Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Wiley-VC Weinheim, Germany

2 Stereoselective Lewis Acid-Mediated [1,3] Ring Contraction of 2,5-Dihydrooxepins as a Route to Polysubstituted Cyclopentanes Supplementary Material Christopher G. Nasveschuk and Tomislav Rovis* Department of Chemistry Colorado State University, Fort Collins, C, rovis@lamar.colostate.edu General Methods: All reactions were performed under an inert atmosphere of argon in flame-dried glassware with magnetic stirring. Dichloromethane was degassed with argon and passed through two columns of neutral alumina. Column chromatography was performed on EM Science silica gel 60 ( mesh). Thin layer chromatography was performed on EM Science 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light, KMn 4, and aqueous ceric ammonium molybdate followed by heating. EtAlCl 2 was purchased as a 1.0M solution in hexane. All Lewis acids used were purchased from Aldrich Chemical Co. and used without further purification. Infrared spectra were obtained on a Nicolet Avatar 320 FT-IR spectrometer. 1 and spectra were recorded on a Varian 400 Mz spectrometer at ambient temperature. Data are reported as follows: chemical shift in parts per million (_, ppm) from an internal standard [deuterated chloroform (CDCl 3 )], multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant (z). 13 C NMR were recorded on a Varian 100 Mz spectrometer at ambient temperature. Chemical shifts are reported in ppm from (CDCl 3 ) taken as ppm. Mass spectra were obtained on Fisons VG Autospec. Analytical high performance liquid chromatography (PLC) was performed on a Dynamax model SD-200 PLC equipped with a Dynamax model UV-1 variable wavelength UV detector using Chiralcel chiral columns as indicated. ptical rotations were measured on an Autopol III automatic polarimeter in a 1 dm cell. General Procedure (A) for the Lewis acid-mediated ring contraction of 2,5- dihydrooxepins. A flame-dried round bottom flask was charged with EtAlCl 2 (1.05 eq.) under an inert atmosphere of argon and subsequently diluted with C 2 Cl 2 (40-70 ml) and mixed for 10 min at ambient temperature. 2,5-Dihydrooxepin in Toluene (typically 0.2 M, 1.0 eq.) was added via syringe in one portion and the reaction was stirred for the indicated time at ambient temperature. The reaction mixture was quenched with 5 ml sat. aq. N 4 Cl, separated and the aqueous layer was extracted with C 2 Cl 2 (2 X 10 ml). The organic layers were combined, dried over Na 2 S 4, filtered, then concentrated in vacuo, and purified via column chromatography. General Procedure (B) for the Lewis acid-mediated ring contraction of 2,5- dihydrooxepins. A flame-dried round bottom flask was charged with EtAlCl 2 (1.05 eq.) under an inert atmosphere of argon and subsequently diluted with 1 ml C 2 Cl 2 and mixed for 10 min at ambient temperature. A separate flame-dried round bottom flask was charged with 2,5-dihydrooxepin (0.2 M in Toluene, 1.0 eq.) and diluted with 1 ml C 2 Cl 2 and transferred over 2 min, via cannula to the Lewis acid solution. The reaction

3 mixture was quenched with 5 ml sat. aq. N 4 Cl, separated and the aqueous layer was extracted with C 2 Cl 2 (2 X 10 ml). The organic layers were combined, dried over Na 2 S 4, filtered, then concentrated in vacuo, and purified via column chromatography. 2-Methyl-4-phenyl-cyclopent-3-enecarbaldehyde (10). 1 NMR (400 Mz CDCl 3 ) δ 9.83 (1, d, J = 2.5 z), (5, m), 6.05 (1, d, 1.5 z), 3.38 (1, m), (2, m), 2.77 (1, dd, J = 15.6, 7.9 z), 1.08 (3, d, J = 7.0 z); 13 C NMR (100 Mz CDCl 3 ) δ 204.2, 140.2, 135.8, 130.2, 128.6, 127.7, 125.8, 53.4, 42.3, 32.0, 16.5; IR (NaCl dep from C 2 Cl 2 ) 2959, 2726, 1720, 1494, 1447, 756, 693 cm -1 ; RMS (FAB+) calcd for C 13 14, Found Methyl-4-p-tolyl-cyclopent-3-enecarbaldehyde (12). 1 NMR (400 Mz CDCl 3 ) δ 9.81 (1, d, J = 2.6 z), (4, m), 5.99 (1, d, J = 1.9 z), 3.72 (1, m), (2, m), 2.76 (1, dd, J = 15.8, 8.1 z), 2.32 (3, s), 1.08 (3, d, J = 7.2 z); 13 C NMR (100 Mz CDCl 3 ) δ 211.1, 203.6, 139.4, 136.8, 128.6, 128.5, 125.0, 52.7, 41.6, 31.4, 20.7, 15.8; IR (NaCl dep from C 2 Cl 2 ) 2922, 2362, 1720, 1645, 1513, 809 cm -1 ; RMS (FAB+) calcd for C 14 16, Found Methyl-4-(4-trifluoromethyl-phenyl)-cyclopent-3- enecarbaldehyde (14). 1 NMR (400 Mz CDCl 3 ) δ 9.86 (1, d, J = 2.4 z), (4, m), 6.17 (1, d, CF 3 J = 1.9 z), 3.44 (1, m), (2, m), 2.78 (1, dd, J = 17.0, 9.6 z), 1.13 (3, d, J = 7.3 z); 13 C NMR (100 Mz CDCl 3 ) δ 203.6, 139.3, 132.7, 126.0, 125.6, 125.5, 53.2, 42.4, 31.9, 16.4; IR (NaCl dep from C 2 Cl 2 ) 2962, 1721, 1615, 1326, 1123, 827 cm -1 ; RMS (FAB+) calcd for C F 3, Found ,3-Dimethyl-4-phenyl-cyclopent-3-enecarbaldehyde (16). 1 NMR (400 Mz CDCl 3 ) δ 9.81 (1, d, J = 2.3 z), (5, m), (3, m), 2.76 (1, m), 1.81 (3, s), 1.11 (3, d, 6.8 z); 13 C NMR (100 Mz CDCl 3 ) δ 204.8, 138.1, 137.8, 133.3, 128.4, 127.9, 126.8, 52.9, 47.0, 35.1, 14.7, 13.6; IR (NaCl dep from C 2 Cl 2 ) 2961, 2722, 1720, 1446, 762, 700 cm -1 ; RMS (FAB+) calcd for C 14 16, Found enethyl-4-phenyl-cyclopent-3-enecarbaldehyde (18). 1 NMR (400 Mz CDCl 3 ) δ 9.82 (1, d, J = 3.2 z), (10, m), 6.21 (1, d, J = 1.9 z), (2, m), 3.14 (1, m), 2.84 (1, dd, J = 16.1, 8.0 z), (2, m), (2, m); 13 C NMR (100 Mz CDCl 3 ) δ 203.9, 141.8, 141.3, 135.8, 128.7, 128.7, 128.6, 128.1, 127.9, 126.2, 125.9, 53.4, 47.7, 34.4, 33.5, 32.8; IR (NaCl dep from C 2 Cl 2 ) 2920, 2852, 1718, 1494, 695 cm -1 ; RMS (FAB+) calcd for C 20 20, Found

4 2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-4-phenylcyclopent-3-enecarbaldehyde (20). 1 NMR (400 Mz CDCl 3 ) δ 9.76 (1, d, J = 3.0 z), (5, m), TBDPS 7.23 (10, m), 6.10 (1, s), (2, m), 3.49 (1, m), 3.23 (1, m), 3.10 (1, m), 2.81 (1, dd, J = 16.2, 8.5 z), 1.86 (1, m), 1.59 (1, m), 1.07 (9, s); 13 C NMR (100 Mz CDCl 3 ) δ 204.0, 140.9, 135.8, 133.9, 129.9, 128.6, 128.4, 127.9, 127.7, 125.8, 62.5, 53.3, 44.7, 34.0, 32.5, 27.1, 19.4; IR (NaCl dep from C 2 Cl 2 ) 3070, 2930, 2856, 1721, 1428, 1112, 701 cm -1 ; RMS (FAB+) calcd for C Si, Found ,3-Dimethyl-4-phenethyl-cyclopent-3-enecarbaldehyde (22). 1 NMR (400 Mz CDCl 3 ) δ 9.71 (1, d, J = 3.0 z), (5, m), (2, m), (3, m), (3, m), Me 1.42 (3, s), 0.95 (3, d, J = 7.0 z); 13 C NMR (100 Mz CDCl 3 ) δ 205.3, 142.1, 135.8, 132.6, 128.6, 128.4, 126.0, 52.9, 46.0, 34.3, 33.9, 30.5, 14.9, 11.7; IR (NaCl dep from C 2 Cl 2 ) 3026, 2928, Me 2854, 1721, 1453, 699 cm -1 ; RMS (FAB+) calcd for C 16 21, Found Methyl-4-p-tolyl-cyclopent-3-enecarbaldehyde (23). 1 NMR (400 Mz CDCl 3 ) δ 9.76 (1, d, J = 2.4 z), (4, m), 5.97 (1, d, J = 1.9 z), 3.23 (1, m), (2, m), 2.78 (1, m), 2.34 (3, s), 1.24 (3, d, J = 7.0 z); 13 C NMR (100 Mz CDCl 3 ) δ 203.1, 139.7, 137.5, 132.9, 129.3, 128.8, 125.7, 58.2, 41.8, 33.1, 21.4, 20.8; IR (NaCl dep from C 2 Cl 2 ) 2957, 2867, 2712, 1723, 1513, 809 cm -1 ; RMS (FAB+) calcd for C 14 16, Found enethyl-4-phenyl-cyclopent-3-enecarbaldehyde (24). 1 NMR (400 Mz CDCl 3 ) δ 9.73 (1, d, J = 2.1 z), (10, m), 6.11 (1, d, J = 1.7 z), 3.20 (1, m), (3, m), 2.74 (2, t, J = 8.0 z), (2, m); 13 C NMR (100 Mz CDCl 3 ) δ 202.8, 141.9, 140.7, 135.6, 128.7, 128.6, 127.8, 127.7, 126.2, 125.9, 56.0, 46.8, 37.5, 34.1, 33.0; IR (NaCl dep from C 2 Cl 2 ) 3026, 2921, 2712, 1721, 1447, 695 cm -1 ; RMS (FAB+) calcd for C 20 20, Found ,5-Dimethyl-3-phenyl-cyclopent-3-enecarbaldehyde (26). 1 NMR (400 Mz CDCl 3 ) δ 9.82 (1, d, J = 3.2 z), (5, m), 5.89 (1, s), 3.63 (1, m), 3.38 (1, m), 2.79 (1, ddd, J = 8.3, 4.7, 3.4 z), 1.15 (3, d, J = 6.8 z), 1.12 (3, d, J = 7.5 z); 13 C NMR (100 Mz CDCl 3 ) δ 204.3, 145.9, 135.6, 130.5, 128.7, 127.6, 126.5, 62.4, 40.5, 39.4, 18.8, 16.5; IR (NaCl dep from C 2 Cl 2 ) 3031, 2960, 2928, 1720, 1457, 761, 697 cm -1 ; RMS (FAB+) calcd for C 14 16, Found ; 23 [α] D = o (c = in C 2 Cl 2 ); PLC analysis (Chiracel D-, 95:5 hex/i-pr,

5 1.0 ml/min, 254 nm; tr(minor) = 5.9 min., tr(major) = 12.7 min.) gave the isomeric composition of the product: 95% ee. 4-ydroxymethyl-3-methyl-1-phenyl-cyclopentane-1,2-diol (29). 1 NMR (400 Mz CDCl 3 ) δ (5, m), 3.98 (1, d, J = 8.7 z), 3.72 (2, m), 2.40 (2, m), 2.30 (1, dd, J = 14.5, 8.7 z), 2.00 (1, dd, J = 14.4, 6.5 z), (3, m), 1.18 (3, d, J = 6.6 z); 13 C NMR (100 Mz CDCl 3 ) δ 145.3, 128.5, 127.2, 125.5, 85.6, 80.9, 64.1, 41.8, 39.8, 38.2, 13.3; IR (NaCl dep from C 2 Cl 2 ) 3367, 2959, 2928, 1446, 1337, 1034, 760, 700 cm -1 ; LRMS (ES-) for C , Stereochemical assignment for 26: ne enhancements: 1.8% 0.4% 1.3% % 0.9%

Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones using the Intramolecular Stetter Reaction

Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones using the Intramolecular Stetter Reaction Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones using the Intramolecular Stetter Reaction Qin Liu and Tomislav Rovis* Department of Chemistry, Colorado State University

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters S1 An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters Chris V. Galliford and Karl A. Scheidt* Department of Chemistry, Northwestern University, 2145 Sheridan

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION Direct Coupling of Pyrroles with Carbonyl Compounds: Short, Enantioselective Synthesis of (S)-Ketorolac Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPRTIG IFRMATI General Procedures. All reactions

More information

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids Copper-Catalyzed xidative Cyclization of Carboxylic Acids Supplementary material (51 pages) Shyam Sathyamoorthi and J. Du Bois * Department of Chemistry Stanford University Stanford, CA 94305-5080 General.

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

An insulin-sensing sugar-based fluorescent hydrogel

An insulin-sensing sugar-based fluorescent hydrogel Supplementary Information An insulin-sensing sugar-based fluorescent hydrogel Sankarprasad Bhuniya and Byeang yean Kim* ational Research Laboratory, Department of Chemistry, Division of Molecular and Life

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry Supporting Information General Remarks Most of chemicals were purchased from Sigma-Aldrich, Strem,

More information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK Vinyl-dimethylphenylsilanes as Safety Catch Silanols in Fluoride free Palladium Catalysed Cross Coupling Reactions. James C. Anderson,* Rachel H. Munday School of Chemistry, University of Nottingham, Nottingham,

More information

Department of Chemistry, Colorado State University, Fort Collins, Colorado University of Colorado Cancer Center, Aurora, Colorado 80045

Department of Chemistry, Colorado State University, Fort Collins, Colorado University of Colorado Cancer Center, Aurora, Colorado 80045 Improved Biomimetic Total Synthesis of d,l-stephacidin A Thomas J. Greshock 1 and Robert M. Williams 1,2 * 1 Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 2 University

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A Highly Enantioselective Brønsted Acid Catalyst for the Strecker Reaction Magnus Rueping, * Erli Sugiono and Cengiz Azap General: Unless otherwise

More information

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. Alan L. Sewell a, Mathew V. J. Villa a, Mhairi Matheson a, William G. Whittingham b, Rodolfo Marquez a*. a) WestCHEM, School of Chemistry,

More information

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation.

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation. Supporting information Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation Saithalavi Anas, Alex Cordi and Henri B. Kagan * Institut de Chimie

More information

Highly stereocontrolled synthesis of trans-enediynes via

Highly stereocontrolled synthesis of trans-enediynes via Supporting Information for Highly stereocontrolled synthesis of trans-enediynes via carbocupration of fluoroalkylated diynes Tsutomu Konno*, Misato Kishi, and Takashi Ishihara Address: Department of Chemistry

More information

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System Doris Lee and Mark S. Taylor* Department of Chemistry, Lash Miller Laboratories, University of Toronto 80 St.

More information

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols Supporting Information Indium Triflate-Assisted ucleophilic Aromatic Substitution Reactions of itrosobezene-derived Cycloadducts with Alcohols Baiyuan Yang and Marvin J. Miller* Department of Chemistry

More information

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes Supporting Information Curtius-Like Rearrangement of Iron-itrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes Dashan Li,, Ting Wu,, Kangjiang Liang,, and Chengfeng Xia*,, State

More information

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel* Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2Mg 2 2Li ** Stefan H. Wunderlich and Paul Knochel* Ludwig Maximilians-Universität München, Department Chemie & Biochemie

More information

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 24 Supporting Information Poly(4-vinylimidazolium)s: A Highly Recyclable rganocatalyst Precursor

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

Supporting Information

Supporting Information Meyer, Ferreira, and Stoltz: Diazoacetoacetic acid Supporting Information S1 2-Diazoacetoacetic Acid, an Efficient and Convenient Reagent for the Synthesis of Substituted -Diazo- -ketoesters Michael E.

More information

Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition.

Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition. Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition. Ravisekhara P. Reddy and Huw M. L. Davies* Department of Chemistry, University at Buffalo, The State University of ew York, Buffalo,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting Information Synthesis of Biaryl Sultams Using Visible-Light-Promoted Denitrogenative

More information

Supporting Information

Supporting Information Supporting Information (Tetrahedron. Lett.) Cavitands with Inwardly and Outwardly Directed Functional Groups Mao Kanaura a, Kouhei Ito a, Michael P. Schramm b, Dariush Ajami c, and Tetsuo Iwasawa a * a

More information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany S1 Stereoselective Synthesis of α,α-chlorofluoro Carbonyl Compounds Leading to the Construction of luorinated Chiral Quaternary Carbon Centers

More information

Enantioselective Synthesis of Hindered Cyclic Dialkyl Ethers via Catalytic Oxa- Michael/Michael Desymmetrization.

Enantioselective Synthesis of Hindered Cyclic Dialkyl Ethers via Catalytic Oxa- Michael/Michael Desymmetrization. SUPPRTING INFRMATIN Enantioselective Synthesis of indered Cyclic Dialkyl Ethers via Catalytic xa- Michael/Michael Desymmetrization Michael T. Corbett and Jeffrey S. Johnson Department of Chemistry, University

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012 Ring Expansion of Alkynyl Cyclopropanes to Highly substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate Renhe Liu, Min Zhang, Gabrielle Winston-Mcerson, and Weiping Tang* School of armacy,

More information

Supporting Information

Supporting Information Supporting Information Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers Jian-Bo Liu, Xiu-Hua Xu, and Feng-Ling Qing Table of Contents 1. General Information --------------------------------------------------------------------------2

More information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Supporting Information Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Marco Bandini,* Riccardo Sinisi, Achille Umani-Ronchi* Dipartimento di Chimica Organica G. Ciamician, Università

More information

Parallel sheet structure in cyclopropane γ-peptides stabilized by C-H O hydrogen bonds

Parallel sheet structure in cyclopropane γ-peptides stabilized by C-H O hydrogen bonds Parallel sheet structure in cyclopropane γ-peptides stabilized by C- hydrogen bonds M. Khurram N. Qureshi and Martin D. Smith* Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis Supporting Information Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-iminoesters through Auto-Tandem Catalysis Azusa Kondoh, b and Masahiro Terada* a a Department of Chemistry, Graduate School

More information

Supporting Information

Supporting Information Supporting Information ACA: A Family of Fluorescent Probes that Bind and Stain Amyloid Plaques in Human Tissue Willy M. Chang, a Marianna Dakanali, a Christina C. Capule, a Christina J. Sigurdson, b Jerry

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Substitution of Two Fluorine Atoms in a Trifluoromethyl Group: Regioselective Synthesis of 3-Fluoropyrazoles** Kohei Fuchibe, Masaki Takahashi,

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

Selective Synthesis of 1,2- cis- α- Glycosides in the Absence of Directing Groups. Application to Iterative Oligosaccharide Synthesis.

Selective Synthesis of 1,2- cis- α- Glycosides in the Absence of Directing Groups. Application to Iterative Oligosaccharide Synthesis. Selective Synthesis of 1,2- cis- α- Glycosides in the Absence of Directing Groups. Application to Iterative ligosaccharide Synthesis. An- Hsiang Adam Chu, Son Hong Nguyen, Jordan A Sisel, Andrei Minciunescu,

More information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity Supporting Information for Synthesis of Glaucogenin D, a Structurally Unique Disecopregnane Steroid with Potential Antiviral Activity Jinghan Gui,* Hailong Tian, and Weisheng Tian* Key Laboratory of Synthetic

More information

Supporting Information

Supporting Information Supporting Information N-Heterocyclic Carbene-Catalyzed Chemoselective Cross-Aza-Benzoin Reaction of Enals with Isatin-derived Ketimines: Access to Chiral Quaternary Aminooxindoles Jianfeng Xu 1, Chengli

More information

Supporting Information

Supporting Information Supporting Information Total Synthesis of (±)-Grandilodine B Chunyu Wang, Zhonglei Wang, Xiaoni Xie, Xiaotong Yao, Guang Li, and Liansuo Zu* School of Pharmaceutical Sciences, Tsinghua University, Beijing,

More information

Diastereoselectivity in the Staudinger reaction of. pentafluorosulfanylaldimines and ketimines

Diastereoselectivity in the Staudinger reaction of. pentafluorosulfanylaldimines and ketimines Supporting Information for Diastereoselectivity in the Staudinger reaction of pentafluorosulfanylaldimines and ketimines Alexander Penger, Cortney. von ahmann, Alexander S. Filatov and John T. Welch* Address:

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Supporting Information 1 Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Takahiro Kawamoto, Sho Hirabayashi, Xun-Xiang Guo, Takahiro Nishimura,* and Tamio

More information

ELECTRONIC SUPPLEMENTARY INFORMATION. Modular Logic Gates: Cascading Independent Logic Gates via Metal Ion Signals

ELECTRONIC SUPPLEMENTARY INFORMATION. Modular Logic Gates: Cascading Independent Logic Gates via Metal Ion Signals ELECTRONIC SUPPLEMENTARY INFORMATION Modular Logic Gates: Cascading Independent Logic Gates via Metal Ion Signals Esra Tanrıverdi Eçik, 1,2 Ahmet Atılgan 1 Ruslan Guliyev, 3 T.Bilal Uyar, 1 Ayşegül Gümüş

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Method Synthesis of 2-alkyl-MPT(R) General information (R) enantiomer of 2-alkyl (18:1) MPT (hereafter designated as 2-alkyl- MPT(R)), was synthesized as previously described 1, with some

More information

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol . This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry Total Synthesis of Gonytolides C and G, Lachnone C, and Formal Synthesis

More information

Pyridine-Containing m-phenylene Ethynylene Oligomers Having Tunable Basicities

Pyridine-Containing m-phenylene Ethynylene Oligomers Having Tunable Basicities Supporting nformation Pyridine-Containing m-phenylene Ethynylene ligomers Having Tunable Basicities Jennifer M. Heemstra and Jeffrey S. Moore* Departments of Chemistry and Materials Science & Engineering,

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

Bulletin of the Chemical Society of Japan

Bulletin of the Chemical Society of Japan Supporting Information Bulletin of the Chemical Society of Japan Enantioselective Copper-Catalyzed 1,4-Addition of Dialkylzincs to Enones Followed by Trapping with Allyl Iodide Derivatives Kenjiro Kawamura,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Asymmetric Vinylogous aza-darzens Approach to Vinyl Aziridines Isaac Chogii, Pradipta Das, Michael D. Delost, Mark N. Crawford and Jon T. Njardarson* Department of Chemistry and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany rganocatalytic Conjugate Addition of Malonates to a,ß-unsaturated Aldehydes: Asymmetric Formal Synthesis of (-)-Paroxetine, Chiral Lactams

More information

Singapore, #05 01, 28 Medical Drive, Singapore. PR China,

Singapore, #05 01, 28 Medical Drive, Singapore. PR China, Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Catalyst controlled Regioselectivity in Phosphine Catalysis: Synthesis of Spirocyclic Benzofuranones

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008 Mechanistically Inspired Catalysts for Enantioselective Desymmetrizations via lefin Metathesis Pierre-André Fournier,

More information

Supporting Information

Supporting Information Supporting Information Organocatalytic Enantioselective Formal Synthesis of Bromopyrrole Alkaloids via Aza-Michael Addition Su-Jeong Lee, Seok-Ho Youn and Chang-Woo Cho* Department of Chemistry, Kyungpook

More information

Structural Elucidation of Sumanene and Generation of its Benzylic Anions

Structural Elucidation of Sumanene and Generation of its Benzylic Anions Structural Elucidation of Sumanene and Generation of its Benzylic Anions idehiro Sakurai, Taro Daiko, iroyuki Sakane, Toru Amaya, and Toshikazu irao Department of Applied Chemistry, Graduate School of

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION UPPRTING INFRMATIN Application of a Rhodium-Catalyzed Addition/Cyclization equence Toward the ynthesis of Polycyclic eteroaromatics Nai-Wen Tseng and Mark Lautens* Davenport Laboratories, Chemistry Department,

More information

Copper-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes with Organolithium Reagents

Copper-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes with Organolithium Reagents SUPPORTING INFORMATION Copper-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes with Organolithium Reagents Pieter H. Bos, Alena Rudolph, Manuel Pérez, Martín Fañanás-Mastral, Syuzanna R. Harutyunyan

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information (ESI) for Effect of Conjugation and Aromaticity of 3,6 Di-substituted

More information

Supporting Information

Supporting Information Supporting Information An L-proline Functionalized Metallo-organic Triangle as Size-Selective Homogeneous Catalyst for Asymmertry Catalyzing Aldol Reactions Xiao Wu, Cheng He, Xiang Wu, Siyi Qu and Chunying

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Dynamic covalent templated-synthesis of [c2]daisy chains. Altan Bozdemir, a Gokhan Barin, a Matthew E. Belowich, a Ashish. Basuray, a Florian Beuerle, a and J. Fraser Stoddart* ab a b Department of Chemistry,

More information

Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol.

Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol. Tetrahedron Letters 1 Pergamon TETRAHEDRN LETTERS Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol. Jennifer L. Stockdill,

More information

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Ring-pening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols Jumreang Tummatorn, and Gregory B. Dudley, * Department of Chemistry and Biochemistry, Florida State University,

More information

Supporting Information

Supporting Information ne-pot synthesis of pyrrolidino- and piperidinoquinolinones by three-component aza-diels Alder reactions of -arylimines with in situ generated cyclic enamides. Wenxue Zhang, Yisi Dai, Xuerui Wang, Wei

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

Supplementary Table S1: Response evaluation of FDA- approved drugs

Supplementary Table S1: Response evaluation of FDA- approved drugs SUPPLEMENTARY DATA, FIGURES AND TABLE BIOLOGICAL DATA Spheroids MARY-X size distribution, morphology and drug screening data Supplementary Figure S1: Spheroids MARY-X size distribution. Spheroid size was

More information

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles:

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles: Zn-Catalyzed Diastereo- and Enantioselective Cascade Reaction of 3-Isothiocyanato xindoles and 3-itroindoles: tereocontrolled yntheses of Polycyclic pirooxindoles Jian-Qiang Zhao,, Zhi-Jun Wu, Ming-Qiang

More information

Supporting Information

Supporting Information J. Am. Chem. Soc. Supporting Information S 1 The Productive rger of Iodonium Salts and rganocatalysis. A on-photolytic Approach to the Enantioselective α- Trifluoromethylation of Aldehydes Anna E. Allen

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Supporting Information for

Supporting Information for Supporting Information for Room Temperature Palladium-Catalyzed Arylation of Indoles icholas R. Deprez, Dipannita Kalyani, Andrew Krause, and Melanie S. Sanford* University of Michigan Department of Chemistry,

More information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION S1 Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe

More information

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles Supporting Information for Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles Xiao-Li Lian, Zhi-Hui Ren, Yao-Yu

More information

Supporting Information

Supporting Information Supporting Information Wiley-VC 2008 69451 Weinheim, Germany SI-1 A Concise Approach to Vinigrol Thomas J. Maimone, Ana-Florina Voica, and Phil S. Baran* Contribution from the Department of Chemistry,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Synthesis of Functionalized Thia Analogues of Phlorins and Covalently Linked Phlorin-Porphyrin Dyads Iti Gupta a, Roland Fröhlich b and Mangalampalli Ravikanth *a a Department of

More information

hydroxyanthraquinones related to proisocrinins

hydroxyanthraquinones related to proisocrinins Supporting Information for Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins Joyeeta Roy, Tanushree Mal, Supriti Jana and Dipakranjan Mal* Address: Department of Chemistry,

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition Sonia Amel Diab, Antje Hienzch, Cyril Lebargy, Stéphante Guillarme, Emmanuel fund

More information

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004 Supporting Information for Angew. Chem. Int. Ed. 200461851 Wiley-VCH 2004 69451 Weinheim, Germany S1 The Importance of Iminium Geometry Control in Enamine Catalysis. Identification of a New Catalyst Architecture

More information

Electronic Supplementary Information. An Ultrafast Surface-Bound Photo-active Molecular. Motor

Electronic Supplementary Information. An Ultrafast Surface-Bound Photo-active Molecular. Motor This journal is The Royal Society of Chemistry and wner Societies 2013 Electronic Supplementary Information An Ultrafast Surface-Bound Photo-active Molecular Motor Jérôme Vachon, [a] Gregory T. Carroll,

More information

Supporting Information. Expeditious Construction of the DEF Ring System of Thiersinine B

Supporting Information. Expeditious Construction of the DEF Ring System of Thiersinine B Supporting Information Expeditious Construction of the DEF Ring System of Thiersinine B Masaru Enomoto and Shigefumi Kuwahara* Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural

More information

Supporting Information

Supporting Information Supporting Information Synthesis of 2-Benzazepines from Benzylamines and MBH Adducts Under Rhodium(III) Catalysis via C(sp 2 ) H Functionalization Ashok Kumar Pandey, a Sang Hoon Han, a Neeraj Kumar Mishra,

More information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,*

More information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in Supplementary Figure 1. Optical properties of 1 in various solvents. UV/Vis (left axis) and fluorescence spectra (right axis, ex = 420 nm) of 1 in hexane (blue lines), toluene (green lines), THF (yellow

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers SI- 1 Supporting Information for A ew Method for the Cleavage of itrobenzyl Amides and Ethers Seo-Jung Han, Gabriel Fernando de Melo, and Brian M. Stoltz* The Warren and Katharine Schlinger Laboratory

More information

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters Supporting Information rganocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a ne-pot Synthesis of -Amino Acid Esters Jayasree Seayad, Pranab K. Patra, Yugen Zhang,* and Jackie Y. Ying* Institute

More information

Supporting Information for. Silver-catalyzed intramolecular hydroamination of alkynes in

Supporting Information for. Silver-catalyzed intramolecular hydroamination of alkynes in Supporting Information for Silver-catalyzed intramolecular hydroamination of alkynes in aqueous media: efficient and regioselective synthesis for fused benzimidazoles Xu Zhang, a, b Yu Zhou, b Hengshuai

More information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J. A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones Jin-Quan Yu, a and E. J. Corey b * a Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United

More information

Experimental details

Experimental details Supporting Information for A scalable synthesis of the (S)-4-(tert-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazole ((S)-t-BuPyx) ligand Hideki Shimizu 1,2, Jeffrey C. Holder 1 and Brian M. Stoltz* 1 Address:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Rapid and sensitive detection of acrylic acid using a novel fluorescence

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Peptidic α-ketocarboxylic Acids and Sulfonamides as Inhibitors of Protein Tyrosine Phosphatases Yen Ting Chen, Jian Xie, and Christopher T. Seto* Department of Chemistry, Brown

More information

A Chiral Ag-based Catalyst for Practical, Efficient and Highly Enantioselective Additions of Enolsilanes to α-ketoesters SUPPORTING INFORMATION

A Chiral Ag-based Catalyst for Practical, Efficient and Highly Enantioselective Additions of Enolsilanes to α-ketoesters SUPPORTING INFORMATION Akullian et al.; Supporting Information Page S1 A Chiral Ag-based Catalyst for Practical, Efficient and Highly Enantioselective Additions of Enolsilanes to α-ketoesters Laura C. Akullian, Marc L. Snapper*

More information

Supporting Information

Supporting Information Supporting Information Carboxylate Anions Accelerate Pyrrolidinopyridine (PPy)-Catalyzed Acylation: Catalytic Site-Selective Acylation of a Carbohydrate by In Situ Counter Anion Exchange Masanori Yanagi,

More information

4,5,6,7-Tetrachlorobenzo[d][1,3,2]dioxaborol-2-ol as an Effective Catalyst for the Amide Condensation of Sterically Demanding Carboxylic Acids

4,5,6,7-Tetrachlorobenzo[d][1,3,2]dioxaborol-2-ol as an Effective Catalyst for the Amide Condensation of Sterically Demanding Carboxylic Acids 4,5,6,7-Tetrachlorobenzo[d][1,3,2]dioxaborol-2-ol as an Effective Catalyst for the Amide Condensation of Sterically Demanding Carboxylic Acids Toshikatsu Maki, Kazuaki Ishihara,*, and Hisashi Yamamoto*,

More information