Sokey: Opimal Moneary and Fical Policy in an Economy wihou Capial (JME 983. A argued in Kydland and Preco (JPE 977, Opimal governmen policy i likely o be ime inconien. Fiher (JEDC 98

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson

CMPS 6610/4610 Fall Flow Networks. Carola Wenk Slides adapted from slides by Charles Leiserson CMP 6610/4610 Fall 2016 Flow Nework Carola Wenk lide adaped rom lide by Charle Leieron Max low and min c Fndamenal problem in combinaorial opimizaion Daliy beween max low and min c Many applicaion: Biparie

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

7.6 Disjoint Paths. 7. Network Flow Applications. Edge Disjoint Paths. Edge Disjoint Paths

7.6 Disjoint Paths. 7. Network Flow Applications. Edge Disjoint Paths. Edge Disjoint Paths . Nework Flow Applcaon. Djon Pah Algorhm Degn by Éva Tardo and Jon Klenberg Copyrgh Addon Weley Slde by Kevn Wayne Algorhm Degn by Éva Tardo and Jon Klenberg Copyrgh Addon Weley Slde by Kevn Wayne Edge

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Mechtild Stoer * Frank Wagner** Abstract. fastest algorithm known. The runtime analysis is straightforward. In contrast to

Mechtild Stoer * Frank Wagner** Abstract. fastest algorithm known. The runtime analysis is straightforward. In contrast to SERIE B INFORMATIK A Simple Min Cu Algorihm Mechild Soer * Frank Wagner** B 9{1 May 199 Abrac We preen an algorihm for nding he minimum cu of an edge-weighed graph. I i imple in every repec. I ha a hor

More information

26.1 Flow networks. f (u,v) = 0.

26.1 Flow networks. f (u,v) = 0. 26 Maimum Flow Ju a we can model a road map a a direced graph in order o find he hore pah from one poin o anoher, we can alo inerpre a direced graph a a flow nework and ue i o anwer queion abou maerial

More information

ARTIFICIAL INTELLIGENCE. Markov decision processes

ARTIFICIAL INTELLIGENCE. Markov decision processes INFOB2KI 2017-2018 Urech Univeriy The Neherland ARTIFICIAL INTELLIGENCE Markov deciion procee Lecurer: Silja Renooij Thee lide are par of he INFOB2KI Coure Noe available from www.c.uu.nl/doc/vakken/b2ki/chema.hml

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

How to Solve System Dynamic s Problems

How to Solve System Dynamic s Problems How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion

More information

Ford Fulkerson algorithm max-flow min-cut theorem. max-flow min-cut theorem capacity-scaling algorithm

Ford Fulkerson algorithm max-flow min-cut theorem. max-flow min-cut theorem capacity-scaling algorithm 7. NETWORK FLOW I 7. NETWORK FLOW I max-flow and min-cu problem max-flow and min-cu problem Ford Fulkeron algorihm Ford Fulkeron algorihm max-flow min-cu heorem max-flow min-cu heorem capaciy-caling algorihm

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

Basic Tools CMSC 641. Running Time. Problem. Problem. Algorithmic Design Paradigms. lg (n!) (lg n)! (lg n) lgn n.2

Basic Tools CMSC 641. Running Time. Problem. Problem. Algorithmic Design Paradigms. lg (n!) (lg n)! (lg n) lgn n.2 Baic Tool CMSC April, Review Aympoic Noaion Order of Growh Recurrence relaion Daa Srucure Li, Heap, Graph, Tree, Balanced Tree, Hah Table Advanced daa rucure: Binomial Heap, Fibonacci Heap Soring Mehod

More information

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1.

Timed Circuits. Asynchronous Circuit Design. Timing Relationships. A Simple Example. Timed States. Timing Sequences. ({r 6 },t6 = 1. Timed Circuis Asynchronous Circui Design Chris J. Myers Lecure 7: Timed Circuis Chaper 7 Previous mehods only use limied knowledge of delays. Very robus sysems, bu exremely conservaive. Large funcional

More information

DETC2004/CIE ALGORITHMIC FOUNDATIONS FOR CONSISTENCY-CHECKING OF INTERACTION-STATES OF MECHATRONIC SYSTEMS

DETC2004/CIE ALGORITHMIC FOUNDATIONS FOR CONSISTENCY-CHECKING OF INTERACTION-STATES OF MECHATRONIC SYSTEMS Proceeding of DETC 04 ASME 2004 Deign Engineering Technical Conference and Compuer and Informaion in Engineering Conference Sal Lake Ciy, Uah, USA, Sepember 28-Ocober 2, 2004 DETC2004/CIE-79 ALGORITHMIC

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 7. Network Flow. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 7 Network Flow Slide by Kevin Wayne. Copyright 5 Pearon-Addion Weley. All right reerved. Soviet Rail Network, 55 Reference: On the hitory of the tranportation and maximum flow problem. Alexander

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information