E/M. Hunter Layman Bridgewater College 1/16/2016

Size: px
Start display at page:

Download "E/M. Hunter Layman Bridgewater College 1/16/2016"

Transcription

1 E/M Hunter Layman Bridgewater College 1/16/016

2 Abstract The charge to mass ratio of an electron was observed in the experiment. This experiment involved the use of a PASCO scientific Model SE 9638 e/m Apparatus. This e/m apparatus was made up of an electron gun sealed in a vacuum tube, two Helmholtz coils, and a control panel. The electron gun shot out a beam of electrons that was curved into a circular path by a magnetic field produced by the Helmholtz coils. The circle path of the electron beam was visible and the radius was measured using a mirrored scale on the back of the apparatus. This Helmholtz coils had a current I and the electron gun had an accelerating voltage V both measured with RSR 01V86B Digital multimeters. The values of I, V, and the measured radius of the circle were used to calculate the charge to mass ratio (e/m). The accepted value for the charge to mass ratio is ( ± ) C/kg. 4 The experimental value for the charge to mass ratio was found to be ( 1.7 ± 0.5) C/kg, which is consistent with the accepted value. It was noted that the uncertainty in the experimental value is rather large.

3 I. Introduction The charge to mass ratio of an electron was initially determined by J.J. Thomson in In this experiment this relationship is determined, in a similar manner to J.J. Thomson, through the use of the PASCO Model SE 9638 e/m Apparatus. The PASCO Model SE 9638 e/m Apparatus is made up of an electron gun, Helmholtz coils, and a helium filled vacuum tube. A beam of electrons is launched with a known potential, thus the velocity is known. There are two Helmholtz coils around the electron gun that create a magnetic field at right angles to the electron gun. This magnetic field causes the electron beam to move in a circular path. Using the potential, the current in the Helmholtz coil, and the radius of the circular path of the electrons, the charge to mass ratio was calculated. This derivation is detailed in the Theory section of this paper.

4 II. Theory This e/m apparatus combines the use of an electron gun with Helmholtz coils. The electron gun fires a beam of electrons inside of a Helium filled vacuum tube. The electrons collide with the Helium atoms causing the electrons to become excited. From Layman 1 it is found that an electron that is excited jumps down energy levels causing a photon to be released. This photon has a wavelength of (hc)a 0( n n λ = ke init n final n init final), (1) where λ is wavelength, h = ev s is the Planck s constant, a nm which is the Bohr Radius, k = (N m )/C is the Coulomb s constant, e = C is the charge of an electron, n init is the initial energy level, and n final is the final energy level. The electron beam is visible, because the wavelength corresponds to a wavelength value inside of the visible spectrum. The Helmholtz coils are a set of coils that are used to create a magnetic field. This magnetic field causes the electron beam that is fired to move in a circular motion.the derivation for e/m is adapted from a derivation found in the PASCO Scientific e/m Apparatus lab manual. The magnetic force ( F m ) for a particle of charge q with known velocity v in a magnetic field (B) is F m = q v B. Since the electron beam is perpendicular to the magnetic field, the cross product of v B = v B and the equation becomes F m = e vb, () where e is the charge of an electron. Since the electron is moving in a circular motion, there is a centripetal force (F c ) that is equal to

5 where F c = m v e /r, (3) is the mass of an electron, and r is the radius of the circular path of the electron beam. m e The only force acting on the electrons is due the the magnetic force, thus, which can be F m = F c written as e vb = m v e /r or e/m e = v /Br. (4) The potential energy of the electron beam is equal to accelerating potential times the charge of the electron 3. This can be set equal to the kinetic energy because of energy conservation, yielding e V = 1/mev, where V is the accelerating potential. Solving for the velocity shows that v = ( ev /m e) 1/. (5) The derivation for the magnetic field of a Helmholtz coil can be directly derived from the Biot Savart law. The Biot Savart law is Figure 1. The Helmholtz coils derivation wit the differentiable units labeled. 5 B = μ 0 Idl r 4π r, (6)

6 where d l is the differentiable unit of length, r is the distance from the coil to the center of the coil a certain height z from the coil, and μ 0 = m kg/(sa ) is the permeability of free space in a vacuum. The d l and r are clearly labeled in Figure 1. The direction of the magnetic field d B is set up in a way that allows for simplification. For every value of d B, other than the magnetic field in the z direction, there is a complementary value that is equal but opposite. This leads to a cancellation of magnetic field only leaving the magnetic field in the z direction. Therefore the magnetic field B can actually be called B z. From Figure 1, it can be seen through the use of Trigonometry that B z = d B cos θ. Equation 5 can now be rewritten as B z = μ 0 Idl r osθ. 4π r c (7) The value of r can be written in terms of the radius of the circle R and the distance from circle z using the Pythagorean Theorem yielding Using the definition cos θ = adjacent hypotenuse r = z + R. (8), it is shown that c osθ = R/ z + R. (9) Since d l and r are shown to be perpendicular, d l r = d lr. By using this cross product result and Equations 8 and 7, Equation 6 can be rewritten as B z = μ 0 IR 4π (z +R ) d l. (10) 3/ Performing the line integral over dl gives a value of This causes the magnetic field to be πr, which is the circumference of a circle.

7 B z = μ 0 4π IR π. (z 3/ +R ) (11) By algebra this simplifies to μ B z = 0 IR (z +R ). 3/ (1) Since there are two sets of coils an equal distance away, Equation 11 is multiplied by a factor of which leads to a magnetic field of B z = μ IR 0. (13) 3/ (z +R ) This derivation is for two circles a distance of z apart and does not produce the full derivation for Helmholtz coils, since in the case of Helmholtz coils there are multiple circles layered (coils) that need to be taken into account. To solve this problem the number of coils, N, is multiplied into the Equation 1 showing that B z = Nμ0IR (z +R ). (14) 3/ For this specific experiment the radius of the Helmholtz coils is equal to the separation, thus R = a and z = a / with a being the radius of the Helmholtz coils. These values can then be plugged into Equation 14 to show that the magnetic field for the Helmholtz coils is B z = Nμ I 0 a(5/4) By plugging in Equations 15 and 5 into Equation 4 it is found that e/m V (5/4) a e = (Nμ Ir) 0. 3/ (15) 3. (16)

8 III. Experimental Procedure The lab manual provided is for the Model SE 9638 e/m Apparatus, while this experiment used the Model TG 13 e/m apparatus, which is set up in the same way. This experiment involved the use of an e/m tube, Helmholtz coils, a control panel, and a mirrored scale. Along with these pieces of equipment, a set of 3 power supplies and RSR 01V86B Digital Multimeters were needed for providing and measuring the voltage and current. The 3 power supplies were a 6 9 VDC for the Helmholtz coils, a 6.3 VDC for the heater, and a VDC that was used for the accelerating potential. The e/m tube,shown in Figure, was filled with Helium at a pressure of 10 mm. Hg, and also contained an electron gun and deflection plates. The electron beam left a visible light in the tube because the electrons collided with helium atoms, thus exciting the electrons and causing them to emit photons as described in the Theory section of the paper. The electron gun, shown in Figure, was comprised of a heater, an anode, a cathode, and a grid. The heater heated up the cathode which caused the cathode to emit electrons. These electrons were accelerated by a potential that was applied between the anode and the cathode, which was kept in focus by the grid. The Helmholtz coils were geometrically set up in a way that the the radius of the coils was equal to their separation. The control panel of the e/m apparatus was very straightforward and all the necessary hookups were provided in the PASCO e/m apparatus lab manual as shown in Figure 4. The mirrored scale was what allowed you to measure the radius of whatever circular electron configuration is produced. This mirrored scale was at the back of the apparatus shown in Figure 3.

9 Figure. The parts inside of the e/m vacuum tube. Figure 3. The parts of the e/m Apparatus.

10 Figure 4. The Control panel and where to plug in power sources and multimeters. First the toggle of the e/m Apparatus was flipped to the Measure position and the current adjust knob for the Helmholtz coil was turned to the all the way off position. The power supplies and the multimeters were hooked to the control panel in a way shown in Figure 4. The power supply for the heater was set to 6.3 V. The power supply for the accelerating voltage was set to be 00. ± V and the power supply for the Helmholtz coils was set to 7.8 V. Next the current adjust knob for the Helmholtz Coils was turned clockwise. Careful attention was paid to make sure that the current did not exceed Amperes, and was found to actually be ± A. After all the necessary voltages and currents were set, ten minutes elapsed in order to allow the heater to heat the cathode up. After the ten minutes the visible electron beam was seen to follow a circular path. The electron beam was then checked to be parallel with the Helmholtz coils. The radius of the electron beam was found by turning off the lights and measuring the

11 radius of the circular path from both sides. This value was then averaged to find the radius of the electron beam, which was r = ± m. Power Supply to Electron Gun (accelerating voltage) 00. ± V Helmholtz Coils Current ± A Power Supply to Electron Gun Heater Power Supply to Helmholtz Coils 6.3 V 7.8 V Radius of the Electron Beam ± m Table 1. This table shows the measurements found from the experiment.

12 IV. Data Analysis and Results The accepted value e/m is found by taking the known value of e = C and dividing it with m = kg, which yields a value of e /m = ( ± ) C/kg. Using Equation 16 and plugging in the values of I = A, V = 00. V, a = m, N = 130 turns, μ 0 = m kg/(sa ), and r = m, it was found that the experimental value of e/m is C/kg. In order to calculate the uncertainty in e/m the partial derivatives of Equation 16 need to taken with respect to V, a, I, and r. These partial derivatives are f V (5/4) a = (Nμ 0 Ir) 3, (17) f a 4V (5/4) = 3 a (Nμ 0 Ir), (18) f I 4V (5/4) a = (Nμ 0 r) I 3 3, (19) and f r 4V (5/4) a = (Nμ 0 I) r 3 3. (0) These partial derivatives are then used in the error propagation equation to show that δe/m e = ( f δ V ) + ( f δ V a) + ( f δ I) + ( f r) a I r δ. (1) To calculate the uncertainty in E/m the values δ V = V, δa = m, δ I = A, and δ r = m need to be plugged into Equation 1 along with the values used to calculate the experimental e/m value. This results in an uncertainty of C/kg. Therefore the experimental value for e/m is rewritten as ( 1.7 ± 0.5) C/kg. This means that the experimental value is consistent with the accepted value of e/m.

13 V. Conclusions This experiment has produced a value of e/m that is consistent with the accepted value. One concern when looking at the experimental value of e/m is the size of the uncertainty. An uncertainty of C/kg is very large. This takes away from the experiment and leads to less meaningful results. It is possible that the uncertainty in δ a was over approximated. The uncertainty in a was not provided in the lab manual and was therefore assumed to be the same as δ r. Since a is given in centimeters the approximation was half of a centimeter, which was the approximation made for measuring centimeters with a ruler. It is possible though that the uncertainty should have been lower than if the measurement was precisely made (this was not specified in the lab manual either). If the uncertainty in a should have been lower, this could have lead to an uncertainty in e/m that is smaller and more meaningful. If this experiment was to be reproduced in the future, more trials for the value of r would be performed at different values of I and V. This would lead to a better approximation of the radius and produce more meaningful results. The results of this future experiment could lead to a graph of accelerated voltage vs. r, whose slope could be used to determine the value of e/m. This slope could have been precisely calculated using Excel and might have lead to a value of e/m that has a lower uncertainty.

14 VI. References 1 Layman, H. (016). Spectrometry. Bridgewater College. Instruction Manual and Experimental Guide for the PASCO scientific Model SE 9638 e/m Apparatus. (n.d.). 3 Young, H., & Freedman, R. (01). Sears and Zemansky's university physics: With modern physics (13th ed., International ed.). Boston [Mass.: Addison Wesley. 4 (n.d.). Retrieved January 16, 016, from bin/cuu/value?esme search_for=atomnuc! 5 Griffiths, D. (1999). Introduction to electrodynamics (3rd ed.). Upper Saddle River, N.J.: Prentice Hall.

Finding e/m. Purpose. The purpose of this lab is to determine the charge to mass ratio of the electron. Equipment

Finding e/m. Purpose. The purpose of this lab is to determine the charge to mass ratio of the electron. Equipment Finding e/m Purpose The purpose of this lab is to determine the charge to mass ratio of the electron. Equipment Pasco Model SE-9638 E/M Apparatus Digital Multi-Meter, DMM Power Supply, Elenco Lead, Banana/Banana

More information

THE CHARGE-TO-MASS RATIO OF THE ELECTRON (e/m)

THE CHARGE-TO-MASS RATIO OF THE ELECTRON (e/m) THE CHARGE-TO-MASS RATIO OF THE ELECTRON (e/m) INTRODUCTION In this experiment you will be measuring the charge to mass ratio, e/m, of the electron. The h/e apparatus consists of an electron gun, a helium

More information

Ratio of Charge to Mass (e/m) for the Electron

Ratio of Charge to Mass (e/m) for the Electron Objective: In this experiment you will determine the ratio of charge to mass (e/m) of the electron, by measuring the deflecting of electrons as they move through a magnetic field. Apparatus: e/m apparatus

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

e/m APPARATUS Instruction Manual and Experiment Guide for the PASCO scientific Model SE D 5/ PASCO scientific $5.

e/m APPARATUS Instruction Manual and Experiment Guide for the PASCO scientific Model SE D 5/ PASCO scientific $5. Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model SE9638 020347D 5/94 e/m APPARATUS 987 PASCO scientific $5.00 020347D e/m

More information

This lab was adapted from Kwantlen University College s Determination of e/m lab.

This lab was adapted from Kwantlen University College s Determination of e/m lab. e /m: Charge to Mass Ratio of the Electron This lab was adapted from Kwantlen University College s Determination of e/m lab. Purpose To determine the charge to mass ratio of the electron, e /m, using Helmholtz

More information

Lab 1: Determination of e/m for the electron

Lab 1: Determination of e/m for the electron Lab 1: Determination of e/m for the electron Background Reading: Tipler, Llewellyn pp. 125 130; this covers the original method of Thomson which is somewhat different from that used in this experiment

More information

Experiment V Motion of electrons in magnetic field and measurement of e/m

Experiment V Motion of electrons in magnetic field and measurement of e/m Experiment V Motion of electrons in magnetic field and measurement of e/m In Experiment IV you observed the quantization of charge on a microscopic bead and measured the charge on a single electron. In

More information

The Measurement of e/m

The Measurement of e/m MSCD/UCD Physics Laboratories Lab II e/m The Measurement of e/m PURPOSE The objectives of this experiment are to measure the ratio between the charge and the mass of electrons, and then to find the mass

More information

Ratio of Charge to Mass for the Electron

Ratio of Charge to Mass for the Electron Ratio of Charge to Mass for the Electron For a positive charge moving in a uniform magnetic field B with velocity v, the force F on the charge is always perpendicular to the magnetic field and the velocity.

More information

B = 8 0 NI/[r (5) 3/2 ],

B = 8 0 NI/[r (5) 3/2 ], ELECTRON BEAM IN A MAGNETIC FIELD Introduction: A charged body moving relative to a magnetic field experiences a force which is perpendicular to both the velocity of the particle and to the magnetic field.

More information

Charge-to-mass ratio for the electron

Charge-to-mass ratio for the electron Charge-to-mass ratio for the electron Introduction This is a variation of the original experiment carried out by J.J.Thomson in 1895. The deflection of a charge moving in a magnetic field is clearly demonstrated.

More information

Pre Lab for Ratio of Mass to. Charge of an Electron

Pre Lab for Ratio of Mass to. Charge of an Electron Pre Lab for Ratio of Mass to Charge of an Electron The direction of the magnetic force on a charged particle moving in the magnetic field is given by the right hand rule. Students need practice using the

More information

Instruction Manual for EP-20 e/m of the Electron Apparatus

Instruction Manual for EP-20 e/m of the Electron Apparatus Instruction Manual for EP-20 e/m of the Electron Apparatus Introduction This self-contained apparatus is designed for the measurement of e/m of the electron by observing the radius of the circular path

More information

Charge to Mass Ratio of The Electron

Charge to Mass Ratio of The Electron Introduction Charge to Mass Ratio of The Electron The electron was first discovered by Sir J.J. Thomson in 1897 at the Cavendish Laboratory in Cambridge, England. His experimental apparatus is not very

More information

Charge to Mass Ratio of The Electron

Charge to Mass Ratio of The Electron Physics Topics Charge to Mass Ratio of The Electron If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Electric

More information

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO 101 Name Date Partners OBJECTIVES OVERVIEW Lab 6 - ELECTRON CHARGE-TO-MASS RATIO To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass

More information

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO 81 Name Date Partners Lab 5 - ELECTRON CHARGE-TO-MASS RATIO OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio

More information

Laboratory 14: Ratio of Charge to Mass for the Electron

Laboratory 14: Ratio of Charge to Mass for the Electron Laboratory 14: Ratio of Charge to Mass for the Electron Introduction The discovery of the electron as a discrete particle of electricity is generally credited to the British physicist Sir J. J. Thomson

More information

MAGNETISM LAB: The Charge-to-Mass Ratio of the Electron

MAGNETISM LAB: The Charge-to-Mass Ratio of the Electron Physics 7B Charge-to-mass: e/m p. 1 NAME: DL SECTION NUMBER: GSI: LAB PARTNERS: MAGNETISM LAB: The Charge-to-Mass Ratio of the Electron Introduction In this lab you will explore the motion of a charged

More information

Lab 6 - Electron Charge-To-Mass Ratio

Lab 6 - Electron Charge-To-Mass Ratio Lab 6 Electron Charge-To-Mass Ratio L6-1 Name Date Partners Lab 6 - Electron Charge-To-Mass Ratio OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine

More information

Charge to Mass Ratio of the Electron

Charge to Mass Ratio of the Electron Charge to Mass Ratio of the Electron 1. Purpose: To determine the charge to mass ratio of the electron, e/m, by subjecting a beam of electrons to a magnetic field and examining their trajectories. It can

More information

MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON

MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON Object This experiment will allow you to observe and understand the motion of a charged particle in a magnetic field and to measure the ratio

More information

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO

Lab 5 - ELECTRON CHARGE-TO-MASS RATIO 79 Name Date Partners OBJECTIVES OVERVIEW Lab 5 - ELECTRON CHARGE-TO-MASS RATIO To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass

More information

KE = 1 2 mv2 = ev. (1)

KE = 1 2 mv2 = ev. (1) The e/m ratio Objective To measure the electronic charge-to-mass ratio e/m, by injecting electrons into a magnetic field and examining their trajectories. We also estimate the magnitude of the earth s

More information

CHARGE TO MASS RATIO FOR THE ELECTRON

CHARGE TO MASS RATIO FOR THE ELECTRON CHARGE TO MASS RATIO FOR THE ELECTRON OBJECTIVE: To measure the ratio of the charge of an electron to its mass. METHOD: A stream of electrons is accelerated by having them "fall" through a measured potential

More information

Brown University PHYS 0060 Physics Department LAB B -190

Brown University PHYS 0060 Physics Department LAB B -190 Physics Department LAB B -190 THE FORCE OF A MAGNETIC FIELD ON A MOVING ELECTRIC CHARGE DETERMINATION OF THE RATIO OF CHARGE TO MASS, e/m, FOR ELECTRONS References: H.D. Young, University Physics, Eleventh

More information

Experiment 1 1. Charge- to- Mass Ratio of the Electron Physics 2150 Experiment No. 1 University of Colorado

Experiment 1 1. Charge- to- Mass Ratio of the Electron Physics 2150 Experiment No. 1 University of Colorado Experiment 1 1 Introduction Charge- to- Mass Ratio of the Electron Physics 2150 Experiment No. 1 University of Colorado Both the charge and the mass of the electron are fundamental constants of considerable

More information

CHARGED PARTICLES IN FIELDS

CHARGED PARTICLES IN FIELDS The electron beam used to study motion of charged particles in electric and/or magnetic fields. CHARGED PARTICLES IN FIELDS Physics 41/61 Fall 01 1 Introduction The precise control of charged particles

More information

MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON

MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON MEASUREMENT OF THE CHARGE TO MASS RATIO (e/m e ) OF AN ELECTRON Object This experiment will allow you to observe and understand the motion of a charged particle in a magnetic field and to measure the ratio

More information

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION Columbia Physics: Lab -6 (ver. 10) 1 EXPERMENT -6 e/m OF THE ELECTRON GENERAL DSCUSSON The "discovery" of the electron by J. J. Thomson in 1897 refers to the experiment in which it was shown that "cathode

More information

The e/m Ratio of the Electron

The e/m Ratio of the Electron OBJECTIVE The e/m Ratio of the Electron To study the behavior of a charged particle in the presence of a potential difference. To study the behavior of a charged particle moving in a magnetic field. To

More information

Lab in a Box Measuring the e/m ratio

Lab in a Box Measuring the e/m ratio Safety Precautions All the signal voltages are small and harmless. The mains voltages in the mains powered equipment is dangerous but is screened in normal use. The fine beam tube requires dangerous contact

More information

Mass of the Electron

Mass of the Electron PHY 192 Charge and Mass of the Electron Spring 2013 1 Mass of the Electron Motivation for the Experiment The aim of this experiment is to measure the mass of the electron. The mass will be deduced from

More information

Lab 7 - ELECTRON CHARGE-TO-MASS RATIO

Lab 7 - ELECTRON CHARGE-TO-MASS RATIO 107 Name Date Partners Lab 7 - ELECTRON CHARGE-TO-MASS RATIO OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio

More information

Electron charge-to-mass ratio

Electron charge-to-mass ratio (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 Electron charge-to-mass ratio In this Experiment you will learn the relationship between electric and magnetic

More information

Charge to Mass Ratio of Electron Lab 11 SAFETY

Charge to Mass Ratio of Electron Lab 11 SAFETY HB 10-20-08 Charge to Mass Ratio of Electron Lab 11 1 Charge to Mass Ratio of Electron Lab 11 Equipment ELWE e/m tube, ELWE Helmholtz coils, ELWE 4 voltage power supply, Safety Glasses, Fluke multimeter,

More information

Determining the Charge to Mass Ratio (e/m) for an Electron

Determining the Charge to Mass Ratio (e/m) for an Electron Determining the Charge to Mass Ratio (e/m) for an Electron Introduction In order to determine the charge to mass ratio (e/m) for an electron we create a beam of electrons by heating a metal filament in

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Learning objectives: What are cathode rays and how were they discovered? Why does the gas in a discharge tube emit light of

More information

Physics 248, Spring 2009 Lab 9: Franck-Hertz Experiment

Physics 248, Spring 2009 Lab 9: Franck-Hertz Experiment Name Section Physics 248, Spring 2009 Lab 9: Franck-Hertz Experiment Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

THE CHARGE-TO-MASS RATIO OF THE ELECTRON

THE CHARGE-TO-MASS RATIO OF THE ELECTRON THE CHARGE-TO-MASS RATIO OF THE ELECTRON Is the beam that produces images on a cathode ray tube (CRT) television or computer monitor a beam of particles or of waves? This was a lively source of debate

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Experiment 4: Charge to mass ratio (e/m) of the electron

Experiment 4: Charge to mass ratio (e/m) of the electron Experiment 4: Charge to mass ratio (e/m) of the electron Nate Saffold nas2173@columbia.edu Office Hour: Monday, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1494/2699 Introduction Our first

More information

Charge to mass Ratio. Nature of the Atom: Dalton's Contributions to Science. 6) qm ratio notes.notebook. December 13, 2018

Charge to mass Ratio. Nature of the Atom: Dalton's Contributions to Science. 6) qm ratio notes.notebook. December 13, 2018 Nature of the Atom: Charge to mass Ratio Studies of atoms from John Dalton's atmospheric studies indicated that properties were cyclic moving from group to group. This suggested some unit of atomic structure

More information

Electric Deflection of Electrons

Electric Deflection of Electrons Electric Deflection of Electrons Objective The purpose of this experiment is to observe that the spacial deflection of an electron in a cathode ray tube is directly proportional to the deflection potential.

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Other Formulae for Electromagnetism. Biot's Law Force on moving charges Other Formulae for Electromagnetism Biot's Law Force on moving charges 1 Biot's Law. Biot's Law states that the magnetic field strength (B) is directly proportional to the current in a straight conductor,

More information

Electron Diffraction

Electron Diffraction Electron iffraction o moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis de

More information

Franck-Hertz experiment using Neon tube

Franck-Hertz experiment using Neon tube Franck-Hertz experiment using Neon tube Objective: Study of quantized excitation of Neon atoms by inelastic scattering and determine the excitation energy. Introduction: Franck and Hertz described the

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

Experiment 5 Deflection of Electrons

Experiment 5 Deflection of Electrons Experiment 5 Deflection of Electrons Every statement in physics has to state relations between observable quantities. E. Mach OBJECTIVES To determine the effect of electric and magnetic fields on a beam

More information

v = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER

v = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER UNIT G485 Module 1 5.1.2 Magnetic Fields 11 Thus, in order for the particle to suffer NO DEFLECTION and so exit the device at Y : From which : MAGNETIC FORCE UP = ELECTRIC FORCE DOWN BQv = EQ THE MASS

More information

Franck-Hertz Experiment

Franck-Hertz Experiment Instruction Manual and Experiment Guide for the PASCO scientific Model SE-9640 Franck-Hertz Tube Model SE-9641 Franck-Hertz Oven Model SE-9642 Franck-Hertz Control Unit 2/90 Franck-Hertz Experiment 0 C

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Millikan determined the charge on individual oil droplets using an arrangement as represented in the diagram. The plate voltage necessary to hold a charged droplet stationary

More information

Experiment 7: The Electron s Charge to Mass Ratio

Experiment 7: The Electron s Charge to Mass Ratio Chapter 9 Experiment 7: The Electron s Charge to Mass Ratio 9.1 Introduction Historical Aside Benjamin Franklin suggested that all matter was made of positively and negatively charged fluids that flowed

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997

The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997 The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997 Abstract One of the most important experiments supporting quantum theory is the Franck- Hertz

More information

Magnetic Deflection of Electrons

Magnetic Deflection of Electrons Magnetic Deflection of Electrons Objective Materials 1. Banana leads 2. Cathode ray tube 3. Fisher 1V/30V power supply (set to 30V) 4. Fluke digital multimeter 5. High voltage power supply 6. Solenoid

More information

Instruction Manual. from. Seventh Edition. These Manual pages reprinted with kind permission.

Instruction Manual. from. Seventh Edition. These Manual pages reprinted with kind permission. Instruction Manual from PSSC Physics Laboratory Guide Seventh Edition These Manual pages reprinted with kind permission. From the Laboratory Guide. PSSC Physics, Seventh Edition, by Haber-Schaim. Dodge.

More information

Magnetic field of single coils / Biot-Savart's law

Magnetic field of single coils / Biot-Savart's law Principle The magnetic field along the axis of wire loops and coils of different dimensions is measured with a teslameter (Hall probe). The relationship between the maximum field strength and the dimensions

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Physics 201: Experiment #1 Franck-Hertz Experiment

Physics 201: Experiment #1 Franck-Hertz Experiment Physics 201: Experiment #1 Franck-Hertz Experiment Carl Adams Winter 2004 Purpose To demonstrate that electrons colliding with gaseous mercury atoms lose energy in discrete amounts. Nobel Prize Winner

More information

Electron Diffraction

Electron Diffraction Exp-3-Electron Diffraction.doc (TJR) Physics Department, University of Windsor Introduction 64-311 Laboratory Experiment 3 Electron Diffraction In 1924 de Broglie predicted that the wavelength of matter

More information

Deflection of Electrons

Deflection of Electrons Deflection of Electrons Every statement in physics has to state relations between observable quantities. E. Mach (1838-1916) OBJECTIVES To determine the effect of electric and magnetic fields on a beam

More information

Experiment 2 Deflection of Electrons

Experiment 2 Deflection of Electrons Name Partner(s): Experiment 2 Deflection of Electrons Objectives Equipment Preparation Pre-Lab To study the effects of electric fields on beams of fast moving electrons. Cathode-ray tube (CRT), voltage

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. (a) The diagram below shows a narrow beam of electrons produced by attracting electrons emitted from a filament wire to a metal plate which has a small hole in it. (i) Why

More information

Diffraction of Electrons

Diffraction of Electrons Diffraction of Electrons Object: Apparatus: Verify that electrons are waves; i.e., that they diffract just like light waves. This lab is then used to measure their wavelength or, alternatively, measure

More information

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar Modern Physics Laboratory Beta Spectroscopy Experiment In this experiment, electrons emitted as a result of the radioactive beta decay of Cs-137 are measured as a function of their momentum by deflecting

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Photon: a quantum of light or electromagnetic wave. Quantum:

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

More information

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury GOALS Physics Measure the energy difference between the ground state and the first excited state in mercury atoms, and conclude

More information

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s PHYS 1040 - General Physics II Lab The Balmer Series for Hydrogen Source Purpose: The purpose of this experiment is to analyze the emission of light from a hydrogen source and measure and the wavelengths

More information

PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures

PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures THIS IS A LEGACY SPECIFICATION ADVANCED GCE PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures *CUP/T52879* Candidates answer on the question paper OCR Supplied Materials: Data, Formulae

More information

EXPERIMENT 15. The Frank Hertz Experiment. 1. Pre-Laboratory Work [2 pts] Lab section: Partner's name(s): Grade:

EXPERIMENT 15. The Frank Hertz Experiment. 1. Pre-Laboratory Work [2 pts] Lab section: Partner's name(s): Grade: Name: Date: Course number: MAKE SURE YOUR TA OR TI STAMPS EVERY PAGE BEFORE YOU START! Lab section: Partner's name(s): Grade: EXPERIMENT 15 The Frank Hertz Experiment 1. Pre-Laboratory Work [2 pts] 1.

More information

LABORATORY V MAGNETIC FIELDS AND FORCES

LABORATORY V MAGNETIC FIELDS AND FORCES LABORATORY V MAGNETIC FIELDS AND FORCES Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and

More information

q m of Electron Jeffrey Sharkey, Spring 2006

q m of Electron Jeffrey Sharkey, Spring 2006 of Electron Jeffrey Sharkey, Spring 2006 Phys. 2033: Quantu Lab 1 Purpose To observe and easure the eleentary ratio of electrons. 2 Methodology By controlling unifor agnetic field, we changed the orbital

More information

Name the region of the electromagnetic radiation emitted by the laser. ...

Name the region of the electromagnetic radiation emitted by the laser. ... 1. An argon-laser emits electromagnetic radiation of wavelength 5.1 10 7 m. The radiation is directed onto the surface of a caesium plate. The work function energy for caesium is 1.9 ev. (i) Name the region

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Syllabus 066439v Curricular Requirements CR Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format. CRa The

More information

Chapter 12. Project 4 Classical Physics. Experiment A: The Charge to Mass Ratio of the Electron

Chapter 12. Project 4 Classical Physics. Experiment A: The Charge to Mass Ratio of the Electron Chapter 12 Project 4 Classical Physics Experiment A: The Charge to Mass Ratio of the Electron 12A.1 Objectives (a) To perform Lenard's classic experiment to determine e/m. (b) To evaluate the ratio e/m

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Curricular Requirements CR CRa CRb CRc CRd CRe CRf CRg CR3 CR4 CR CR6a CR6b CR7 CR8 Students and teachers have access to college-level resources including collegelevel textbooks and reference materials

More information

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons.

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. Q1.(a) A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. In which part of the electromagnetic spectrum are these photons? What is

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Franck-Hertz Experiment

Franck-Hertz Experiment Franck-Hertz Experiment Introduction: In 1914, James Franck and Gustav Hertz discovered in the course of their investigations an energy loss in distinct steps for electrons passing through mercury vapor,

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS ElectronBeam Deflection Tube D 6 Instruction sheet / LF 9 8 7 6 7 6 Fluorescent screen Lower deflection plate Boss with mm plug for connecting deflection plates Electron gun mm sockets

More information

*S45369A0124* Pearson Edexcel WPH04/01. S45369A 2013 Pearson Education Ltd. International Advanced Level Physics Advanced Unit 4: Physics on the Move

*S45369A0124* Pearson Edexcel WPH04/01. S45369A 2013 Pearson Education Ltd. International Advanced Level Physics Advanced Unit 4: Physics on the Move Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Physics Advanced Unit 4: Physics on the Move Candidate Number Sample Assessment Material Time: 1 hour

More information

Lab 7: EC-5, Faraday Effect Lab Worksheet

Lab 7: EC-5, Faraday Effect Lab Worksheet Lab 7: EC-5, Faraday Effect Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences

More information

Sparks in Gases: Line Spectra

Sparks in Gases: Line Spectra Lecture 11 February 4, Chapter 3 The Particlelike Properties of Electromagnetic Radiation Sparks in Gases: Line Spectra This is one of the oldest tools available for the investigation of atoms and radiation.

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

The Ratio of Charge to Mass (e/m) for an Electron

The Ratio of Charge to Mass (e/m) for an Electron The Ratio of Charge to Mass (e/m) for an Electron OBJECT: The object of this experiment is to determine the ratio of charge to mass (e/m) for an electron and compare it with its theoretical value. THEORY:

More information