Supporting Information. Aqueous Ferryl(IV) Ion. Kinetics of Oxygen Atom Transfer to Substrates, and Oxo. Exchange with Solvent Water

Size: px
Start display at page:

Download "Supporting Information. Aqueous Ferryl(IV) Ion. Kinetics of Oxygen Atom Transfer to Substrates, and Oxo. Exchange with Solvent Water"

Transcription

1 Supporting Information Aqueous Ferryl(IV) Ion. Kinetics of Oxygen Atom Transfer to Substrates, and Oxo Exchange with Solvent Water Oleg Pestovsy* and Andreja Baac* Contents 1) Typical GC-MS data for oxygen-18 exchange experiments. 3 ) Typical 1 P -NMR spectra for TPPMS oxidation by Fe a q O +. 3) Typical 1 H-NMR spectra for CoSR + oxidation by Fe a q O +. 4) Kinetic simulations for CoSR oxidation by Fe a q O +. 5) Derivations. 1

2 1) Typical GC-MS data for oxygen-18 exchange experiments. 1. GC-MS chromatogram for an experiment with: [DMSO = 31 mm, [Fe a q =.3 m M, [ H + 1 = M, 9 7 % H 8 O. Ozone was bubbled for 15 sec, d u r i n g which time, 11 mm of DMSO was oxidized. Acid was neutralized with a concentrated Na C O 3 solution prior to analysis. m/z = 94 Intensity m/z = 78 RIC Time / s. Mass spectra of DMSO (neat) and methyl sulfone (10 mm DMSO / 0. mm Fe a q + / 0.09 M HClO 4 oxidized by ozone bubbling for 3.5 minutes) in H O.

3 DMSO 63 sulfone Intensity m/z 3. Mass spectra of reaction mixtures obtained in oxidation of 15 and 113 mm of DMSO by Fe a q / ozone. After 30 and 60 sec of ozone bubbling, 8 and 16 mm of DMSO were oxidized, respectively. In the experiment with 113 mm DMSO, the largest pea at m/z = 78 was due to DMSO from incomplete separation between DMSO and methyl sulfone at such high DMSO, concentration Conditions: [ D M S O = 15 mm, 113 mm [Fe a q = 0.40 mm [ H + = 0.1 M, 90 % H 18 O, ozone was bubbled for 30 sec, 60 sec 78 [DMSO = 15 mm 113 mm Intensity m/z 3

4 ) 3 1 P -NMR spectra of the product mixtures in oxidation of TPPMS by Fe a q /O 3 system in the absence (a) and presence (b) of DMSO. Ozone and Fe a q + were allowed to react prior to TPPMS injection. Conditions: [Fe a q = 0.19 mm [ O 3 = 0.17 mm [TPPMS = 1.0 mm [DMSO = 0, 0.10M [HClO 4 = 0.10 M 30% D O, room temperature, 6 hour collection time (a) TPPMS oxide TPPMS (b) 4

5 3) Typical 1 H-NMR spectra in CoSR + /Fe aq /O 3 reaction at room temperature. Collections times were 5 min for the four bottom spectra and 1 hour for the top spectrum. Peas unique to each cobalt complex are circled. Large water pea at 4.6 ppm is not displayed. S+Fe+O 3 S+O 3 S(O) S(O) S δ / ppm S 5 4 m M C o S R + in D O. Two sets of multiplets at 1.95 and.1 ppm, unique for C o S R + in this spectral region, were used to quantify this complex. 5

6 S(O) CoS(O)R + from oxidation of 54 mm CoSR b y 8 6 m M H O in 10 minutes. A set of three doublets at. ppm, unique to CoS(O)R + in this region, were used to quantify this complex. S(O) CoS(O) R + from oxidation of 54 mm CoSR b y 0. 9 M H O in 1 hours. A multiplet at 3.35 ppm, unique to CoS(O) R + in this region, was used to quantify this complex. S+O 3 Product mixture from oxidation of 54 mm CoSR + in D O by bubbling ozone for 5 sec. The mixture contained primarily CoS(O) R, as indicated by a large characteristic multiplet at 3.35 ppm. Traces of CoSR and CoS(O)R + are apparent from thei r characteristic peas at 1.95/.1 and. ppm, respectively. S+Fe+O 3 Product mixture from oxidation of 0.51 mm CoSR + by 0.46 mm Fe + a q / 0.37 mm O 3 in 0.10 M DClO 4 in D O. The mixture contained CoS(O) R +, as indicated by a characteristic multiplet at 3.35 ppm, and CoSR, as indicated by a set of multiplets at 1.95 and.1 ppm. Both CoSR + and CoS(O)R were stable toward autoxidation under these conditions for at least 3 hours, as determined by UV -Vis spectrophotometry of CoS(O)R + at 365 nm. 6

7 4) Kinetic simulations for CoSR oxidation by Fe a q O CoSR + + Fe a q O + CoS(O)R + + Fe a q + (15) 16 CoS(O)R + Fe aq O CoS(O) R + + Fe a q + (16) For a consecutive inetic scheme with a common reagent represented by equations 15 and 16, the exact algebraic solution for product yields as a function of starting reagent concentrations and rate constants is not available. In the first approximation, assuming pseudo-first-order condition for CoSR, the following rate expressions can be derived. d[feo dt d dt = { + } = [FeO { } 0 0 [FeO d[feo d + = d[feo d + 1+ = Integration of the last equation above would resul t in an expression for which solution for against [FeO + 0 in an explicit form is not nown (Capellos, C.; Bielsi, B. H. J. In Kinetic Systems: Mathematical Description of Chemical Kinetics in Solution; W i l e y- Interscience: New Yor, 197, pp ). However, it is easy to see that such a relationship would depend only on the ratio of rate constants ρ = / 15 and not their absolute values. While such mathematical problems can be solved by iterations, we employed a far easier and more reliable method, which did not depend on the pseudo- 7

8 first-order assumption: the ratio ρ was determined in inetic simulations for the experimental data in the absence of DMSO (Table, Main Text), by adjusting ρ until simulated yields of CoS(O)R + and CoS(O) R + matched those determined in experiment. This analysis gave ρ =13. The simulations were then carried out for the data in the presence of DMSO, with eqs 15,16, and 11. ( C H 3 ) SO + Fe aq O 11 (C H 3 ) S O + Fe aq ( 11 ) This time, ρ was ept constant while the absolute v a l u e s o f and were varied from the initial estimate ( = 10 7 M -1 s -1, obtained as described in Main Text) until simulated yields matched those from experiment. Table S1 shows experimental and simulated product yields obtained in this procedure. Table S1. Experimental and simulated product yields in oxidation of CoSR + by Fe + a q /O 3 system in the absence and in the presence of DMSO. Product concentrations Reagent concentrations Experimental Simulated + Fe a q O 3 C o S R + D M S O CoS(O)R + CoS(O) R CoS(O)R + CoS(O) R / M ~

9 5) Derivation of eq. 3, 4, 5, and 13. Equation 3 a) Beer s law: Abs 510 = [Fe III ε III [Fe II ε II b) Beer s law: Abs 41 = [Fe III ε III [Fe II ε II 4 1 c) {a ε ΙΙΙ 4 1 / ε ΙΙΙ }: Abs 510 ε ΙΙΙ 4 1 / ε ΙΙΙ = [Fe III ε III [Fe II ε II ε ΙΙΙ 4 1 / ε ΙΙΙ d) {c b}: Abs 510 ε ΙΙΙ 4 1 / ε ΙΙΙ Abs 41 = [Fe II ε II ε ΙΙΙ 41 / ε ΙΙΙ [Fe II ε II 4 1 e) Rearrange d: Abs 510 ε ΙΙΙ 4 1 / ε ΙΙΙ Abs 41 = [Fe II (ε II ε ΙΙΙ 41 / ε ΙΙΙ ε II 4 1 ) [Fe II = (Abs ε ΙΙΙ 41 / ε ΙΙΙ Abs 41 ) / (ε II ε ΙΙΙ 4 1 / ε ΙΙΙ ε II 4 1 ) [Fe II = (Abs R - Abs 41 ) / (ε II R - ε II 4 1 ) Equation 4 a) Rate definition and pseudo -first-order conditions: d[fe III / dt = Fe [FeO + [Fe II 0 b) Rate definition and pseudo -first-order conditions: d [ S 1 O / dt = S1 [FeO + [ S 1 0 c) {a / b}: d[fe III / d [ S 1 O = Fe [Fe II 0 / ( S1 [ S 1 0 ) d) Integrate c from zero to infinity: 9

10 [Fe III / [ S 1 O = Fe [Fe II 0 / ( S1 [ S 1 0 ) [ S 1 O = [Fe III S1 [ S 1 0 / ( Fe [Fe II 0 ) e) Stoichiometry: [Fe III / + [S 1 O = [ O 3 0 f) Substitute d into e: [Fe III / + [Fe III S1 [ S 1 0 / ( Fe [Fe II 0 ) = [O 3 0 g) Rearrange f: [Fe III (1/ + S1 [ S 1 0 / ( Fe [ F e II 0 )) = [O / [Fe III = 1 / [ O 3 0 (1/ + S1 [S 1 0 / ( Fe [Fe II 0 )) 1 / [Fe III = 1 / ( [ O 3 0 ) (1 + S1 [S 1 0 / ( Fe [Fe II 0 )) Equation 5 a) Similar to Equation 4 d: [ S 1 O = [ S O S1 [S 1 0 / ( S [ S 0 ) b) Stoichiometry: [ S O + [ S 1 O = [ O 3 0 c) Substitute a into b: [ S O + [ S O S1 [S 1 0 / ( S [ S 0 ) = [O 3 0 d) Rearrange c: [ S O (1 + S1 [S 1 0 / ( S [S 0 )) = [O 3 0 [ S O = [ O 3 0 / (1 + S1 [ S 1 0 / ( S [ S 0 )) [ S O = [ O 3 0 S [S 0 / ( S [S 0 + S1 [S 1 0 ) Equation 13 a) Rate definition and pseudo-first-order conditions: 10

11 d[ 16 O / dt = DMSO [FeO + [DMSO 0 b) Rate definition and irreversibility after isotope exchange: d[ 18 O / dt = ex [FeO + c) {a / b}: d[ 16 O / d[ 18 O = DMSO [DMSO 0 / ex d) Integrate c: [ 16 O / [ 1 8 O = DMSO [DMSO 0 / ex e) {1 / (1 + d)}: 1 / (1 + [ 16 O / [ 18 O ) = 1 / (1 + DMSO [DMSO 0 / ex ) [ 18 O / ([ 18 O + [ O ) = ex / ( ex + DMSO [DMSO 0 ) %[ 18 O = 100 ex / ( ex + DMSO [DMSO 0 ) 11

Supporting Information. for. Formation of 1,10-phenanthroline-N,N -dioxide under mild conditions: the kinetics and

Supporting Information. for. Formation of 1,10-phenanthroline-N,N -dioxide under mild conditions: the kinetics and Supporting Information for Formation of 1,10-phenanthroline-N,N -dioxide under mild conditions: the kinetics and mechanism of the oxidation of 1,10-phenanthroline by peroxomonosulfate ion (Oxone) Gábor

More information

Supplementary Figure 1. Protonation equilibria of the CO 2 in water.

Supplementary Figure 1. Protonation equilibria of the CO 2 in water. Supplementary Figure 1. Protonation equilibria of the CO 2 in water. 1 Supplementary Figure 2. Hydrogenation of CO 2 with [RuCl 2 (PTA) 4 ]. 1 H NMR signal of HCOOH as a function of time in the hydrogenation

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Nucleophilicities and Lewis basicities of imidazoles, benzimidazoles, and benzotriazoles

Nucleophilicities and Lewis basicities of imidazoles, benzimidazoles, and benzotriazoles This journal is The Royal Society of Chemistry 21 Electronic Supporting Information (ESI) Nucleophilicities and Lewis basicities of imidazoles, benzimidazoles, and benzotriazoles Mahiuddin Baidya, Fran

More information

Kinetic Isotope Effects

Kinetic Isotope Effects 1 Experiment 31 Kinetic Isotope Effects Isotopic substitution is a useful technique for the probing of reaction mechanisms. The change of an isotope may affect the reaction rate in a number of ways, providing

More information

Aerobic Oxidation of 2-Phenoxyethanol Lignin Model. Compounds Using Vanadium and Copper Catalysts

Aerobic Oxidation of 2-Phenoxyethanol Lignin Model. Compounds Using Vanadium and Copper Catalysts Electronic Supporting Information for: Aerobic Oxidation of 2-Phenoxyethanol Lignin Model Compounds Using Vanadium and Copper Catalysts Christian Díaz-Urrutia, Baburam Sedai, Kyle C. Leckett, R. Tom Baker,,*

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supporting Information Kinetic Resolution of Constitutional Isomers Controlled by Selective Protection inside a Supramolecular Nanocapsule Simin Liu, Haiying Gan, Andrew T. Hermann,

More information

I pledge my honor that I have neither given nor received aid on this examination

I pledge my honor that I have neither given nor received aid on this examination Chemistry 220b, Section 1 Exam 1 (100 pts) Tuesday, February 3, 2015 Chapters 13, 15, 16 Name Write and sign the VU onor Pledge: I pledge my honor that I have neither given nor received aid on this examination

More information

Supporting Information. for. Development of a flow photochemical aerobic oxidation of benzylic C-H bonds

Supporting Information. for. Development of a flow photochemical aerobic oxidation of benzylic C-H bonds Supporting Information for Development of a flow photochemical aerobic oxidation of benzylic C-H bonds Mathieu Lesieur, Christophe Genicot and Patrick Pasau* UCB Biopharma, Avenue de l industrie, 1420

More information

Use the three tables of spectral data on the Data Sheet where appropriate.

Use the three tables of spectral data on the Data Sheet where appropriate. Q1. Organic chemists use a variety of methods to identify unknown compounds. When the molecular formula of a compound is known, spectroscopic and other analytical techniques are used to distinguish between

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 S1 Electronic Supplementary Information Flash Carboxylation: Fast Lithiation - Carboxylation

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Simultaneous Production of p-tolualdehyde and Hydrogen Peroxide in Photocatalytic Oxygenation of p-xylene and Reduction of Oxygen with 9-Mesityl-1-Methylacridinium

More information

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules) Chemical Reactions Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions (ionic equations and solubility rules) Writing Equations REACTANTS PRODUCTS gold (III) sulfide is

More information

Supporting Information

Supporting Information Supporting Information Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (I) Oxide Catalysts Dan Ren, Yilin Deng, Albertus Denny Handoko, Chung Shou Chen, Souradip

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/10/eaas9319/dc1 Supplementary Materials for Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions

More information

HONORS CHEMISTRY Putting It All Together II

HONORS CHEMISTRY Putting It All Together II NAME: SECTION: HONORS CHEMISTRY Putting It All Together II Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Highly Fluorinated Ir(III)- 2,2 :6,2 -Terpyridine -Phenylpyridine-X Complexes via Selective C-F Activation: Robust Photocatalysts for Solar Fuel Generation and Photoredox Catalysis

More information

Supporting Information

Supporting Information upporting Information Reversible Generation of Metastable Enols in the,-addition of Thioacetic Acid to α,β- Unsaturated Carbonyl Compounds Lukas Hintermann*, and Aleksej Turočkin Contents: General Reactions

More information

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald*

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Supporting Information for: Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Department of Chemistry and Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University,

More information

Specimen. Date Morning/Afternoon Time allowed: 1 hour 30 minutes. AS Level Chemistry B (Salters) H033/02 Chemistry in depth Sample Question Paper PMT

Specimen. Date Morning/Afternoon Time allowed: 1 hour 30 minutes. AS Level Chemistry B (Salters) H033/02 Chemistry in depth Sample Question Paper PMT AS Level Chemistry B (Salters) H033/02 Chemistry in depth Sample Question Paper Date Morning/Afternoon Time allowed: 1 hour 30 minutes You must have: the Data Sheet for Chemistry B (Salters) You may use:

More information

Supporting Information

Supporting Information Supporting Information Mechanistic Study of Alcohol Oxidation by the / /DMSO Catalyst System and Implications for the Development of Improved Aerobic Oxidation Catalysts Bradley A. Steinhoff, Shannon R.

More information

Rational design of a ratiometric fluorescent probe with a large emission shift for the facile detection of Hg 2+

Rational design of a ratiometric fluorescent probe with a large emission shift for the facile detection of Hg 2+ Rational design of a ratiometric fluorescent probe with a large emission shift for the facile detection of Hg 2+ Weimin Xuan, a Chen Chen, b Yanting Cao, a Wenhan He, a Wei Jiang, a Kejian Li, b* and Wei

More information

Name: Student Number:

Name: Student Number: Page 1 of 5 Name: Student Number: l University of Manitoba - Department of Chemistry CEM 2220 - Introductory rganic Chemistry II - Term Test 1 Thursday, February 14, 2008 This is a 2-hour test, marked

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information Unraveling the Origins of Catalyst Degradation in Non-heme Ironbased

More information

OZONATED SALINE. Are we Creating Hypochlorous Acid (HClO) and possibly Sodium Hypochlorite (NaClO - Bleach)?

OZONATED SALINE. Are we Creating Hypochlorous Acid (HClO) and possibly Sodium Hypochlorite (NaClO - Bleach)? Are we Creating Hypochlorous Acid (HClO) and possibly Sodium Hypochlorite (NaClO - Bleach)? Ongoing Discussion: Between Physicians and Chemists Saline solution is Na+ and Cl - ions in aqueous solution.

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

Supplementary Information for: Catalytic Diversification Upon Metal Scavenging in a Prebiotic Model for Formation of Tetrapyrrole Macrocycles

Supplementary Information for: Catalytic Diversification Upon Metal Scavenging in a Prebiotic Model for Formation of Tetrapyrrole Macrocycles Supplementary Information for: Catalytic Diversification Upon Metal Scavenging in a Prebiotic Model for Formation of Tetrapyrrole Macrocycles Ana R. M. Soares, Dana R. Anderson, Vanampally Chandrashaker

More information

KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KAPSABET BOYS CHEMISTRY PAPER 1 TIME: 2 HOURS

KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KAPSABET BOYS CHEMISTRY PAPER 1 TIME: 2 HOURS KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS KAPSABET BOYS CHEMISTRY PAPER 1 TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road,

More information

Supramolecular Control over Diels-Alder Reactivity by Encapsulation and Competitive Displacement

Supramolecular Control over Diels-Alder Reactivity by Encapsulation and Competitive Displacement Supporting information for: Supramolecular Control over Diels-Alder Reactivity by Encapsulation and Competitive Displacement Maarten M. J. Smulders and Jonathan R. Nitschke Department of Chemistry University

More information

Supporting Information

Supporting Information Supporting Information Autocatalytic Formation of an Iron(IV)-Oxo Complex via Scandium Ion-Promoted Radical Chain Autoxidation of an Iron(II) Complex with Dioxygen and Tetraphenylborate Yusuke Nishida,

More information

Proton NMR. Four Questions

Proton NMR. Four Questions Proton NMR Four Questions How many signals? Equivalence Where on spectrum? Chemical Shift How big? Integration Shape? Splitting (coupling) 1 Proton NMR Shifts Basic Correlation Chart How many 1 H signals?

More information

*Assignments could be reversed. *

*Assignments could be reversed. * Name Key 5 W-Exam No. Page I. (6 points) Identify the indicated pairs of hydrogens in each of the following compounds as (i) homotopic, (ii) enantiotopic, or (iii) diastereotopic s. Write the answers as

More information

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl*

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl* Oxidatively-Induced Reductive Elimination of Dioxygen from an η 2 -Peroxopalladium(II) Complex Promoted by Electron-Deficient Alkenes Brian V. Popp and Shannon S. Stahl* Department of Chemistry, University

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is The Royal Society of Chemistry 2018 Supporting information Towards a continuous formic acid synthesis: a two-step

More information

Iron catalysis in oxidation by ozone

Iron catalysis in oxidation by ozone Iowa State University Patents Iowa State University Research Foundation, Inc. 11-17-09 Iron catalysis in oxidation by ozone Andreja Bakac Iowa State University, bakac@ameslab.gov Oleg Pestovsky Iowa State

More information

Reaction Stoichiometry and Solution Concentration Q1. FeS(S) + 2HCl(aq) FeCl2(S) + H2S(g) Q2. C6H10(g) + O2(g) CO2(g) + H2O(g) Q3.

Reaction Stoichiometry and Solution Concentration Q1. FeS(S) + 2HCl(aq) FeCl2(S) + H2S(g) Q2. C6H10(g) + O2(g) CO2(g) + H2O(g) Q3. Reaction Stoichiometry and Solution Concentration Q1. The reaction between Iron(II) sulfide and HCl is as follows; FeS (S) + 2HCl (aq) FeCl 2(S) + H 2 S (g) What will be the number of moles of each reactant

More information

Homework - Chapter 14 Chem 2320

Homework - Chapter 14 Chem 2320 omework - Chapter 14 Chem 2320 Name 1. Label each alcohol in the the following compounds as primary, secondary, tertiary, enol, or aryl. 2. Fill in the blanks in the following sentences. Enols are in equilibrium

More information

Lecture 21 Cations, Anions and Hydrolysis in Water:

Lecture 21 Cations, Anions and Hydrolysis in Water: 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 21 Cations, Anions and ydrolysis in Water: 1. ydration.energy 2. ydrolysis of metal cations 3. Categories of acidity and observable behavior

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Performance comparison of two cascade reaction models in fluorescence

More information

Supporting Information

Supporting Information Supporting Information Highly Selective Colorimetric Chemosensor for Co 2+ Debabrata Maity and T. Govindaraju* Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced

More information

Chemistry CP Putting It All Together II

Chemistry CP Putting It All Together II Chemistry CP Putting It All Together II Name: Date: Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when different

More information

Efficient Syntheses of the Keto-carotenoids Canthaxanthin, Astaxanthin, and Astacene

Efficient Syntheses of the Keto-carotenoids Canthaxanthin, Astaxanthin, and Astacene Efficient Syntheses of the Keto-carotenoids Canthaxanthin, Astaxanthin, and Astacene Seyoung Choi and Sangho Koo* Department of Chemistry, Myong Ji University, Yongin, Kyunggi-Do, 449-728, Korea. E-mail:

More information

Chem 454 instrumental Analysis Exam 1 February 6 th, 2008

Chem 454 instrumental Analysis Exam 1 February 6 th, 2008 Chem 454 instrumental Analysis Exam 1 February 6 th, 2008 1 Name: 1] A glass electrode was immersed into a solution of ph 4.33 gave a response of 677.1 mv. This electrode was used to measure a sample solution

More information

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Objectives In this Lecture you will learn to do the following Define what is an elementary reaction.

More information

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Unit 2: The Atom, The Mole & Stoichiometry Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Postulates of the atomic theory: 1. All matter

More information

CHEM 344 Fall 2015 Final Exam (100 pts)

CHEM 344 Fall 2015 Final Exam (100 pts) CHEM 344 Fall 2015 Final Exam (100 pts) Name: TA Name: DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Have a swell winter break. Directions for drawing molecules, reactions, and electron-pushing mechanisms:

More information

Quality Assurance is what we do to get the right answer for our purpose FITNESS FOR PURPOSE

Quality Assurance is what we do to get the right answer for our purpose FITNESS FOR PURPOSE Quality Assurance is what we do to get the right answer for our purpose FITNESS FOR PURPOSE Use objectives: state purpose for which results will be used. Specifications: How good should the numbers be

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

CHAPTER 2: Atoms, Molecules and Stoichiometry

CHAPTER 2: Atoms, Molecules and Stoichiometry CHAPTER 2: Atoms, Molecules and Stoichiometry 2.1 Mass of Atoms and Molecules 2.2 Mass Spectrometer 2.3 Amount of Substance 2.4 Empirical Formula and Molecular Formula 2.5 Stoichiometry and Equations Learning

More information

Determination of the Rate Constant for an Iodine Clock Reaction

Determination of the Rate Constant for an Iodine Clock Reaction CHEM 122L General Chemistry Laboratory Revision 1.3 Determination of the Rate Constant for an Iodine Clock Reaction To learn about Integrated Rate Laws. To learn how to measure a Rate Constant. To learn

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2005 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005 ISSN 14341948 SUPPORTING INFORMATION Title: The Hidden Equilibrium in Aqueous Sodium Carbonate Solutions Evidence for the

More information

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers Advanced Higher Chemistry Unit 2 - Chemical Reactions KINETICS Learning Outcomes Questions & Answers KHS Chemistry Dec 2006 page 1 6. KINETICS 2.128 The rate of a chemical reaction normally depends on

More information

2014 Academic Challenge Sectional Chemistry Exam Solution Set

2014 Academic Challenge Sectional Chemistry Exam Solution Set 2014 Academic hallenge Sectional hemistry Exam Solution Set 1. E. A V-shaped molecule is possible in either the trigonal planar or the tetrahedral electron group geometry (A or B). 2. B. The fact that

More information

Honors text: Ch 10 & 12 Unit 06 Notes: Balancing Chemical Equations

Honors text: Ch 10 & 12 Unit 06 Notes: Balancing Chemical Equations Notes: Balancing Chemical Equations Effects of chemical reactions: Chemical reactions rearrange atoms in the reactants to form new products. The identities and properties of the products are completely

More information

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure for Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure Yuta Maenaka, Tomoyoshi Suenobu and Shunichi Fukuzumi* X-ray crystallographic studies Crystallographic

More information

1 hour 45 minutes plus your additional time allowance

1 hour 45 minutes plus your additional time allowance GE A Level 1094/01 EMISTRY 4 P.M. TUESDAY, 14 June 2016 1 hour 45 minutes plus your additional time allowance Surname Other Names entre Number andidate Number 2 WJE BA Ltd. J*(S16-1094-01)MLP 2 For Examiner

More information

Oxidation of Allylic and Benzylic Alcohols to Aldehydes and Carboxylic Acids

Oxidation of Allylic and Benzylic Alcohols to Aldehydes and Carboxylic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Oxidation of Allylic and Benzylic Alcohols to Aldehydes and Carboxylic Acids

More information

Topic: Chemical Kinetics SO HCI 2 + 2I

Topic: Chemical Kinetics SO HCI 2 + 2I PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - Meq. Approach SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market,

More information

PART I: Organic Chemistry ; Total = 50 points 1. Predict the major organic product formed in each following reaction. (10 pts) d) O 2 N CHO

PART I: Organic Chemistry ; Total = 50 points 1. Predict the major organic product formed in each following reaction. (10 pts) d) O 2 N CHO PART I: rganic Chemistry ; Total = 50 points 1. Predict the major organic product formed in each following reaction. (10 pts) a) C 2 50% 2 S 4 / 2 b) + C 2 N 2 NaB 3 CN c) Br Ph C NaC 3 Br d) 2 N C + 2

More information

AP Chemistry. Free-Response Questions

AP Chemistry. Free-Response Questions 2018 AP Chemistry Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

Prion peptides are extremely sensitive to copper induced oxidative stress

Prion peptides are extremely sensitive to copper induced oxidative stress Supporting Information Prion peptides are extremely sensitive to copper induced oxidative stress Simone Dell'Acqua, a Chiara Bacchella, a Enrico Monzani, a Stefania Nicolis, a Giuseppe Di Natale, b Enrico

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

Be able to derive chemical equations from narrative descriptions of chemical reactions.

Be able to derive chemical equations from narrative descriptions of chemical reactions. CHM 111 Chapter 4 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual Ch 4 Chemical Reactions Ionic Theory of Solutions - Ionic substances produce freely moving ions when dissolved in water, and the ions carry electric current. (S. Arrhenius, 1884) - An electrolyte is a

More information

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered. Name Key 216 W13-Exam No. 1 Page 2 I. (10 points) The goal of recrystallization is to obtain purified material with a maximized recovery. For each of the following cases, indicate as to which of the two

More information

Catalysts 2016, 6, 184, doi: /catal

Catalysts 2016, 6, 184, doi: /catal S1 of S15 Supplementary Materials: One Pot Synthesis of (+) Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst Bing Hong, Raphaël Lebeuf, Stéphanie

More information

Stoichiometry Problems

Stoichiometry Problems Stoichiometry Problems 1. Consider the container label initial condition as the reactants before any reaction has occurred, and the container labeled final condition as the same container after the reaction

More information

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #4 - December 7, 1998*

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #4 - December 7, 1998* Department of hemistry SUNY/neonta hem 221 - rganic hemistry I Examination #4 - December 7, 1998* INSTRUTINS --- This examination is in multiple choice format; the questions are in this Exam Booklet and

More information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Supporting Information Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Marco Bandini,* Riccardo Sinisi, Achille Umani-Ronchi* Dipartimento di Chimica Organica G. Ciamician, Università

More information

Chapter 4 - Types of Chemical Reactions and Solution Chemistry

Chapter 4 - Types of Chemical Reactions and Solution Chemistry Chapter 4 - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent - the water molecule is bent with and H-O-H angles of approx. 105 º - O-H bonds are covalent - O is slightly

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Reactions in Aqueous Solutions Chapter 4 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Titrations In

More information

Supporting Information

Supporting Information Supporting Information Wiley-VC 2005 69451 Weinheim, Germany Stereoselective Lewis Acid-Mediated [1,3] Ring Contraction of 2,5-Dihydrooxepins as a Route to Polysubstituted Cyclopentanes Supplementary Material

More information

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide Supporting Information for Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide Haihong He a, Zhiwei Ye b, Yi Xiao b, *, Wei Yang b, *, Xuhong Qian

More information

Exam 3 Chem 3045x Friday, December 5, 1997

Exam 3 Chem 3045x Friday, December 5, 1997 Exam 3 Chem 3045x Friday, December 5, 1997 Instructions: This is a closed book examination. You may not use any notes, books or external materials during the course of the examination. Please print your

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes Supporting Information Curtius-Like Rearrangement of Iron-itrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes Dashan Li,, Ting Wu,, Kangjiang Liang,, and Chengfeng Xia*,, State

More information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline Chunpu Li 1,2, Lei Zhang 2, Shuangjie Shu 2 and Hong Liu* 1,2 Address: 1 Department of Medicinal

More information

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4.

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4. SUPPORTING INFORMATION EXPERIMENTAL SECTION Reagents. Carbon powder (Norit-S50) was purchased from Norit, 4-aminobenzene sulfonic acid (99%), lithium perchlorate (99%, potassium ferricyanide (99%) and

More information

Electronic Supplementary Material

Electronic Supplementary Material Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material A Novel Functionalized Pillar[5]arene: Synthesis, Assembly

More information

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA ii TABLE OF CONTENTS TABLE OF CONTENTS... i LIST OF FIGURES... iii Chapter 1... 4 SOLUTIONS...

More information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Synthesis of borinic acids and borinate adducts using diisopropylaminoborane Ludovic Marciasini, Bastien Cacciuttolo, Michel Vaultier and Mathieu Pucheault* Institut des Sciences Moléculaires, UMR 5255,

More information

SCH4U Chemistry Review: Fundamentals

SCH4U Chemistry Review: Fundamentals SCH4U Chemistry Review: Fundamentals Particle Theory of Matter Matter is anything that has mass and takes up space. Anything around us and in the entire universe can be classified as either matter or energy.

More information

SPECIMEN. Date Morning/Afternoon Time allowed: 1 hour 30 minutes. AS Level Chemistry B (Salters) H033/02 Chemistry in depth Sample Question Paper

SPECIMEN. Date Morning/Afternoon Time allowed: 1 hour 30 minutes. AS Level Chemistry B (Salters) H033/02 Chemistry in depth Sample Question Paper AS Level Chemistry B (Salters) H033/02 Chemistry in depth Sample Question Paper Date Morning/Afternoon Time allowed: 1 hour 30 minutes You must have: the Data Sheet for Chemistry B (Salters) You may use:

More information

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids Copper-Catalyzed xidative Cyclization of Carboxylic Acids Supplementary material (51 pages) Shyam Sathyamoorthi and J. Du Bois * Department of Chemistry Stanford University Stanford, CA 94305-5080 General.

More information

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions:

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions: Unit-8 Equilibrium Rate of reaction: Consider the following chemical reactions: 1. The solution of sodium chloride and silver nitrate when mixed, there is an instantaneous formation of a precipitate of

More information

The Reformatsky reaction (n 27)

The Reformatsky reaction (n 27) Tatiana Pachova BSc 2, chemistry Assistant : Chandan Dey Sciences II lab. A 7/12/11 The Reformatsky reaction (n 27) 1. INTRDUCTIN 1.1) Purpose The objective of this experiment is to synthesize the ethyl

More information

Test 2A Chemistry 21 - Dr. Kline November 15, 2017

Test 2A Chemistry 21 - Dr. Kline November 15, 2017 Test 2A Chemistry 21 - Dr. Kline November 15, 2017 This test consists of a combination of multiple-choice and other questions. There should be 21 questions on eight pages. Do not use your own tables, scratch

More information

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR] CHEM 6371/4511 Name: The exam consists of interpretation of spectral data for compounds A-C. The analysis of each structure is worth 33.33 points. Compound A (a) How many carbon atoms are in the molecular

More information

Supporting Information for

Supporting Information for Supporting Information for Room Temperature Palladium-Catalyzed Arylation of Indoles icholas R. Deprez, Dipannita Kalyani, Andrew Krause, and Melanie S. Sanford* University of Michigan Department of Chemistry,

More information

Show all work. Remember: a point a minute! This exam is MUCH longer than the upcoming Final.

Show all work. Remember: a point a minute! This exam is MUCH longer than the upcoming Final. CEM 293 Sample Final Dr..M. Muchall Name Show all work. Remember: a point a minute! This exam is MUC longer than the upcoming Final. Textbook and calculator allowed. The textbook can be marked up, but

More information

Basic Concepts of Chemistry and Chemical Calculations. The ratio of the average mass factor to one twelfth of the mass of an atom of carbon-12

Basic Concepts of Chemistry and Chemical Calculations. The ratio of the average mass factor to one twelfth of the mass of an atom of carbon-12 Basic Concepts of Chemistry and Chemical Calculations Relative Atomic mass: The relative atomic mass is defined as the ratio of the average atomic mass factor to the unified atomic mass unit. (Or) The

More information

Chemistry B11 Chapter 5 Chemical reactions

Chemistry B11 Chapter 5 Chemical reactions Chapter 5 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl A + BC AC +

More information

23.9 (mm) = mm = 2.01 X10 2 g/mol

23.9 (mm) = mm = 2.01 X10 2 g/mol #18 Notes Unit 3: Stoichiometry Ch. continued III. Percent Composition Ex. 1) Find the % composition of (NH 4 ) 2 C 4 H 4 O 4 2 N = 2 (14.007 g) = 28.014 g N 8+4= 12 H = 12 ( 1.0080 g) = 12.096 g H 4 C

More information

Synthesis of Levulinic Acid based Poly(amine-co-ester)s

Synthesis of Levulinic Acid based Poly(amine-co-ester)s Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2018 Synthesis of Levulinic Acid based Poly(amine-co-ester)s Yann Bernhard, Lucas Pagies, Sylvain

More information

Chemical Reactions REDOX

Chemical Reactions REDOX Chemical Reactions REDOX There are two types of Chemical Changes: 1. Reactions in which ions are being rearranged with no change in their oxidation states. METATHESIS. Reactions in which electrons are

More information

Complete the table to show the relative charge of each particle and the number of each particle found in a 140 Ce 2+ ion.

Complete the table to show the relative charge of each particle and the number of each particle found in a 140 Ce 2+ ion. 1 This question is about the elements with atomic numbers between 58 and 70 (a) Cerium, atomic number 58, is a metal Complete the table to show the relative charge of each particle and the number of each

More information

Activity 6: Spectroscopy

Activity 6: Spectroscopy Activity 6: Spectroscopy Reference: Kenkel (p 149-237) and arris, (hp 17-21) Turn in a hardcopy of this activity. If you do not, you will not receive credit. Dropbox submission is not valid. / Score Name

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information High-Strain Shape Memory Polymers with Movable Cross-Links

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information