AN INEQUALITY RELATED TO THE LENGTHS AND AREA OF A CONVEX QUADRILATERAL

Size: px
Start display at page:

Download "AN INEQUALITY RELATED TO THE LENGTHS AND AREA OF A CONVEX QUADRILATERAL"

Transcription

1 INTERNATIONAL JOURNAL OF GEOMETRY Vol. 7 (018), No. 1, AN INEQUALITY RELATED TO THE LENGTHS AND AREA OF A CONVEX QUADRILATERAL LEONARD MIHAI GIUGIUC, DAO THANH OAI and KADIR ALTINTAS Abstract. In this aer we give an inequality related to the lengths and the area of a convex quadrilateral and its roof. 1. Introduction There are many famous inequalities related to the lengths and area of a triangle, for examles with a triangle we have Pedoe s inequality [9], Weitzenbock s inequality [10], Ono s inequality [8], Blundon s inequality []. In a quadrilateral we have many imortant inequalities, such as Yun s inequality [6], Josefsson s inequality [6],[7]; some other inequalities of a quadrilateral you can see in [4], [1], []. In this aer we give a nice inequality related to the lengths and area of a convex quadrilateral in theorem 1.1 as follows: Theorem 1.1. Let a; b; c; d be the lengths of the sides of a convex quadriateral ABCD with the area S, the following inequality hold: (1) 1 + (ab + ac + ad + bc + bd + cd) 1 ( + 1) (a + b + c + d ) S Equality hold if only if ABCD is a square. To rove Theorem 1.1, rst we give a stronger inequality as follows: Theorem 1.. If a; b; c and d be the lengths of the sides of a convex quadrilateral ABCD, the following inequality hold: () (a + b + c + d) 5 a + b + c + d abcd Equality hold if only if a = b = c = d. Keywords and hrases: geometry inequality, cyclic olygon, (010)Mathematics Subject Classi cation: 51M04, 51M99 Received: In revised form: Acceted:

2 8 Leonard Mihai Giugiuc, Dao Thanh Oai and Kadir Altintas Proof. Figure 1 In order to rove (), we need to establish few things rst. Since ABCD is the convex quadrilateral, we have 0 < a; b; c; d < a+b+c+d : Because both members of (1) are homogenous of second degree, we may assume a + b + c + d = 4. Thus, 0 < a; b; c; d <. By Maclaurin s inequality we have: i.e. ab + ac + ad + bc + bd + cd 6 So that there exist t [0; 1) such that: a + b + c + d 4 ab + ac + ad + bc + bd + cd 6: () ab + ac + ad + bc + bd + cd = 6(1 t ): From () a + b + c + d = (a + b + c + d) (ab + ac + ad + bc + bd + cd) = 16 1(1 t ) = 4(1 + t ): Thus (1) is equivalent to t abcd, ( + 1) (5 )t + 1 abcd, (4) 1 4 t abcd: De ne the olynomial P : (0; 1)! R as P (x) = (x a)(x b)(x c)(x d); 8x > 0: By Viete s theorem combined with (), we have: P (x) = x 4 4x + 6(1 t )x 4sx + ; 8x > 0, where 4s = abc + abd + acd + bcd and = abcd:

3 An inequality related to the lengths and area of a convex quadrilateral 8 Lemma 1.1. Let a; b; c and d be the lengths of the sides of a convex quadrilateral ABCD with erimeter equal to 4 then (5) a + b + c + d < 8: Proof. Denote u = a 1, v = b 1, w = c 1 and z = d 1. Then 1 < u; v; w; z < 1 and u + v + w + z = 0. The inequality (5) is equivalent with u + v + w + z < 4, which is true since 0 u ; v ; w ; z < 1. This comletes the roof of Lemma 1.1. Note that Lemma 1.1 combined to (4) gives us that t [0; 1 ): Lemma 1.. If 0 t < 1 then (1 t) (1 + t): Proof. Consider the function f : (0; 1)! R; f(x) = P (x) x. Since f admits four ositive roots, the from Rolle s theorem, f 0 admits at least ositive roots. But f 0 (x) = x4 8x + 6(1 t )x ) x ; 8x > 0: From the obove consideration, the olynomial g(x) = x 4 8x + 6(1 t )x admits at least three roots in (0; 1). We have: thus the critical oints of g are 1 g 0 (x) = 1x x x + (1 t ) ; t 1 + t and f. We form the function g the Rolle s sequence 0 + < 1 t 1 + t < 1. Since f(0 + ) = 1 < 0; f(1) = +1 > 0 and f has three ositive roots, the from the consequence of Rolle s theorem, we obtain This comletes the roof of Lemma 1.. f(1 t) 0 ) (1 t) (1 + t): Lemma 1.. Let a; b; c and d be real numbers situated in the interval [0; ] such that a+b+c+d = 4 and ab + ac + ad + bc + bd + cd = 6(1 t ). If 1 t 1 then: 4 (6) 1 + (9t 1) Moreover = 4 1+ i (a; b; c; d) = and ermutations. : ; ; ; + Proof. Let k be a real number with 0 < k <. We consider the real numbers a; b; c and d situated in the interval [0; ] such that a + b + c + d = 4 and a + b + c + d = (k 4k + 4). Then, abcd 4k (1 k): First let s remark that if (a; b; c; d) = (k; k; k; ) and their ermutations, then a + b + c + d = 4; a + b + c + d = (k 4k + 4)

4 84 Leonard Mihai Giugiuc, Dao Thanh Oai and Kadir Altintas and abcd = 4k (1 k). Let ; be ositive real numbers with >. We consider the non negative real numbers u; v; w and t such u + v + w + t = + and u + v + w + t = +. Then uvw + uvt + uwt + vwt : The result is known, hence we don t need to rove it here. Back to the roblem. Putting = k, = k, u = a, v = b, w = c and t = d we get: > > 0; u; v; w; t 0; u + v + w + t = + and u + v + w + t = + : Hence according to the lemma, uvw + uvt + uwt + vwt ) abc + abd + acd + bcd k( k k + 4): We assume by absurd that there exist a; b; c; d [0; ] with a+b+c+d = 4 and a +b +c +d = (k 4k + 4) such that abcd > 4k (1 k): De ne the olynomials f; g : [0; ]! R, as f(x) = (x a)(x b)(x c)(x d) and g(x) = (x k) (x (1 k)) (x ), 8x [0; ]. Then f(x) = x 4 4x + ( k + 4k + 4)x mx + ; 8x [0; ] where m = abc + abd + acd + bcd, and = abcd and g(x) = x 4 x + ( k + 4k + 4)x k( k k + 4)x + 4k (1 k); 8x [0; ]: Thus, f(x) g(x) = k( k k + 4) m x + 4k (1 k) > 0, 8x [0; ]. Hence, if fa; b; c; dg, then f() g() > 0 ) g() < 0. But g(x) < 0 if and only if x ((1 k); ) ) fa; b; c; dg ((1 k); ). Consequently, via Rolle s theorem, the roots of f 0 are contained in the interval ((1 those roots. Then which is false, because k < (1 abcd 4k (1 f 0 (x) = 4(x y 1 )(x y )(x y ) 0; k); ). Let y 1 ; y and y be k) < y 1 ; y ; y. So that our assumtion was false. In conclusion, k). Back to the lemma s 1. roof. If 1 < t < 1, let s remark rst that the exists k (0; ) such that a + b + c + d = (k 4k + 4). Indeed, solving the quadratic (k 4k +4) = 4(1+t ), we choose the root k = and clearly 0 < k <. Hence abcd : If t = 1, then, by the roof of the lemma 1., abcd (1 t) (1 + t). If t = 1, the only choices we have are (a; b; c; d) = (; ; 0; 0) and ermutations and clearly, abcd This comletes the roof of Lemma 1..

5 An inequality related to the lengths and area of a convex quadrilateral 85 We are now ready to rove the inequality (): Case 1: 0 t 1 : By the lemma we have: (1 t) (1 + t), hence su ce it to show: 1 ( 4)t (1 t) (1 + t) (11 6 )t 0 t (1 t) which is true since 0 t < 1 and 11 6 > 1 : We deduce from the above roof that in this case equality holds at t = 0, a = b = c = d: Case : 1 t 1 : The fact that 0 < a; b; c; d < combined with the Lemma 1. give us that: Su ce it to show that: 1 ( v u t4 4)t 1 + Which is true after strightward calculations. This comletes the roof of Theorem 1... PROOF OF THE THEOREM 1.1 By famous Brahmaguta s formula and Bretschneider s formula (see [5]), we know that among all convex quadrilaterals ABCD with the lengths of the side a; b; c and d then the cyclic ones have the lagest area. So we only need to rove the Theorem 1.1 with ABCD is the convex cyclic quadrilateral. By the Brahmaguta s formula we have that the area of convex cyclic quadrilateral ABCD is S = (s a)(s b)(s c)(s d) where s = a+b+c+d. So the inequality (1), 4 (ab+ac+ad+bc+bd+cd) ( 1)(a +b +c +d )+4( +1) (s a)(s b)(s c)(s d), (7) (a + b + c + d) (5 )(a + b + c + d ) + 4 ( + 1) (s a)(s b)(s c)(s d) As above, without loss of generality, we may assume that a + b + c + d = 4. Denote x = a, y = b; z = c and w = d. Then 0 < x; y; z; w <. Moreover, a = x, b = y, c = z, d = w and x + y + z + w = 8 (a + b + c + d) = 4 so that x; y; z and w are the lengths of the sides of a covex quadrilateral XY ZW. Noted that a + b + c + d = ( x) + ( y) + ( z) + ( w) = 16 4(x + y + z + w) + x + y + z + w = x + y + z + w. Thus, (7) be come: (8) (x + y + z + w) (5 )(x + y + z + w ) + 4 ( + 1) xyzw Equality in (8) holds if only if a = b = c = d and ABCD is a cyclic quadrilateral. The inequality (8) is true according to the (). This comlete the roof of Theorem 1.1.

6 86 Leonard Mihai Giugiuc, Dao Thanh Oai and Kadir Altintas The authors would like to thank the referees for their valuable comments which heled to imrove the manuscrit. References [1] Alsina, C. and Nelsen, R., When Less is More: Visualizing Basic Inequalities, Mathematical Association of America, 009. [] Andreescu, T., Andrica, D., 60 Problems for Mathematical Contests, GIL Publishing House, 00. [] Andrica, D., Barbu, C. and Minculete, N., A Geometric way to generate Blundon Tye inequalities, Acta Universitatis Aulensis, 1 (01), [4] Bottema, O., Geometric Inequalities, Wolters-Noordho Publishing, The Netherlands, 1969, [5] Brahmaguta s formula, htts://en.wikiedia.org/wiki/brahmagutans_formula. [6] Josefsson, M., Five Proofs of an Area Characterization of Rectangles, Forum Geometricorum, 1 (01), [7] Josefsson, M., A few inequalities in quadrilateral, International Journal of Geometry, 4 (1) (015), [8] Ono, T., Problem 4417, Intermed. Math., 1 (1914), 146. [9] Pedoe, D., An Inequality Connecting Any Two Triangles, The Mathematical Gazette, 5 (67) (1941), [10] Stoica, E., Minculete, N. and Barbu, C., New asects of Ionescu Weitzenbock s inequality, Balkan Journal of Geometry and Its Alications, 1 () 016, DROBETA TURNU SEVERIN TRAIAN NATIONAL COLLEGE, ROMANIA address: leonardgiugiuc@yahoo.com KIEN XUONG, THAI BINH, VIET NAM address: daothanhoai@hotmail.com EMIRDAG ANADOLU LISESI EMIRDAG, AFYON, TURKEY address: kadiraltintas1977@gmail.com

THE EXTREMUM OF A FUNCTION DEFINED ON THE EUCLIDEAN PLANE

THE EXTREMUM OF A FUNCTION DEFINED ON THE EUCLIDEAN PLANE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 3 (2014), No. 2, 20-24 THE EXTREMUM OF A FUNCTION DEFINED ON THE EUCLIDEAN PLANE DORIN ANDRICA Abstract. The main urose of the note is to resent three di erent solutions

More information

THE ERDÖS - MORDELL THEOREM IN THE EXTERIOR DOMAIN

THE ERDÖS - MORDELL THEOREM IN THE EXTERIOR DOMAIN INTERNATIONAL JOURNAL OF GEOMETRY Vol. 5 (2016), No. 1, 31-38 THE ERDÖS - MORDELL THEOREM IN THE EXTERIOR DOMAIN PETER WALKER Abstract. We show that in the Erd½os-Mordell theorem, the art of the region

More information

About the Japanese theorem

About the Japanese theorem 188/ ABOUT THE JAPANESE THEOREM About the Japanese theorem Nicuşor Minculete, Cătălin Barbu and Gheorghe Szöllősy Dedicated to the memory of the great professor, Laurenţiu Panaitopol Abstract The aim of

More information

DISCUSSION CLASS OF DAX IS ON 22ND MARCH, TIME : 9-12 BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE]

DISCUSSION CLASS OF DAX IS ON 22ND MARCH, TIME : 9-12 BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE] DISCUSSION CLASS OF DAX IS ON ND MARCH, TIME : 9- BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE] Q. Let y = cos x (cos x cos x). Then y is (A) 0 only when x 0 (B) 0 for all real x (C) 0 for all real x

More information

19th Bay Area Mathematical Olympiad. Problems and Solutions. February 28, 2017

19th Bay Area Mathematical Olympiad. Problems and Solutions. February 28, 2017 th Bay Area Mathematical Olymiad February, 07 Problems and Solutions BAMO- and BAMO- are each 5-question essay-roof exams, for middle- and high-school students, resectively. The roblems in each exam are

More information

Identities and inequalities in a quadrilateral

Identities and inequalities in a quadrilateral OCTOGON MATHEMATICAL MAGAZINE Vol. 17, No., October 009, pp 754-763 ISSN 1-5657, ISBN 978-973-8855-5-0, www.hetfalu.ro/octogon 754 Identities inequalities in a quadrilateral Ovidiu T. Pop 3 ABSTRACT. In

More information

BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n) Andrej Dujella University of Zagreb, Croatia

BOUNDS FOR THE SIZE OF SETS WITH THE PROPERTY D(n) Andrej Dujella University of Zagreb, Croatia GLASNIK MATMATIČKI Vol. 39(59(2004, 199 205 BOUNDS FOR TH SIZ OF STS WITH TH PROPRTY D(n Andrej Dujella University of Zagreb, Croatia Abstract. Let n be a nonzero integer and a 1 < a 2 < < a m ositive

More information

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS #A47 INTEGERS 15 (015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS Mihai Ciu Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 5,

More information

A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems

A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems Polynomial Roots and Arithmetic-Geometric Mean Inequality 1 A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems The purpose of this article is

More information

ON FREIMAN S 2.4-THEOREM

ON FREIMAN S 2.4-THEOREM ON FREIMAN S 2.4-THEOREM ØYSTEIN J. RØDSETH Abstract. Gregory Freiman s celebrated 2.4-Theorem says that if A is a set of residue classes modulo a rime satisfying 2A 2.4 A 3 and A < /35, then A is contained

More information

Geometry Problem Solving Drill 08: Congruent Triangles

Geometry Problem Solving Drill 08: Congruent Triangles Geometry Problem Solving Drill 08: Congruent Triangles Question No. 1 of 10 Question 1. The following triangles are congruent. What is the value of x? Question #01 (A) 13.33 (B) 10 (C) 31 (D) 18 You set

More information

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle?

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle? UNIVERSITY OF NORTH CAROLINA CHARLOTTE 999 HIGH SCHOOL MATHEMATICS CONTEST March 8, 999 The sides of a triangle are in the ratio : 5 : 9 Which of the following words best describes the triangle? (A) obtuse

More information

THREE PROOFS TO AN INTERESTING PROPERTY OF CYCLIC QUADRILATERALS

THREE PROOFS TO AN INTERESTING PROPERTY OF CYCLIC QUADRILATERALS INTERNATIONAL JOURNAL OF GEOMETRY Vol. 2 (2013), No. 1, 54-59 THREE PROOFS TO AN INTERESTING PROPERTY OF CYCLIC QUADRILATERALS DORIN ANDRICA Abstract. The main purpose of the paper is to present three

More information

New aspects of Ionescu Weitzenböck s inequality

New aspects of Ionescu Weitzenböck s inequality New aspects of Ionescu Weitzenböck s inequality Emil Stoica, Nicuşor Minculete, Cătălin Barbu Abstract. The focus of this article is Ionescu-Weitzenböck s inequality using the circumcircle mid-arc triangle.

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) (e) 8 Solution: Note that xy = (x + y) (x y) = 169

More information

On the minimax inequality for a special class of functionals

On the minimax inequality for a special class of functionals ISSN 1 746-7233, Engl, UK World Journal of Modelling Simulation Vol. 3 (2007) No. 3,. 220-224 On the minimax inequality for a secial class of functionals G. A. Afrouzi, S. Heidarkhani, S. H. Rasouli Deartment

More information

SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF. 2p, p is a prime and p 1 mod4

SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF. 2p, p is a prime and p 1 mod4 Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A4 Printed in the Islamic Reublic of Iran, Shiraz University SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP * m OF THE NORMALIZER OF S. KADER,

More information

On the irreducibility of a polynomial associated with the Strong Factorial Conjecture

On the irreducibility of a polynomial associated with the Strong Factorial Conjecture On the irreducibility of a olynomial associated with the Strong Factorial Conecture Michael Filaseta Mathematics Deartment University of South Carolina Columbia, SC 29208 USA E-mail: filaseta@math.sc.edu

More information

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS #A13 INTEGERS 14 (014) ON THE LEAST SIGNIFICANT ADIC DIGITS OF CERTAIN LUCAS NUMBERS Tamás Lengyel Deartment of Mathematics, Occidental College, Los Angeles, California lengyel@oxy.edu Received: 6/13/13,

More information

#A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS

#A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS #A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS Ramy F. Taki ElDin Physics and Engineering Mathematics Deartment, Faculty of Engineering, Ain Shams University, Cairo, Egyt

More information

A Sequence of Triangles and Geometric Inequalities

A Sequence of Triangles and Geometric Inequalities Forum Geometricorum Volume 9 (009) 91 95. FORUM GEOM ISSN 1534-1178 A Sequence of Triangles and Geometric Inequalities Dan Marinescu, Mihai Monea, Mihai Opincariu, and Marian Stroe Abstract. We construct

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS

GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS International Journal of Analysis Alications ISSN 9-8639 Volume 5, Number (04), -9 htt://www.etamaths.com GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS ILYAS ALI, HU YANG, ABDUL SHAKOOR Abstract.

More information

ARITHMETIC PROGRESSIONS OF POLYGONAL NUMBERS WITH COMMON DIFFERENCE A POLYGONAL NUMBER

ARITHMETIC PROGRESSIONS OF POLYGONAL NUMBERS WITH COMMON DIFFERENCE A POLYGONAL NUMBER #A43 INTEGERS 17 (2017) ARITHMETIC PROGRESSIONS OF POLYGONAL NUMBERS WITH COMMON DIFFERENCE A POLYGONAL NUMBER Lenny Jones Deartment of Mathematics, Shiensburg University, Shiensburg, Pennsylvania lkjone@shi.edu

More information

Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-laplacian type

Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-laplacian type Nonlinear Analysis 7 29 536 546 www.elsevier.com/locate/na Multilicity of weak solutions for a class of nonuniformly ellitic equations of -Lalacian tye Hoang Quoc Toan, Quô c-anh Ngô Deartment of Mathematics,

More information

Mollifiers and its applications in L p (Ω) space

Mollifiers and its applications in L p (Ω) space Mollifiers and its alications in L () sace MA Shiqi Deartment of Mathematics, Hong Kong Batist University November 19, 2016 Abstract This note gives definition of mollifier and mollification. We illustrate

More information

ON THE SET a x + b g x (mod p) 1 Introduction

ON THE SET a x + b g x (mod p) 1 Introduction PORTUGALIAE MATHEMATICA Vol 59 Fasc 00 Nova Série ON THE SET a x + b g x (mod ) Cristian Cobeli, Marian Vâjâitu and Alexandru Zaharescu Abstract: Given nonzero integers a, b we rove an asymtotic result

More information

High School Mathematics Contest Spring 2006 Draft March 27, 2006

High School Mathematics Contest Spring 2006 Draft March 27, 2006 High School Mathematics Contest Spring 2006 Draft March 27, 2006 1. Going into the final exam, which will count as two tests, Courtney has test scores of 80, 81, 73, 65 and 91. What score does Courtney

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

PROPERTIES OF TILTED KITES

PROPERTIES OF TILTED KITES INTERNATIONAL JOURNAL OF GEOMETRY Vol. 7 (018), No. 1, 87-104 PROPERTIES OF TILTED KITES MARTIN JOSEFSSON Abstract. We prove ve characterizations and derive several metric relations in convex quadrilaterals

More information

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6 Section A.6 Solving Equations Math 1051 - Precalculus I A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 Factor: 2x 6 = 2(x 3) x 2 9 = (x 3)(x + 3) LCD

More information

What if the characteristic equation has complex roots?

What if the characteristic equation has complex roots? MA 360 Lecture 18 - Summary of Recurrence Relations (cont. and Binomial Stuff Thursday, November 13, 01. Objectives: Examples of Recurrence relation solutions, Pascal s triangle. A quadratic equation What

More information

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin Circle and Cyclic Quadrilaterals MARIUS GHERGU School of Mathematics and Statistics University College Dublin 3 Basic Facts About Circles A central angle is an angle whose vertex is at the center of the

More information

Infinitely Many Quadratic Diophantine Equations Solvable Everywhere Locally, But Not Solvable Globally

Infinitely Many Quadratic Diophantine Equations Solvable Everywhere Locally, But Not Solvable Globally Infinitely Many Quadratic Diohantine Equations Solvable Everywhere Locally, But Not Solvable Globally R.A. Mollin Abstract We resent an infinite class of integers 2c, which turn out to be Richaud-Degert

More information

Lecture 7: Karnaugh Map, Don t Cares

Lecture 7: Karnaugh Map, Don t Cares EE210: Switching Systems Lecture 7: Karnaugh Map, Don t Cares Prof. YingLi Tian Feb. 28, 2019 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) 1

More information

On Character Sums of Binary Quadratic Forms 1 2. Mei-Chu Chang 3. Abstract. We establish character sum bounds of the form.

On Character Sums of Binary Quadratic Forms 1 2. Mei-Chu Chang 3. Abstract. We establish character sum bounds of the form. On Character Sums of Binary Quadratic Forms 2 Mei-Chu Chang 3 Abstract. We establish character sum bounds of the form χ(x 2 + ky 2 ) < τ H 2, a x a+h b y b+h where χ is a nontrivial character (mod ), 4

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Alied Mathematics htt://jiam.vu.edu.au/ Volume 3, Issue 5, Article 8, 22 REVERSE CONVOLUTION INEQUALITIES AND APPLICATIONS TO INVERSE HEAT SOURCE PROBLEMS SABUROU SAITOH,

More information

UNC Charlotte 2005 Comprehensive March 7, 2005

UNC Charlotte 2005 Comprehensive March 7, 2005 March 7, 2005 1 The numbers x and y satisfy 2 x = 15 and 15 y = 32 What is the value xy? (A) 3 (B) 4 (C) 5 (D) 6 (E) none of A, B, C or D 2 Suppose x, y, z, and w are real numbers satisfying x/y = 4/7,

More information

SOME RESULT ON EXCIRCLE OF QUADRILATERAL

SOME RESULT ON EXCIRCLE OF QUADRILATERAL JP Journal of Mathematical Sciences Volume 14 Issues 1 & 015 Pages 41-56 015 Ishaan Publishing House This paper is available online at http://www.iphsci.com SOME ESULT ON EXILE OF QUDILTEL MSHDI SI GEMWTI

More information

THE CYCLIC QUADRANGLE IN THE ISOTROPIC PLANE

THE CYCLIC QUADRANGLE IN THE ISOTROPIC PLANE SARAJEVO JOURNAL OF MATHEMATICS Vol.7 (0) (011), 65 75 THE CYCLIC QUADRANGLE IN THE ISOTROPIC PLANE V. VOLENEC, J. BEBAN-BRKIĆ AND M. ŠIMIĆ Abstract. In [15], [] we focused on the geometry of the non-tangential

More information

MA3H1 TOPICS IN NUMBER THEORY PART III

MA3H1 TOPICS IN NUMBER THEORY PART III MA3H1 TOPICS IN NUMBER THEORY PART III SAMIR SIKSEK 1. Congruences Modulo m In quadratic recirocity we studied congruences of the form x 2 a (mod ). We now turn our attention to situations where is relaced

More information

Introduction to Banach Spaces

Introduction to Banach Spaces CHAPTER 8 Introduction to Banach Saces 1. Uniform and Absolute Convergence As a rearation we begin by reviewing some familiar roerties of Cauchy sequences and uniform limits in the setting of metric saces.

More information

A New Consequence of Van Aubel s Theorem

A New Consequence of Van Aubel s Theorem Article A New Consequence of Van Aubel s Theorem Dasari Naga Vijay Krishna Department of Mathematics, Narayana Educational Instutions, Machilipatnam, Bengalore, India; vijay9290009015@gmail.com Abstract:

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Hanoi Open Mathematical Competition 2017

Hanoi Open Mathematical Competition 2017 Hanoi Open Mathematical Competition 2017 Junior Section Saturday, 4 March 2017 08h30-11h30 Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

NAME: Mathematics 133, Fall 2013, Examination 3

NAME: Mathematics 133, Fall 2013, Examination 3 NAME: Mathematics 133, Fall 2013, Examination 3 INSTRUCTIONS: Work all questions, and unless indicated otherwise give reasons for your answers. If the problem does not explicitly state that the underlying

More information

Why Proofs? Proof Techniques. Theorems. Other True Things. Proper Proof Technique. How To Construct A Proof. By Chuck Cusack

Why Proofs? Proof Techniques. Theorems. Other True Things. Proper Proof Technique. How To Construct A Proof. By Chuck Cusack Proof Techniques By Chuck Cusack Why Proofs? Writing roofs is not most student s favorite activity. To make matters worse, most students do not understand why it is imortant to rove things. Here are just

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

KIRCHHOFF TYPE PROBLEMS INVOLVING P -BIHARMONIC OPERATORS AND CRITICAL EXPONENTS

KIRCHHOFF TYPE PROBLEMS INVOLVING P -BIHARMONIC OPERATORS AND CRITICAL EXPONENTS Journal of Alied Analysis and Comutation Volume 7, Number 2, May 2017, 659 669 Website:htt://jaac-online.com/ DOI:10.11948/2017041 KIRCHHOFF TYPE PROBLEMS INVOLVING P -BIHARMONIC OPERATORS AND CRITICAL

More information

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths Topic 2 [312 marks] 1 The rectangle ABCD is inscribed in a circle Sides [AD] and [AB] have lengths [12 marks] 3 cm and (\9\) cm respectively E is a point on side [AB] such that AE is 3 cm Side [DE] is

More information

87 Another big lus for the Majorization Inequality is that we can obtain both uer and lower bounds subject to other kinds of constraints. Here are two

87 Another big lus for the Majorization Inequality is that we can obtain both uer and lower bounds subject to other kinds of constraints. Here are two 86 On a \Problem of the Month" Murray S. Klamkin In the roblem of the month [1999 : 106], one was to rove that a + b ; c + b + c ; a + c + a ; b a + b + c, where a, b, c are sides of a triangle. It is

More information

9 th CBSE Mega Test - II

9 th CBSE Mega Test - II 9 th CBSE Mega Test - II Time: 3 hours Max. Marks: 90 General Instructions All questions are compulsory. The question paper consists of 34 questions divided into four sections A, B, C and D. Section A

More information

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001 The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001 The Hasse-Minkowski Theorem rovides a characterization of the rational quadratic forms. What follows is a roof of the Hasse-Minkowski

More information

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN Int. J. Number Theory 004, no., 79-85. CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 00, P.R. China zhihongsun@yahoo.com

More information

arxiv: v5 [math.nt] 22 Aug 2013

arxiv: v5 [math.nt] 22 Aug 2013 Prerint, arxiv:1308900 ON SOME DETERMINANTS WITH LEGENDRE SYMBOL ENTRIES arxiv:1308900v5 [mathnt] Aug 013 Zhi-Wei Sun Deartment of Mathematics, Nanjing University Nanjing 10093, Peole s Reublic of China

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE III Wednesday, August 6, 000 8:0 to :0 a.m., only Notice... Scientific calculators

More information

Real Analysis 1 Fall Homework 3. a n.

Real Analysis 1 Fall Homework 3. a n. eal Analysis Fall 06 Homework 3. Let and consider the measure sace N, P, µ, where µ is counting measure. That is, if N, then µ equals the number of elements in if is finite; µ = otherwise. One usually

More information

Year 12 into 13 Maths Bridging Tasks

Year 12 into 13 Maths Bridging Tasks Year 1 into 13 Maths Bridging Tasks Topics covered: Surds Indices Curve sketching Linear equations Quadratics o Factorising o Completing the square Differentiation Factor theorem Circle equations Trigonometry

More information

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2 CIRCLE [STRAIGHT OBJECTIVE TYPE] Q. The line x y + = 0 is tangent to the circle at the point (, 5) and the centre of the circles lies on x y = 4. The radius of the circle is (A) 3 5 (B) 5 3 (C) 5 (D) 5

More information

Global Behavior of a Higher Order Rational Difference Equation

Global Behavior of a Higher Order Rational Difference Equation International Journal of Difference Euations ISSN 0973-6069, Volume 10, Number 1,. 1 11 (2015) htt://camus.mst.edu/ijde Global Behavior of a Higher Order Rational Difference Euation Raafat Abo-Zeid The

More information

Maharashtra State Board Class X Mathematics Geometry Board Paper 2015 Solution. Time: 2 hours Total Marks: 40

Maharashtra State Board Class X Mathematics Geometry Board Paper 2015 Solution. Time: 2 hours Total Marks: 40 Maharashtra State Board Class X Mathematics Geometry Board Paper 05 Solution Time: hours Total Marks: 40 Note:- () Solve all questions. Draw diagrams wherever necessary. ()Use of calculator is not allowed.

More information

Express g(x) in the form f(x) + ln a, where a (4)

Express g(x) in the form f(x) + ln a, where a (4) SL 2 SUMMER PACKET PRINT OUT ENTIRE PACKET, SHOW YOUR WORK FOR ALL EXERCISES ON SEPARATE PAPER. MAKE SURE THAT YOUR WORK IS NEAT AND ORGANIZED. WORK SHOULD BE COMPLETE AND READY TO TURN IN THE FIRST DAY

More information

NOTES ON RAMANUJAN'S SINGULAR MODULI. Bruce C. Berndt and Heng Huat Chan. 1. Introduction

NOTES ON RAMANUJAN'S SINGULAR MODULI. Bruce C. Berndt and Heng Huat Chan. 1. Introduction NOTES ON RAMANUJAN'S SINGULAR MODULI Bruce C. Berndt Heng Huat Chan 1. Introduction Singular moduli arise in the calculation of class invariants, so we rst dene the class invariants of Ramanujan Weber.

More information

New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function - a review

New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function - a review University of Wollongong Research Online Faculty of Informatics - Paers (Archive) Faculty of Engineering and Information Sciences 1999 New weighing matrices and orthogonal designs constructed using two

More information

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use

COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE. To find the length of a line segment joining two points A(x 1, y 1 ) and B(x 2, y 2 ), use COORDINATE GEOMETRY BASIC CONCEPTS AND FORMULAE I. Length of a Line Segment: The distance between two points A ( x1, 1 ) B ( x, ) is given b A B = ( x x1) ( 1) To find the length of a line segment joining

More information

Some Collinearities in the Heptagonal Triangle

Some Collinearities in the Heptagonal Triangle Forum Geometricorum Volume 16 (2016) 249 256. FRUM GEM ISSN 1534-1178 Some ollinearities in the Heptagonal Triangle bdilkadir ltintaş bstract. With the methods of barycentric coordinates, we establish

More information

Isogonal Conjugates in a Tetrahedron

Isogonal Conjugates in a Tetrahedron Forum Geometricorum Volume 16 (2016) 43 50. FORUM GEOM ISSN 1534-1178 Isogonal Conjugates in a Tetrahedron Jawad Sadek, Majid Bani-Yaghoub, and Noah H. Rhee Abstract. The symmedian point of a tetrahedron

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018.

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018. New Zealand Mathematical Olympiad Committee Camp Selection Problems 2018 Solutions Due: 28th September 2018 1. Suppose that a, b, c and d are four different integers. Explain why must be a multiple of

More information

Harmonic quadrangle in isotropic plane

Harmonic quadrangle in isotropic plane Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (018) 4: 666 678 c TÜBİTAK doi:10.3906/mat-1607-35 Harmonic quadrangle in isotropic plane Ema JURKIN

More information

Existence of solutions to a superlinear p-laplacian equation

Existence of solutions to a superlinear p-laplacian equation Electronic Journal of Differential Equations, Vol. 2001(2001), No. 66,. 1 6. ISSN: 1072-6691. URL: htt://ejde.math.swt.edu or htt://ejde.math.unt.edu ft ejde.math.swt.edu (login: ft) Existence of solutions

More information

81-E 2. Ans. : 2. Universal set U = { 2, 3, 5, 6, 10 }, subset A = { 5, 6 }. The diagram which represents A / is. Ans. : ( SPACE FOR ROUGH WORK )

81-E 2. Ans. : 2. Universal set U = { 2, 3, 5, 6, 10 }, subset A = { 5, 6 }. The diagram which represents A / is. Ans. : ( SPACE FOR ROUGH WORK ) 81-E 2 General Instructions : i) The question-cum-answer booklet contains two Parts, Part A & Part B. ii) iii) iv) Part A consists of 60 questions and Part B consists of 16 questions. Space has been provided

More information

7. The olynomial P (x) =x, 9x 4 +9x, 4x +4x, 4 can be written in the form P (x) =(x, ) n Q(x), where n is a ositive integer and Q(x) is not divisible

7. The olynomial P (x) =x, 9x 4 +9x, 4x +4x, 4 can be written in the form P (x) =(x, ) n Q(x), where n is a ositive integer and Q(x) is not divisible . Which of the following intervals contains all of the real zeros of the function g(t) =t, t + t? (a) (,; ) (b) ( ; ) (c) (,; ) (d) (; ) (e) (,; ) 4 4. The exression ((a), + b), is equivalent to which

More information

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice questions, stick only the letters (A, B, C, D or E) of your choice. No calculator is allowed.

More information

A SYNTHETIC PROOF OF A. MYAKISHEV S GENERALIZATION OF VAN LAMOEN CIRCLE THEOREM AND AN APPLICATION

A SYNTHETIC PROOF OF A. MYAKISHEV S GENERALIZATION OF VAN LAMOEN CIRCLE THEOREM AND AN APPLICATION INTERNATIONAL JOURNAL OF GEOMETRY Vol. 3 (2014) No. 2 74-80 A SYNTHETIC PROOF OF A. MYAKISHEV S GENERALIZATION OF VAN LAMOEN CIRCLE THEOREM AND AN APPLICATION OAI THANH DAO Abstract. In this article we

More information

On the Chvatál-Complexity of Knapsack Problems

On the Chvatál-Complexity of Knapsack Problems R u t c o r Research R e o r t On the Chvatál-Comlexity of Knasack Problems Gergely Kovács a Béla Vizvári b RRR 5-08, October 008 RUTCOR Rutgers Center for Oerations Research Rutgers University 640 Bartholomew

More information

Express g(x) in the form f(x) + ln a, where a (4)

Express g(x) in the form f(x) + ln a, where a (4) SL 2 SUMMER PACKET 2013 PRINT OUT ENTIRE PACKET, SHOW YOUR WORK FOR ALL EXERCISES ON SEPARATE PAPER. MAKE SURE THAT YOUR WORK IS NEAT AND ORGANIZED. WORK SHOULD BE COMPLETE AND READY TO TURN IN THE FIRST

More information

Some Basic Logic. Henry Liu, 25 October 2010

Some Basic Logic. Henry Liu, 25 October 2010 Some Basic Logic Henry Liu, 25 October 2010 In the solution to almost every olympiad style mathematical problem, a very important part is existence of accurate proofs. Therefore, the student should be

More information

1 Hanoi Open Mathematical Competition 2017

1 Hanoi Open Mathematical Competition 2017 1 Hanoi Open Mathematical Competition 017 1.1 Junior Section Question 1. Suppose x 1, x, x 3 are the roots of polynomial P (x) = x 3 6x + 5x + 1. The sum x 1 + x + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E):

More information

Preliminary Round Question Booklet

Preliminary Round Question Booklet First Annual Pi Day Mathematics Cometition Question Booklet 016 goes on and on, and e is just as cursed. Iwonder,howdoes begin When its digits are reversed? -MartinGardner Pi Day Mathematics Cometition

More information

HIGH SCHOOL - PROBLEMS

HIGH SCHOOL - PROBLEMS PURPLE COMET! MATH MEET April 2017 HIGH SCHOOL - PROBLEMS Copyright c Titu Andreescu and Jonathan Kane Problem 1 Paul starts at 1 and counts by threes: 1, 4, 7, 10,.... At the same time and at the same

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February 4th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) 4 (e) 48 Problem. Suppose the function g(x) = f(x)

More information

Lines, parabolas, distances and inequalities an enrichment class

Lines, parabolas, distances and inequalities an enrichment class Lines, parabolas, distances and inequalities an enrichment class Finbarr Holland 1. Lines in the plane A line is a particular kind of subset of the plane R 2 = R R, and can be described as the set of ordered

More information

A NEW PROOF OF PTOLEMY S THEOREM

A NEW PROOF OF PTOLEMY S THEOREM A NEW PROOF OF PTOLEMY S THEOREM DASARI NAGA VIJAY KRISHNA Abstract In this article we give a new proof of well-known Ptolemy s Theorem of a Cyclic Quadrilaterals 1 Introduction In the Euclidean geometry,

More information

#A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS

#A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS #A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS Norbert Hegyvári ELTE TTK, Eötvös University, Institute of Mathematics, Budaest, Hungary hegyvari@elte.hu François Hennecart Université

More information

Mathematics SL. Mock Exam 2014 PAPER 2. Instructions: The use of graphing calculator is allowed.

Mathematics SL. Mock Exam 2014 PAPER 2. Instructions: The use of graphing calculator is allowed. Mock Exam 2014 Mathematics SL PAPER 2 Instructions: The use of graphing calculator is allowed Show working when possible (even when using a graphing calculator) Give your answers in exact form or round

More information

On the statistical and σ-cores

On the statistical and σ-cores STUDIA MATHEMATICA 154 (1) (2003) On the statistical and σ-cores by Hüsamett in Çoşun (Malatya), Celal Çaan (Malatya) and Mursaleen (Aligarh) Abstract. In [11] and [7], the concets of σ-core and statistical

More information

Math 5 Trigonometry Fair Game for Chapter 1 Test Show all work for credit. Write all responses on separate paper.

Math 5 Trigonometry Fair Game for Chapter 1 Test Show all work for credit. Write all responses on separate paper. Math 5 Trigonometry Fair Game for Chapter 1 Test Show all work for credit. Write all responses on separate paper. 12. What angle has the same measure as its complement? How do you know? 12. What is the

More information

IMO Training Camp Mock Olympiad #2

IMO Training Camp Mock Olympiad #2 IMO Training Camp Mock Olympiad #2 July 3, 2008 1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M. Let X be a variable point on the shorter arc MA of the circumcircle

More information

An Estimate For Heilbronn s Exponential Sum

An Estimate For Heilbronn s Exponential Sum An Estimate For Heilbronn s Exonential Sum D.R. Heath-Brown Magdalen College, Oxford For Heini Halberstam, on his retirement Let be a rime, and set e(x) = ex(2πix). Heilbronn s exonential sum is defined

More information

Pythagorean triples and sums of squares

Pythagorean triples and sums of squares Pythagorean triles and sums of squares Robin Chaman 16 January 2004 1 Pythagorean triles A Pythagorean trile (x, y, z) is a trile of ositive integers satisfying z 2 + y 2 = z 2. If g = gcd(x, y, z) then

More information

SOLUTION. Taken together, the preceding equations imply that ABC DEF by the SSS criterion for triangle congruence.

SOLUTION. Taken together, the preceding equations imply that ABC DEF by the SSS criterion for triangle congruence. 1. [20 points] Suppose that we have ABC and DEF in the Euclidean plane and points G and H on (BC) and (EF) respectively such that ABG DEH and AGC DHF. Prove that ABC DEF. The first congruence assumption

More information

f(r) = a d n) d + + a0 = 0

f(r) = a d n) d + + a0 = 0 Math 400-00/Foundations of Algebra/Fall 07 Polynomials at the Foundations: Roots Next, we turn to the notion of a root of a olynomial in Q[x]. Definition 8.. r Q is a rational root of fx) Q[x] if fr) 0.

More information

NOTE ON HADWIGER FINSLER S INEQUALITIES. 1. Introduction

NOTE ON HADWIGER FINSLER S INEQUALITIES. 1. Introduction Journal of Mathematical Inequalities Volume 6, Number 1 (01), 57 64 NOTE ON HADWIGER FINSLER S INEQUALITIES D.Ş. MARINESCU, M.MONEA, M.OPINCARIU AND M. STROE (Communicated by S. Segura Gomis) Abstract.

More information

NOTES. Hyperplane Sections of the n-dimensional Cube

NOTES. Hyperplane Sections of the n-dimensional Cube NOTES Edited by Sergei Tabachnikov Hyerlane Sections of the n-dimensional Cube Rolfdieter Frank and Harald Riede Abstract. We deduce an elementary formula for the volume of arbitrary hyerlane sections

More information

Individual Round CHMMC November 20, 2016

Individual Round CHMMC November 20, 2016 Individual Round CHMMC 20 November 20, 20 Problem. We say that d k d k d d 0 represents the number n in base 2 if each d i is either 0 or, and n d k ( 2) k + d k ( 2) k + + d ( 2) + d 0. For example, 0

More information

SOME TRACE INEQUALITIES FOR OPERATORS IN HILBERT SPACES

SOME TRACE INEQUALITIES FOR OPERATORS IN HILBERT SPACES Kragujevac Journal of Mathematics Volume 411) 017), Pages 33 55. SOME TRACE INEQUALITIES FOR OPERATORS IN HILBERT SPACES SILVESTRU SEVER DRAGOMIR 1, Abstract. Some new trace ineualities for oerators in

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5 Department of Mathematics, University of Wisconsin-Madison Math 11 Worksheet Sections 3.1, 3.3, and 3.5 1. For f(x) = 5x + (a) Determine the slope and the y-intercept. f(x) = 5x + is of the form y = mx

More information

Concurrency and Collinearity

Concurrency and Collinearity Concurrency and Collinearity Victoria Krakovna vkrakovna@gmail.com 1 Elementary Tools Here are some tips for concurrency and collinearity questions: 1. You can often restate a concurrency question as a

More information