Other Formulae for Electromagnetism. Biot's Law Force on moving charges

Size: px
Start display at page:

Download "Other Formulae for Electromagnetism. Biot's Law Force on moving charges"

Transcription

1 Other Formulae for Electromagnetism Biot's Law Force on moving charges 1

2 Biot's Law. Biot's Law states that the magnetic field strength (B) is directly proportional to the current in a straight conductor, and inversely proportional to the perpendicular distance (r) away from the conductor. B I r 2

3 The constant of proportionality being µ/(2p), where the µ is the magnetic permeability of the substance in which the field is located. NOTE: If the field is in free space, the µ is written as µ o where µ o = 4p x 10-7 T m/a (where T = tesla, m = metre and A = ampere) Air can be considered to be free space. 3

4 Mathematically: B I r 2 p This law is attributed to Jean- Baptiste Biot ( ). 4

5 Practice 1. Find the magnetic field strength (B) in air 7.0 mm away from a straight conductor in which there is a current of 2.0 A 7Tm 4p10 o B I A 2.0A 2 p 3 r 2 p ( m) B T 5

6 2.When a potential difference of 12.0 V is applied to a straight conductor, the magnetic field strength (B) 2.0 cm from the conductor is 3.0 x 10-5 T. What is the resistance of the conductor in ohms? o 2prB B I I 2 p r o 5 2 p(0.02 m)( T ) I 7Tm 4p10 A 3A Answer: The resistance of the conductor is 4.0 W. 6

7 3.Two parallel wires each carry 5.0 A of current in opposite directions. A) Which way are the wires forced to move? Answer: The wires will move apart because there is a stronger magnetic field in between the wires. 7

8 3.Two parallel wires each carry 5.0 A of current in opposite directions. B) What is the magnetic field strength midway between the wires if the wires are 10 cm apart? B 1 o I 2 p r 8

9 4. Repeat practice exercise #3 with the current in the wires running in the same direction. Solution: A) The wires will move together. B) At mid-distance between the wires, B l and B 2 cancel each other so that the net magnetic field strength is 0.0 T. 9

10 5. Two 1m parallel wires each carry 1.0 A of current in opposite directions. What is the force that acts on one of the wires?

11 6. How far from a conductor carrying 5.0 A of current is a second wire with a current of 10.5 A if the force between the two wires is 2 x 10-5 N/m

12 Magnetic Force on Moving Charges Thus far, we have been saying that the force on a current-carrying conductor in an external magnetic field is F = BIL sinq. The key phrase here is current-carrying. If there were no current, there would be no force on the conductor So, the force is really exerted on the current. The conductor provides a path for the current. 12

13 If a stream of electrons were shot through a magnetic field the force on the stream would still be F = BIL sinq, where, in this case, L would be the length of the stream that falls within the magnetic field. To simplify things, instead of picturing a current of electrons passing through a magnetic field, imagine a single electron, q, being fired into the field. Of course, the single charge, q, doesn't have to be an electron. It could be a proton, or ion. 13

14 If q is traveling at a speed v and takes a time of t to travel a distance L, what is the relationship between L, v and t? Since distance = speed x time, L = vt. Think back for a moment to a stream of electrons. If there are n charges of size q in the stream, what is the total charge (Q) in the stream? The total charge will be Q = nq. (Recall Q = ne) 14

15 Think back even further to the expression for current, I. How did we write it? Q I t Write an expression for I by using nq and t. nq I t Use this expression above and L = vt to re-write F = BIL sin q. nq F B vt )sin q t Bnqv sin q 15

16 The previous expression F Bnqv sin q gives the force on n charges. But we are looking for the force on a single charge, that is, n=1. The expression becomes F Bqv sin q where B is the magnetic field strength in tesla (T), q is the magnitude of the charge in coulombs (C) that is moving at a velocity v in m/s, and q is the angle between v and B 16

17 Direction of the Force To determine the direction of the force on a negative charge that is passing through a magnetic field, just apply left-hand rule #3: Point your fingers in the direction of the magnetic field, your thumb in the direction that the charge is moving, your palm points in the direction of the force on the charge. 17

18 Direction of the Force While the left hand rule will work to show the deflection of a stream of electrons, the right hand rule will be useful for a stream of positive particles. 18

19 Example: 1. A magnetic field of 44.0 T is directed into a computer screen. A particle with a negative charge of 2.0 x C is shot into the field from the right, making an angle of 90 o with the field lines. If the particle is moving at 5.4 x 10 7 m/s, what magnetic force does it experience? Solution: F= 4.8 x 10-9 N Directed upwards 19

20 p do #6--#8. p do #12, #14 p do #31 20

21 More fun stuff! If a charge is shot in horizontally (or perpendicular to the lines of force), it will follow a circular path. This is because the moving charge has a circular field concentric around its direction of motion. This circular field and the permanent field reinforce each other on one side of the charge, therefore forcing it into circle. 21

22 N - Pole N - Pole e e S - Pole S - Pole Electron shot in perpendicular to magnetic field Electron shot in at angle to magnetic field 22

23 What would happen if the charged particle was a proton? N - Pole N - Pole S - Pole S - Pole 23

24 Describe the behaviour of beams of charged particles passing through a magnetic field. N - Pole e S - Pole This is how a TV picture tube works. 24

25 Centripetal Magnetic Force For a particle moving at a constant speed and experiencing a constant magnetic force at 90 o to its motion traces a circular path. What is providing the centripetal force? The magnetic force is. 25

26 Example: An electron is shot perpendicularly into a magnetic field of strength T with a velocity of m/s. What is the radius of the electron s path inside the magnetic field? F net Fcentripetal 2 mv r mv Bqv 2 sin F magnetic F Bqv q magnetic sin r q r Bq S ince q r mv sin q mv Bq 90 o 26

27 Example: An electron is shot perpendicularly into a magnetic field of strength T with a velocity of m/s. What is the radius of the electron s path inside the magnetic field? r mv Bq 31 6 ( kg)( m / s ) 5 ) T C ) 27

28 Review example 8 page 654 A) What is the velocity of an alpha particle moving in a circular path of radius 10.0 cm in a plane perpendicular to a 1.7 T magnetic field? Solution: An alpha particle is a particle consisting of two neutrons and two protons that is identical to the helium nucleus and is emitted during certain radioactive transformations. What is the charge on an alpha particle? q C 2 ( ) C 19 28

29 m kg r 10.0cm 0.100m B 1.7T mv r mv rbq Bq v v rbq m 19 m T C v kg m s 29

30 B) If this alpha particle is accelerated by the application of an electric field over a set of parallel plates, what voltage is required to accelerate the alpha particle from rest? Recall: V E q and Kinetic Energy is given by 2 mv V 2q E 1 mv 2 2 V kg C 27 6 m s V 30

31 Page 665 #28,29,30 31

Section 9: Magnetic Forces on Moving Charges

Section 9: Magnetic Forces on Moving Charges Section 9: Magnetic Forces on Moving Charges In this lesson you will derive an expression for the magnetic force caused by a current carrying conductor on another current carrying conductor apply F = BIL

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

Unit 7. Magnetism. The North end of a compass or any magnet is the end, and is called the. The South end of a compass or any magnet is the

Unit 7. Magnetism. The North end of a compass or any magnet is the end, and is called the. The South end of a compass or any magnet is the Unit 7 Magnetism Origin of the term magnetism The Ancient Greeks discovered a mysterious mineral which attracted, and would point if it were allowed to rotate freely. This mineral was found near a place

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Force Due to Magnetic Field You will use

Force Due to Magnetic Field You will use Force Due to Magnetic Field You will use Units: 1 N = 1C(m/s) (T) A magnetic field of one tesla is very powerful magnetic field. Sometimes it may be convenient to use the gauss, which is equal to 1/10,000

More information

Lecture 23: FRI 16 OCT

Lecture 23: FRI 16 OCT Aurora Borealis Physics 2113 Jonathan Dowling Lecture 23: FRI 16 OCT Magnetic Fields I I ll be back. How Do You Use Magnetic Fields in Your Everyday Life? 28.2: What Produces Magnetic Field?: One way

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

MAGNETIC FIELDS CHAPTER 21

MAGNETIC FIELDS CHAPTER 21 MAGNETIC FIELDS CHAPTER 21 1. A magnetic field may exist at a point as a result of moving charged particle 2. When a tiny bar magnet is suspended horizontally from its center, it lines up along the north

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) NAME: August 2009---------------------------------------------------------------------------------------------------------------------------------

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Capacitance (Chapter 18): Physics (A-level) Every capacitor has two leads, each connected to a metal plate, where in between there is an insulating

More information

Current in a Magnetic Field Learning Outcomes. Force on a Current-Carrying Conductor

Current in a Magnetic Field Learning Outcomes. Force on a Current-Carrying Conductor 1 Current in a Magnetic Field Learning Outcomes Discuss the force on a current-carrying conductor in a magnetic field. Demonstrate this force. Solve problems about this force. Discuss applications of this

More information

Magnets. Magnetic vs. Electric

Magnets. Magnetic vs. Electric Magnets A force is applied to the iron filings causing them to align themselves to the direction of the magnetic field. A compass needle will tell you the direction of the field. Show Fields of little

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) Right-Hand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

Downloaded from

Downloaded from Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current LJPS Gurgaon 1. An electron beam projected along +X axis, experiences a force due to a magnetic field along +Y axis. What is the direction of the magnetic field? Class XII- Physics - Assignment Topic:

More information

ELECTROMAGNETISM. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

ELECTROMAGNETISM. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe ELECTROMAGNETISM Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 (a) An electron is travelling at right angles to a uniform magnetic field of flux density 1.5

More information

Magnetism Electromagnetism Electromagnetic Induction

Magnetism Electromagnetism Electromagnetic Induction 3D Magnetism Electromagnetism Electromagnetic Induction 1 Recall: What determines the direction of magnetic fields? A compass. Draw the magnetic field between the magnets. N S N 2 What causes a magnetic

More information

Gravity Electromagnetism Weak Strong

Gravity Electromagnetism Weak Strong 19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N

More information

Question Bank 4-Magnetic effects of current

Question Bank 4-Magnetic effects of current Question Bank 4-Magnetic effects of current LEVEL A 1 Mark Questions 1) State Biot-Savart s law in vector form. 2) What is the SI unit of magnetic flux density? 3) Define Tesla. 4) A compass placed near

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Magnets and Electromagnetism

Magnets and Electromagnetism Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire

More information

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation, Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

Physics H. Instructor: Dr. Alaa Mahmoud

Physics H. Instructor: Dr. Alaa Mahmoud Physics 202 1436-1437 H Instructor: Dr. Alaa Mahmoud E-mail: alaa_y_emam@hotmail.com Chapter 28 magnetic Field Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would not

More information

Version The diagram below represents lines of magnetic flux within a region of space.

Version The diagram below represents lines of magnetic flux within a region of space. 1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

More information

Chapter 20 Lecture Notes

Chapter 20 Lecture Notes Chapter 20 Lecture Notes Physics 2424 - Strauss Formulas: B = µ 0 I/2πr B = Nµ 0 I/(2R) B = µ 0 ni Σ B l = µ 0 I F = Bqv sinθ r = mv/bq m = (er 2 /2V) B 2 F = ILB sinθ τ = NIAB sinϕ F/L = I 2 I 1 µ 0 /2πd

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets.

2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets. Chapter Problems Magnetic Fields 1. Draw the Magnetic Field lines created by the below bar magnet. S N 2. Draw the Magnetic Field lines created by the below two bar magnets S N N S 3. Draw the Magnetic

More information

How do things move without contact?

How do things move without contact? colinhop@bigpond.net.au Physics Revision 017 94 How do things move without contact? Fields and interactions describe gravitation, magnetism and electricity using a field model investigate and compare theoretically

More information

Answers to examination-style questions. Answers Marks Examiner s tips

Answers to examination-style questions. Answers Marks Examiner s tips (a) the units of the quantities are: Force F: newton (N) Current I: ampere (A) Magnetic flux density B: tesla (T) or weber metre 2 (Wb m 2 ) Length l of wire in field: metre (m) The equation F = BIl applies

More information

Kirchhoff s rules, example

Kirchhoff s rules, example Kirchhoff s rules, example Magnets and Magnetism Poles of a magnet are the ends where objects are most strongly attracted. Two poles, called north and south Like poles repel each other and unlike poles

More information

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS XII CHAPTER 4 and 5 Magnetic Effects of Electric current and Magnetism WORKSHEET 4

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS XII CHAPTER 4 and 5 Magnetic Effects of Electric current and Magnetism WORKSHEET 4 INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS XII CHAPTER 4 and 5 Magnetic Effects of Electric current and Magnetism WORKSHEET 4 SECTION A CONCEPTUAL AND APPLICATION TYPE QUESTIONS 1

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera ELECTROMAGNETISM Q # 1. Describe the properties of magnetic field due to current in a long straight conductor. Ans. When the heavy current is passed through a straight conductor: i. A magnetic field is

More information

Electromagnetism Notes 1 Magnetic Fields

Electromagnetism Notes 1 Magnetic Fields Electromagnetism Notes 1 Magnetic Fields Magnets can or other magnets. They are able to exert forces on each other without touching because they are surrounded by. Magnetic Flux refers to Areas with many

More information

Chapter 17: Magnetism

Chapter 17: Magnetism Chapter 17: Magnetism Section 17.1: The Magnetic Interaction Things You Already Know Magnets can attract or repel Magnets stick to some things, but not all things Magnets are dipoles: north and south Labels

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

Ratio of Charge to Mass for the Electron

Ratio of Charge to Mass for the Electron Ratio of Charge to Mass for the Electron For a positive charge moving in a uniform magnetic field B with velocity v, the force F on the charge is always perpendicular to the magnetic field and the velocity.

More information

MAGNETIC EFFECTS OF CURRENT AND MAGNETISM

MAGNETIC EFFECTS OF CURRENT AND MAGNETISM UNIT III MAGNETIC EFFECTS OF CURRENT AND MAGNETISM Weightage 8 Marks Concept of magnetic field and Oersted s experiment Biot-savart law and its application to current carrying circular loop. Ampere s law

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism The figure shows the path of a negatively charged particle in a region of a uniform magnetic field. Answer the following questions about this situation (in each case, we revert back

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The behavior of magnetic poles is similar to that of like and unlike electric charges. 21.1 Magnetic Fields The needle of a compass is permanent

More information

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

More information

v = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER

v = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER UNIT G485 Module 1 5.1.2 Magnetic Fields 11 Thus, in order for the particle to suffer NO DEFLECTION and so exit the device at Y : From which : MAGNETIC FORCE UP = ELECTRIC FORCE DOWN BQv = EQ THE MASS

More information

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Magnetic Forces and Fields. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Magnetic Forces and Fields What creates a magnetic field? Answer: MOVING CHARGES What is affected by a magnetic field? Answer: MOVING CHARGES We have a formula for magnetic force on a moving

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called

ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called Electromagnetism Before, 1819 it was believed that there was no connection between electricity and magnetism.

More information

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26 Magnetic Fields PHYS 272 - David Blasing Wednesday June 26th 1 / 26 Magnetic ( B) Fields This is a significant change, until now we have discussed just E fields. Now we are talking about a totally different

More information

week 8 The Magnetic Field

week 8 The Magnetic Field week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is

More information

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? Magnetic Force A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? (a) left (b) right (c) zero (d) into the page (e) out of the page B

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

B' = 0 ni' B B'= 2 Q. No. 18 A long solenoid is formed by winding 20 turns/cm. The current necessary to produce a magnetic field of 20 milli tesla inside the solenoid will be approximately 1.0 A 2.0 A

More information

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16 1 PHYS 104 2 ND semester 1439-1440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

= e = e 3 = = 4.98%

= e = e 3 = = 4.98% PHYS 212 Exam 2 - Practice Test - Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.

More information

CHARGE TO MASS RATIO FOR THE ELECTRON

CHARGE TO MASS RATIO FOR THE ELECTRON CHARGE TO MASS RATIO FOR THE ELECTRON OBJECTIVE: To measure the ratio of the charge of an electron to its mass. METHOD: A stream of electrons is accelerated by having them "fall" through a measured potential

More information

Magnetism Chapter Questions

Magnetism Chapter Questions Magnetism Chapter Questions 1. Both Electric and Magnetic Forces will cause objects to repel and attract each other. What is a difference in the origin of these forces? 2. A Magnet has a north and a south

More information

Pre Lab for Ratio of Mass to. Charge of an Electron

Pre Lab for Ratio of Mass to. Charge of an Electron Pre Lab for Ratio of Mass to Charge of an Electron The direction of the magnetic force on a charged particle moving in the magnetic field is given by the right hand rule. Students need practice using the

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

QUESTION 1. Answer: N

QUESTION 1. Answer: N MAGNETISM Review QUESTION 1 A proton speeding through a synchrotron at 3.0 10 7 m/s experiences a magnetic field of 3.0 T that is produced by the steering magnets in the synchrotron. What is the magnetic

More information

PHYS 1444 Section 003 Lecture #17

PHYS 1444 Section 003 Lecture #17 PHYS 1444 Section 003 Lecture #17 Tuesday, Nov. 1, 2011 Electric Current and Magnetism Magnetic Forces on Electric Current About Magnetic Field Magnetic Forces on a Moving Charge Charged Particle Path

More information

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_29 Sunday, February 03, 2008 Page 1 Name: Date: 1. A loop of current-carrying wire has a magnetic dipole moment of 5 10 4 A m 2. The moment initially is aligned

More information

Advanced Higher Physics. Electromagnetism

Advanced Higher Physics. Electromagnetism Wallace Hall Academy Physics Department Advanced Higher Physics Electromagnetism Problems AH Physics: Electromagnetism 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Physics 25 Chapter 21 Dr. Alward

Physics 25 Chapter 21 Dr. Alward Physics 25 Chapter 21 Dr. Alward Magnetism and Magnetic Forces Magnetic Field of a Bar Magnet Magnetic field lines flow away from the north pole and sink on the south pole. Like Poles Repel Unlike Poles

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0 Communication includes statement of the physics concept used and how it is applied in the situation along with diagrams, word explanations and calculations in a well laid out formula, substitution, answer

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

Problem Set 6: Magnetism

Problem Set 6: Magnetism University of Alabama Department of Physics and Astronomy PH 10- / LeClair Spring 008 Problem Set 6: Magnetism 1. 10 points. A wire with a weight per unit length of 0.10 N/m is suspended directly above

More information

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance? 33. How many 100-W lightbulbs can you use in a 120-V

More information

Which of the following is the SI unit of gravitational field strength?

Which of the following is the SI unit of gravitational field strength? T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

More information

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 28. Magnetic Fields. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 28 Magnetic Fields Copyright 28-2 What Produces a Magnetic Field? 1. Moving electrically charged particles ex: current in a wire makes an electromagnet. The current produces a magnetic field that

More information

Lecture #4.4 Magnetic Field

Lecture #4.4 Magnetic Field Lecture #4.4 Magnetic Field During last several lectures we have been discussing electromagnetic phenomena. However, we only considered examples of electric forces and fields. We first talked about electrostatics

More information

The rectangular loop shown in the figure is pivoted about the y axis and carries a current of 15.0 in the direction indicated. T +

The rectangular loop shown in the figure is pivoted about the y axis and carries a current of 15.0 in the direction indicated. T + Heimadæmi 6 Due: 11:00pm on Thursday, February 25, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 27.68 The rectangular loop shown in the figure

More information

MAGNETIC EFFECT OF CURRENT

MAGNETIC EFFECT OF CURRENT MAGNETIC EFFECT OF CURRENT VERY SHORT ANSWER QUESTIONS Q.1 Who designed cyclotron? Q.2 What is the magnetic field at a point on the axis of the current element? Q.3 Can the path of integration around which

More information

Magnetic Force http://www-spof.gsfc.nasa.gov/education/imagnet.html The ancient Greeks, originally those near the city of Magnesia, and also the early Chinese knew about strange and rare stones (possibly

More information

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax. Optics Definitions Reflection is the bouncing of light off an object Laws of Reflection of Light: 1. The incident ray, the normal at the point of incidence and the reflected ray all lie in the same plane.

More information

Phys102 Lecture 16/17 Magnetic fields

Phys102 Lecture 16/17 Magnetic fields Phys102 Lecture 16/17 Magnetic fields Key Points Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic

More information

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law PHYSICS 1B Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law Electricity & Magnetism A Charged Particle in a Magnetic

More information

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T.

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T. Magnetic fields The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T. Which pole of a magnet attracts the north pole of a compass? Which

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information