A NEW PROOF OF PTOLEMY S THEOREM

Size: px
Start display at page:

Download "A NEW PROOF OF PTOLEMY S THEOREM"

Transcription

1 A NEW PROOF OF PTOLEMY S THEOREM DASARI NAGA VIJAY KRISHNA Abstract In this article we give a new proof of well-known Ptolemy s Theorem of a Cyclic Quadrilaterals 1 Introduction In the Euclidean geometry, Ptolemy s Theorem is a relation between the four sides two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle) The Theorem is named after the Greek astronomer mathematician Ptolemy (Claudius Ptolemaeus) Ptolemy used the Theorem as an aid in creating his table of chords, a trigonometric table that he applied to astronomy If the cyclic quadrilateral is given with its four vertices A, B, C, D in order, then the Theorem states that BD AB CD + BC AD This relation may be verbally expressed as follows: If a quadrilateral is inscribed in a circle then the product of the measures of its diagonals is equal to the sum of the products of the measures of the pairs of opposite sides Moreover, the converse of the Ptolemy s Theorem is also true: If the sum of the products of two pairs of opposite sides of a quadrilateral is equal to the product of its diagonals, then the quadrilateral can be inscribed in a circle In this short paper we deal with the new proof for this celebrated Theorem Unfortunately or fortunately what ever the proofs are available in the literature (some of them can be found in [5], [1], [3] [6]) are just based on constructing some particular lines applying similarity using little angle chasing between the triangles thus formed But in our present proof which is quite different from the available proofs, we won t construct any line In fact we will just try to prove above mentioned result by using the simple consequence of Theorem obtained by the Stewart Theorem on the diagonals of convex quadrilateral Our proof actually follows immediately from Equation (6) of Theorem In the end of the article we will also prove two characterizations of a Bicentric Quadrilateral Main Theorems Theorem 1 Let P be the point of intersection of diagonals BD of a convex quadrilateral ABCD M is an arbitrary point in the plane then (1) CP AM DP BD BM + AP CM BP BD DM AP P C BP P D, 1

2 DASARI NAGA VIJAY KRISHNA () Area(BCD) AM Area(D) BM + Area(ABD) CM Area(ABC) DM Area(ABC) (AP P C BP DP ) A M B P D C Fig 1 Proof Since P M is a cevian for triangles AMC BMD by Stewart s Theorem we have P M CP AM + AP CM AP P C P M DP BD BM + BP BD DM BP P D By setting the right sides of these two equations equal to each other, we obtain (1) Using the property that a cevian divides a triangle into two triangles whose ratio between areas is equal to the ratio between corresponding bases we have AP Area(AP D) Area(AP B) Area(AP D) + Area(AP B) Area(D) Area(B) Area(D) + Area(B) Area(ABD) Area(ABCD) In the same manner, CP Area(CBD) Area(ABCD), BP BD By replacing these ratios in (1), we get () Area(B) Area(ABCD), DP BD Area(D) Area(ABCD) Theorem Let P be the point of intersection of diagonals BD of a cyclic quadrilateral ABCD M is an arbitrary point in the plane then (3) AP P C BP P D, (4) CP AM + AP CM DP BD BM + BP BD DM, (5) Area(BCD) AM +Area(ABD) CM Area(D) BM +Area(ABC) DM, (6) BD BC CD AM + AB AD CM AD CD BM + AB BC DM

3 A NEW PROOF OF PTOLEMY S THEOREM 3 A B P D Proof From (1), for any point M we have Fig C AP P C BP P D CP AM DP BD BM + AP CM BP BD DM Let O be the circumcenter of the quadrilateral ABCD Taking M as O, we have AO BO CO DO R AP P C BP P D CP AO DP BD BO + AP CO BP BD DO ( ) AP + CP R BP + DP 0 BD Combining (3) with (1) () we get (4) (5) Now for (6), we will follow the well known fact that area of a triangle whose sides are a, b c circumradius R equals abc We have Area(BCD) AM + Area(ABD) CM Area(D) BM + Area(ABC) DM, then (7) BC BD CD AM AB BD AD + CM AD CD BM + AB BC DM, BD (BC CD AM + AB AD CM ) (AD CD BM + AB BC DM ) 3 Main Results 31 Ptolemy s Theorems In this section we present a new proof of the famous Ptolemy s Theorem Theorem 31 (Ptolemy s Theorem) For any cyclic quadrilateral ABCD with diagonals BD holds BD AB CD + BC AD

4 4 DASARI NAGA VIJAY KRISHNA Proof From Equation (6) we have BD BC CD AM + AB AD CM AD CD BM + AB BC DM Since it is true for any point M, let us take M as A So BD BC CD AA + AB AD CA AD CD BA + AB BC DA AB CD + AD BC, BD AB CD + BC AD Now we prove Ptolemy s Second Theorem Theorem 3 (Ptolemy s Second Theorem) For any cyclic quadrilateral ABCD with diagonals BD holds BC CD + AB AD BD AD CD + AB BC Proof From Equation (6) we have BD BC CD AM + AB AD CM AD CD BM + AB BC DM Let O be the circumcenter of the quadrilateral ABCD R AO BO CO DO Taking M as O we have BD BC CD R + AB AD R AD CD R + AB BC R, BC CD + AB AD BD AD CD + AB BC 3 Characterizations of bicentric quadrilaterals Now we present the proof of two Theorems about bicentric quadrilaterals Let us recall here the definition (for more details see for example [7]) Definition A bicentric quadrilateral is a convex quadrilateral that has both an incircle a circumcircle Theorem 33 Let ABCD be any bicentric quadrilateral with diagonals BD If I is incenter of ABCD then AI CI BI DI BC CD + AB AD BD AD CD + AB BC Proof Since ABCD is a cyclic quadrilateral, hence by Ptolemy s Second Theorem we have BC CD + AB AD (8) BD AD CD + AB BC Also from the equation (6) we have BD BC CD AM + AB AD CM AD CD BM + AB BC DM

5 A NEW PROOF OF PTOLEMY S THEOREM 5 Taking M as I we have (9) BD BC CD AI + AB AD CI AD CD BI + AB BC DI Using triangle s area formula, we obtain ( A Area(AIB) r AB AI BI sin + B ), where r is the inradius of the quadrilateral ABCD In the same manner, ( B Area(BIC) r BC BI CI sin + C ), ( C Area(CID) r CD CI DI sin + D ), ( D Area(DIA) r AD DI AI sin + A Since ABCD is a cyclic quadrilateral, we have ( A sin + B ) ( C sin + D ) ( B sin + C ) ( D sin + A ) Then AI BI CI DI AB CD, BI CI AI DI BC AD Dividing these two equation on each other, we obtain ( ) AI AB AD CI CB CD, ( ) BI BA BC DI DA DC Now using Equations (8) (9), we notice that So BD BC CD AI + AB AD CI BC CD + AB AD AD CD BI + AB BC DI AD CD + AB BC By multiplying these, we get AD CI BD BC DI, BC AI BD AD DI AI CI BI DI BD )

6 6 DASARI NAGA VIJAY KRISHNA Hence it follows the required result Theorem 34 Let ABCD be any bicentric quadrilateral with diagonals BD If t a, t b, t c, t d be the lengths of the tangents to its incircle from the vertices A, B, C, D respectively then BD t a + t c t b + t d Proof From Equation (6) we have BD BC CD AM + AB AD CM AD CD BM + AB BC DM Let I be the incenter of quadrilateral ABCD r be its inradius Taking M as I, we have (10) BD BC CD AI + AB AD CI AD CD BI + AB BC DI Since AI sin( r A ), BI sin( r B ), CI DI r r sin( C ) sin( D ) r t at b t c + t b t c t d + +t c t d t a + t d t a t b t a + t b + t c + t d By replacing AI, BI, CI, DI with their equivalent expressions in terms of t a, t b, t c, t d (can be found in [], [4] ), AB t a + t b, BC t b + t c, CD t c + t d DA t d + t a in (10) by some computation, the required result follows In order to prove the same result in other way, we deal with the following proof Another proof Let m : cot ( ) ( A n : cot B ) Observe that t a r m t b r n We have ( ) ( ) t c C A r cot tan 1 m, hence t c r m similarly t d r n So (11) BC CD AI (t a + t b ) (t c + t d ) ( r + t a) ( r4 (1 + mn) (m + n) m + 1 ) AB AD CI mn m ( AD CD BI r4 (1 + mn) (m + n) n + 1 ) AB BC DI mn n Now we have ( ) m + 1 BD ( m) n + 1 t a + t c t n b + t d Hence the result is alternatively proved 4 Acknowledgement support In completing this article, the author highly appreciates the referee s contribution for his valuable comments suggestions

7 REFERENCES 7 References [1] G I S Amarasinghe A concise elementary proof for the ptolemy s theorem Global Journal of Advanced Research on Classical Modern Geometries, (1):0 5, 013 [] M Josefsson Calculations concerning the tangent lengths ad tangency chords of a tangential quadrilateral Forum Geometricorum, 10: , 010 [3] M Josefsson Characterizations of bicentric quadrilaterals Forum Geometricorum, 10: , 010 [4] S H Kung Proof without words: the law of cosines via ptolemy s theorem Mathematics Magazine, 199 [5] E J N Schaumberger A vector approach to ptolemy s theorem Mathematics Magazin, 77(5):1, 004 [6] O Shisha On ptolemy s theorem International Journal of Mathematics Mathematical Sciences, 14():410, 1991 [7] Wikipedia Bicentric quadrilateral url: https : / / en wikipedia org / wiki / Bicentric_quadrilateral Department of Mathematics, Narayana Educational Institutions, Machilipatnam, Bangalore, India address: vijay @gmailcom

PTOLEMY S THEOREM A New Proof

PTOLEMY S THEOREM A New Proof PTOLEMY S THEOREM A New Proof Dasari Naga Vijay Krishna Abstract: In this article we present a new proof of Ptolemy s theorem using a metric relation of circumcenter in a different approach.. Keywords:

More information

A New Consequence of Van Aubel s Theorem

A New Consequence of Van Aubel s Theorem Article A New Consequence of Van Aubel s Theorem Dasari Naga Vijay Krishna Department of Mathematics, Narayana Educational Instutions, Machilipatnam, Bengalore, India; vijay9290009015@gmail.com Abstract:

More information

arxiv: v1 [math.ho] 29 Nov 2017

arxiv: v1 [math.ho] 29 Nov 2017 The Two Incenters of the Arbitrary Convex Quadrilateral Nikolaos Dergiades and Dimitris M. Christodoulou ABSTRACT arxiv:1712.02207v1 [math.ho] 29 Nov 2017 For an arbitrary convex quadrilateral ABCD with

More information

RMT 2013 Geometry Test Solutions February 2, = 51.

RMT 2013 Geometry Test Solutions February 2, = 51. RMT 0 Geometry Test Solutions February, 0. Answer: 5 Solution: Let m A = x and m B = y. Note that we have two pairs of isosceles triangles, so m A = m ACD and m B = m BCD. Since m ACD + m BCD = m ACB,

More information

Classical Theorems in Plane Geometry 1

Classical Theorems in Plane Geometry 1 BERKELEY MATH CIRCLE 1999 2000 Classical Theorems in Plane Geometry 1 Zvezdelina Stankova-Frenkel UC Berkeley and Mills College Note: All objects in this handout are planar - i.e. they lie in the usual

More information

Collinearity/Concurrence

Collinearity/Concurrence Collinearity/Concurrence Ray Li (rayyli@stanford.edu) June 29, 2017 1 Introduction/Facts you should know 1. (Cevian Triangle) Let ABC be a triangle and P be a point. Let lines AP, BP, CP meet lines BC,

More information

Berkeley Math Circle, May

Berkeley Math Circle, May Berkeley Math Circle, May 1-7 2000 COMPLEX NUMBERS IN GEOMETRY ZVEZDELINA STANKOVA FRENKEL, MILLS COLLEGE 1. Let O be a point in the plane of ABC. Points A 1, B 1, C 1 are the images of A, B, C under symmetry

More information

2013 Sharygin Geometry Olympiad

2013 Sharygin Geometry Olympiad Sharygin Geometry Olympiad 2013 First Round 1 Let ABC be an isosceles triangle with AB = BC. Point E lies on the side AB, and ED is the perpendicular from E to BC. It is known that AE = DE. Find DAC. 2

More information

The New Proof of Ptolemy s Theorem & Nine Point Circle Theorem

The New Proof of Ptolemy s Theorem & Nine Point Circle Theorem Mathematics and Computer Science 016; 1(4): 93-100 http://www.sciencepublishinggroup.com/j/mcs doi: 10.11648/j.mcs.0160104.14 The New Proof of Ptolemy s Theorem & Nine Point Circle Theorem Dasari Naga

More information

Research & Reviews: Journal of Statistics and Mathematical Sciences

Research & Reviews: Journal of Statistics and Mathematical Sciences Research & Reviews: Journal of tatistics and Mathematical ciences A Note on the First Fermat-Torricelli Point Naga Vijay Krishna D* Department of Mathematics, Narayana Educational Institutions, Bangalore,

More information

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 1 Triangles: Basics This section will cover all the basic properties you need to know about triangles and the important points of a triangle.

More information

IMO Training Camp Mock Olympiad #2

IMO Training Camp Mock Olympiad #2 IMO Training Camp Mock Olympiad #2 July 3, 2008 1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M. Let X be a variable point on the shorter arc MA of the circumcircle

More information

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division CONTEST NUMBER 1

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division CONTEST NUMBER 1 Senior A Division CONTEST NUMBER 1 PART I FALL 2011 CONTEST 1 TIME: 10 MINUTES F11A1 Larry selects a 13-digit number while David selects a 10-digit number. Let be the number of digits in the product of

More information

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016) OPEN Ann. Univ. Paedagog. Crac. Stud. Math. 15 (2016), 51-68 DOI: 10.1515/aupcsm-2016-0005 FOLIA 182 Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016) Naga Vijay Krishna Dasari,

More information

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

INVERSION IN THE PLANE BERKELEY MATH CIRCLE INVERSION IN THE PLANE BERKELEY MATH CIRCLE ZVEZDELINA STANKOVA MILLS COLLEGE/UC BERKELEY SEPTEMBER 26TH 2004 Contents 1. Definition of Inversion in the Plane 1 Properties of Inversion 2 Problems 2 2.

More information

Concurrency and Collinearity

Concurrency and Collinearity Concurrency and Collinearity Victoria Krakovna vkrakovna@gmail.com 1 Elementary Tools Here are some tips for concurrency and collinearity questions: 1. You can often restate a concurrency question as a

More information

Vectors - Applications to Problem Solving

Vectors - Applications to Problem Solving BERKELEY MATH CIRCLE 00-003 Vectors - Applications to Problem Solving Zvezdelina Stankova Mills College& UC Berkeley 1. Well-known Facts (1) Let A 1 and B 1 be the midpoints of the sides BC and AC of ABC.

More information

About the Japanese theorem

About the Japanese theorem 188/ ABOUT THE JAPANESE THEOREM About the Japanese theorem Nicuşor Minculete, Cătălin Barbu and Gheorghe Szöllősy Dedicated to the memory of the great professor, Laurenţiu Panaitopol Abstract The aim of

More information

PROPERTIES OF TILTED KITES

PROPERTIES OF TILTED KITES INTERNATIONAL JOURNAL OF GEOMETRY Vol. 7 (018), No. 1, 87-104 PROPERTIES OF TILTED KITES MARTIN JOSEFSSON Abstract. We prove ve characterizations and derive several metric relations in convex quadrilaterals

More information

1998 IMO Shortlist BM BN BA BC AB BC CD DE EF BC CA AE EF FD

1998 IMO Shortlist BM BN BA BC AB BC CD DE EF BC CA AE EF FD IMO Shortlist 1998 Geometry 1 A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular bisectors of the sides AB and CD meet at a unique point P inside ABCD. the quadrilateral ABCD is

More information

CCE PR Revised & Un-Revised

CCE PR Revised & Un-Revised D CCE PR Revised & Un-Revised 560 00 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE 560 00 08 S.S.L.C. EXAMINATION, JUNE, 08 :. 06. 08 ] MODEL ANSWERS : 8-K Date :. 06. 08 ] CODE

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Quiz #1. Wednesday, 13 September. [10 minutes] 1. Suppose you are given a line (segment) AB. Using

More information

Figure 1: Problem 1 diagram. Figure 2: Problem 2 diagram

Figure 1: Problem 1 diagram. Figure 2: Problem 2 diagram Geometry A Solutions 1. Note that the solid formed is a generalized cylinder. It is clear from the diagram that the area of the base of this cylinder (i.e., a vertical cross-section of the log) is composed

More information

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40 Maharashtra Board Class X Mathematics - Geometry Board Paper 04 Solution Time: hours Total Marks: 40 Note: - () All questions are compulsory. () Use of calculator is not allowed.. i. Ratio of the areas

More information

SOME RESULTS OF CONSTRUCTING SEMI GERGONNE POINT ON A NONCONVEX QUADRILATERAL

SOME RESULTS OF CONSTRUCTING SEMI GERGONNE POINT ON A NONCONVEX QUADRILATERAL Bulletin of Mathematics ISSN Printed: 087-516; Online: 355-80 Vol. 08, No. 01 016, pp. 81 96. http://jurnal.bull-math.org SOME RESULTS OF CONSTRUCTING SEMI GERGONNE POINT ON A NONCONVEX QUADRILATERAL Zukrianto,

More information

Geometry Facts Circles & Cyclic Quadrilaterals

Geometry Facts Circles & Cyclic Quadrilaterals Geometry Facts Circles & Cyclic Quadrilaterals Circles, chords, secants and tangents combine to give us many relationships that are useful in solving problems. Power of a Point Theorem: The simplest of

More information

On the Feuerbach Triangle

On the Feuerbach Triangle Forum Geometricorum Volume 17 2017 289 300. FORUM GEOM ISSN 1534-1178 On the Feuerbach Triangle Dasari Naga Vijay Krishna bstract. We study the relations among the Feuerbach points of a triangle and the

More information

The Advantage Testing Foundation Olympiad Solutions

The Advantage Testing Foundation Olympiad Solutions The Advantage Testing Foundation 014 Olympiad Problem 1 Say that a convex quadrilateral is tasty if its two diagonals divide the quadrilateral into four nonoverlapping similar triangles. Find all tasty

More information

Power Round: Geometry Revisited

Power Round: Geometry Revisited Power Round: Geometry Revisited Stobaeus (one of Euclid s students): But what shall I get by learning these things? Euclid to his slave: Give him three pence, since he must make gain out of what he learns.

More information

Geometry in the Complex Plane

Geometry in the Complex Plane Geometry in the Complex Plane Hongyi Chen UNC Awards Banquet 016 All Geometry is Algebra Many geometry problems can be solved using a purely algebraic approach - by placing the geometric diagram on a coordinate

More information

Chapter 4. Feuerbach s Theorem

Chapter 4. Feuerbach s Theorem Chapter 4. Feuerbach s Theorem Let A be a point in the plane and k a positive number. Then in the previous chapter we proved that the inversion mapping with centre A and radius k is the mapping Inv : P\{A}

More information

Isogonal Conjugates. Navneel Singhal October 9, Abstract

Isogonal Conjugates. Navneel Singhal October 9, Abstract Isogonal Conjugates Navneel Singhal navneel.singhal@ymail.com October 9, 2016 Abstract This is a short note on isogonality, intended to exhibit the uses of isogonality in mathematical olympiads. Contents

More information

SMT 2018 Geometry Test Solutions February 17, 2018

SMT 2018 Geometry Test Solutions February 17, 2018 SMT 018 Geometry Test Solutions February 17, 018 1. Consider a semi-circle with diameter AB. Let points C and D be on diameter AB such that CD forms the base of a square inscribed in the semicircle. Given

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

Problems and Solutions

Problems and Solutions 46 th Canadian Mathematical Olympiad Wednesday, April 2, 204 Problems and Solutions. Let a, a 2,..., a n be positive real numbers whose product is. Show that the sum a a 2 + + a ( + a )( + a 2 ) + a 3

More information

SOME NEW THEOREMS IN PLANE GEOMETRY II

SOME NEW THEOREMS IN PLANE GEOMETRY II SOME NEW THEOREMS IN PLANE GEOMETRY II ALEXANDER SKUTIN 1. Introduction This work is an extension of [1]. In fact, I used the same ideas and sections as in [1], but introduced other examples of applications.

More information

First selection test. a n = 3n + n 2 1. b n = 2( n 2 + n + n 2 n),

First selection test. a n = 3n + n 2 1. b n = 2( n 2 + n + n 2 n), First selection test Problem. Find the positive real numbers a, b, c which satisfy the inequalities 4(ab + bc + ca) a 2 + b 2 + c 2 3(a 3 + b 3 + c 3 ). Laurenţiu Panaitopol Problem 2. Consider the numbers

More information

LLT Education Services

LLT Education Services 8. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle. (a) 4 cm (b) 3 cm (c) 6 cm (d) 5 cm 9. From a point P, 10 cm away from the

More information

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin Circle and Cyclic Quadrilaterals MARIUS GHERGU School of Mathematics and Statistics University College Dublin 3 Basic Facts About Circles A central angle is an angle whose vertex is at the center of the

More information

IMO Training Camp Mock Olympiad #2 Solutions

IMO Training Camp Mock Olympiad #2 Solutions IMO Training Camp Mock Olympiad #2 Solutions July 3, 2008 1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M. Let X be a variable point on the shorter arc MA of the

More information

Statics and the Moduli Space of Triangles

Statics and the Moduli Space of Triangles Forum Geometricorum Volume 5 (2005) 181 10. FORUM GEOM ISSN 1534-1178 Statics and the Moduli Space of Triangles Geoff C. Smith Abstract. The variance of a weighted collection of points is used to prove

More information

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in Chapter - 10 (Circle) Key Concept * Circle - circle is locus of such points which are at equidistant from a fixed point in a plane. * Concentric circle - Circle having same centre called concentric circle.

More information

Canadian Open Mathematics Challenge

Canadian Open Mathematics Challenge The Canadian Mathematical Society in collaboration with The CENTRE for EDUCATION in MATHEMATICS and COMPUTING presents the Canadian Open Mathematics Challenge Wednesday, November, 006 Supported by: Solutions

More information

Geometry - An Olympiad Approach

Geometry - An Olympiad Approach Geometry - An Olympiad Approach Manjil P. Saikia Department of Mathematical Sciences Tezpur University manjil@gonitsora.com April 19, 2013 UGC Sponsored Workshop for High School Students and Teachers Women

More information

2017 Harvard-MIT Mathematics Tournament

2017 Harvard-MIT Mathematics Tournament Team Round 1 Let P(x), Q(x) be nonconstant polynomials with real number coefficients. Prove that if P(y) = Q(y) for all real numbers y, then P(x) = Q(x) for all real numbers x. 2 Does there exist a two-variable

More information

The High School Section

The High School Section 1 Viète s Relations The Problems. 1. The equation 10/07/017 The High School Section Session 1 Solutions x 5 11x 4 + 4x 3 + 55x 4x + 175 = 0 has five distinct real roots x 1, x, x 3, x 4, x 5. Find: x 1

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

RMT 2014 Geometry Test Solutions February 15, 2014

RMT 2014 Geometry Test Solutions February 15, 2014 RMT 014 Geometry Test Solutions February 15, 014 1. The coordinates of three vertices of a parallelogram are A(1, 1), B(, 4), and C( 5, 1). Compute the area of the parallelogram. Answer: 18 Solution: Note

More information

SOLUTIONS EGMO AND UCD ENRICHMENT PROGRAMME IN MATHEMATICS SELECTION TEST 24 FEBRUARY 2018

SOLUTIONS EGMO AND UCD ENRICHMENT PROGRAMME IN MATHEMATICS SELECTION TEST 24 FEBRUARY 2018 SOLUTIONS EGMO AND UCD ENRICHMENT PROGRAMME IN MATHEMATICS SELECTION TEST FEBRUARY 08. In triangle ABC, P is a point on AB, Q is a point on AC and X is the point of intersection of the line segments PC

More information

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively.

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively. . Induction This class will demonstrate the fundamental problem solving technique of mathematical induction. Example Problem: Prove that for every positive integer n there exists an n-digit number divisible

More information

Inversion in the Plane. Part II: Radical Axes 1

Inversion in the Plane. Part II: Radical Axes 1 BERKELEY MATH CIRCLE, October 18 1998 Inversion in the Plane. Part II: Radical Axes 1 Zvezdelina Stankova-Frenkel, UC Berkeley Definition 2. The degree of point A with respect to a circle k(o, R) is defined

More information

Problems First day. 8 grade. Problems First day. 8 grade

Problems First day. 8 grade. Problems First day. 8 grade First day. 8 grade 8.1. Let ABCD be a cyclic quadrilateral with AB = = BC and AD = CD. ApointM lies on the minor arc CD of its circumcircle. The lines BM and CD meet at point P, thelinesam and BD meet

More information

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3*

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3* International Mathematical Olympiad Preliminary Selection Contest Hong Kong Outline of Solutions Answers: 06 0000 * 6 97 7 6 8 7007 9 6 0 6 8 77 66 7 7 0 6 7 7 6 8 9 8 0 0 8 *See the remar after the solution

More information

Two applications of the theorem of Carnot

Two applications of the theorem of Carnot Annales Mathematicae et Informaticae 40 (2012) pp. 135 144 http://ami.ektf.hu Two applications of the theorem of Carnot Zoltán Szilasi Institute of Mathematics, MTA-DE Research Group Equations, Functions

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Quiz #1. Tuesday, 17 January, 2012. [10 minutes] 1. Given a line segment AB, use (some of) Postulates I V,

More information

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2 CIRCLE [STRAIGHT OBJECTIVE TYPE] Q. The line x y + = 0 is tangent to the circle at the point (, 5) and the centre of the circles lies on x y = 4. The radius of the circle is (A) 3 5 (B) 5 3 (C) 5 (D) 5

More information

Using Complex Weighted Centroids to Create Homothetic Polygons. Harold Reiter. Department of Mathematics, University of North Carolina Charlotte,

Using Complex Weighted Centroids to Create Homothetic Polygons. Harold Reiter. Department of Mathematics, University of North Carolina Charlotte, Using Complex Weighted Centroids to Create Homothetic Polygons Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu Arthur Holshouser

More information

2003 AIME2 SOLUTIONS (Answer: 336)

2003 AIME2 SOLUTIONS (Answer: 336) 1 (Answer: 336) 2003 AIME2 SOLUTIONS 2 Call the three integers a, b, and c, and, without loss of generality, assume a b c Then abc = 6(a + b + c), and c = a + b Thus abc = 12c, and ab = 12, so (a, b, c)

More information

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIII GEOMETRIL OLYMPID IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to

More information

Two applications of the theorem of Carnot

Two applications of the theorem of Carnot Two applications of the theorem of Carnot Zoltán Szilasi Abstract Using the theorem of Carnot we give elementary proofs of two statements of C Bradley We prove his conjecture concerning the tangents to

More information

Domino Servite School

Domino Servite School Domino Servite School Accreditation Number 13SCH0100008 Registration Number 122581 Mathematics Paper II Grade 12 2017 Trial Examination Name: Time: 3 hours Total: 150 Examiner: H Pretorius Moderators:

More information

Harmonic quadrangle in isotropic plane

Harmonic quadrangle in isotropic plane Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (018) 4: 666 678 c TÜBİTAK doi:10.3906/mat-1607-35 Harmonic quadrangle in isotropic plane Ema JURKIN

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1) Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

International Mathematical Olympiad. Preliminary Selection Contest 2011 Hong Kong. Outline of Solutions

International Mathematical Olympiad. Preliminary Selection Contest 2011 Hong Kong. Outline of Solutions International Mathematical Olympiad Preliminary Selection Contest Hong Kong Outline of Solutions Answers:.. 76... 6. 7.. 6.. 6. 6.... 6. 7.. 76. 6. 7 Solutions:. Such fractions include. They can be grouped

More information

( 1 ) Find the co-ordinates of the focus, length of the latus-rectum and equation of the directrix of the parabola x 2 = - 8y.

( 1 ) Find the co-ordinates of the focus, length of the latus-rectum and equation of the directrix of the parabola x 2 = - 8y. PROBLEMS 04 - PARABOLA Page 1 ( 1 ) Find the co-ordinates of the focus, length of the latus-rectum and equation of the directrix of the parabola x - 8. [ Ans: ( 0, - ), 8, ] ( ) If the line 3x 4 k 0 is

More information

Isotomic Inscribed Triangles and Their Residuals

Isotomic Inscribed Triangles and Their Residuals Forum Geometricorum Volume 3 (2003) 125 134. FORUM GEOM ISSN 1534-1178 Isotomic Inscribed Triangles and Their Residuals Mario Dalcín bstract. We prove some interesting results on inscribed triangles which

More information

The Apollonius Circle as a Tucker Circle

The Apollonius Circle as a Tucker Circle Forum Geometricorum Volume 2 (2002) 175 182 FORUM GEOM ISSN 1534-1178 The Apollonius Circle as a Tucker Circle Darij Grinberg and Paul Yiu Abstract We give a simple construction of the circular hull of

More information

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 1 th Annual Johns Hopkins Math Tournament Saturay, February 19, 011 Geometry Subject Test 1. [105] Let D x,y enote the half-isk of raius 1 with its curve bounary externally tangent to the unit circle at

More information

45-th Moldova Mathematical Olympiad 2001

45-th Moldova Mathematical Olympiad 2001 45-th Moldova Mathematical Olympiad 200 Final Round Chişinǎu, March 2 Grade 7. Prove that y 3 2x+ x 3 2y x 2 + y 2 for any numbers x,y [, 2 3 ]. When does equality occur? 2. Let S(n) denote the sum of

More information

Solutions. cos ax + cos bx = 0. a sin ax + b sin bx = 0.

Solutions. cos ax + cos bx = 0. a sin ax + b sin bx = 0. Solutions 85. Find all pairs (a, b) of positive integers with a b for which the system cos ax + cos bx = 0 a sin ax + b sin bx = 0. Solution 1. Suppose that the system is solvable; note that x = 0 is not

More information

Euclidian Geometry Grade 10 to 12 (CAPS)

Euclidian Geometry Grade 10 to 12 (CAPS) Euclidian Geometry Grade 10 to 12 (CAPS) Compiled by Marlene Malan marlene.mcubed@gmail.com Prepared by Marlene Malan CAPS DOCUMENT (Paper 2) Grade 10 Grade 11 Grade 12 (a) Revise basic results established

More information

2007 Mathematical Olympiad Summer Program Tests

2007 Mathematical Olympiad Summer Program Tests 2007 Mathematical Olympiad Summer Program Tests Edited by Zuming Feng Mathematics Olympiad Summer Program 2007 Tests 1 Practice Test 1 1.1. In triangle ABC three distinct triangles are inscribed, similar

More information

Identities and inequalities in a quadrilateral

Identities and inequalities in a quadrilateral OCTOGON MATHEMATICAL MAGAZINE Vol. 17, No., October 009, pp 754-763 ISSN 1-5657, ISBN 978-973-8855-5-0, www.hetfalu.ro/octogon 754 Identities inequalities in a quadrilateral Ovidiu T. Pop 3 ABSTRACT. In

More information

VAISHALI EDUCATION POINT (QUALITY EDUCATION PROVIDER)

VAISHALI EDUCATION POINT (QUALITY EDUCATION PROVIDER) BY:Prof. RAHUL MISHRA Class :- X QNo. VAISHALI EDUCATION POINT (QUALITY EDUCATION PROVIDER) CIRCLES Subject :- Maths General Instructions Questions M:9999907099,9818932244 1 In the adjoining figures, PQ

More information

Practice Problems in Geometry

Practice Problems in Geometry Practice Problems in Geometry Navneel Singhal August 12, 2016 Abstract The problems here are not sorted in order of difficulty because sometimes after seeing the source of the problem, people get intimidated.

More information

36th United States of America Mathematical Olympiad

36th United States of America Mathematical Olympiad 36th United States of America Mathematical Olympiad 1. Let n be a positive integer. Define a sequence by setting a 1 = n and, for each k > 1, letting a k be the unique integer in the range 0 a k k 1 for

More information

The 3rd Olympiad of Metropolises

The 3rd Olympiad of Metropolises The 3rd Olympiad of Metropolises Day 1. Solutions Problem 1. Solve the system of equations in real numbers: (x 1)(y 1)(z 1) xyz 1, Answer: x 1, y 1, z 1. (x )(y )(z ) xyz. (Vladimir Bragin) Solution 1.

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

INMO-2001 Problems and Solutions

INMO-2001 Problems and Solutions INMO-2001 Problems and Solutions 1. Let ABC be a triangle in which no angle is 90. For any point P in the plane of the triangle, let A 1,B 1,C 1 denote the reflections of P in the sides BC,CA,AB respectively.

More information

Indicate whether the statement is true or false.

Indicate whether the statement is true or false. PRACTICE EXAM IV Sections 6.1, 6.2, 8.1 8.4 Indicate whether the statement is true or false. 1. For a circle, the constant ratio of the circumference C to length of diameter d is represented by the number.

More information

Plane geometry Circles: Problems with some Solutions

Plane geometry Circles: Problems with some Solutions The University of Western ustralia SHL F MTHMTIS & STTISTIS UW MY FR YUNG MTHMTIINS Plane geometry ircles: Problems with some Solutions 1. Prove that for any triangle, the perpendicular bisectors of the

More information

The Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality The Cauchy-Schwarz inequality Finbarr Holland, f.holland@ucc.ie April, 008 1 Introduction The inequality known as the Cauchy-Schwarz inequality, CS for short, is probably the most useful of all inequalities,

More information

STRAIGHT LINES EXERCISE - 3

STRAIGHT LINES EXERCISE - 3 STRAIGHT LINES EXERCISE - 3 Q. D C (3,4) E A(, ) Mid point of A, C is B 3 E, Point D rotation of point C(3, 4) by angle 90 o about E. 3 o 3 3 i4 cis90 i 5i 3 i i 5 i 5 D, point E mid point of B & D. So

More information

Solutions of APMO 2016

Solutions of APMO 2016 Solutions of APMO 016 Problem 1. We say that a triangle ABC is great if the following holds: for any point D on the side BC, if P and Q are the feet of the perpendiculars from D to the lines AB and AC,

More information

The Alberta High School Mathematics Competition Solution to Part I, 2014.

The Alberta High School Mathematics Competition Solution to Part I, 2014. The Alberta High School Mathematics Competition Solution to Part I, 2014. Question 1. When the repeating decimal 0.6 is divided by the repeating decimal 0.3, the quotient is (a) 0.2 (b) 2 (c) 0.5 (d) 0.5

More information

2003 AIME Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large as possible, find k + n.

2003 AIME Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large as possible, find k + n. 003 AIME 1 Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large 3! as possible, find k + n One hundred concentric circles with radii 1,, 3,, 100 are drawn in a plane The interior

More information

Inversion. Contents. 1 General Properties. 1 General Properties Problems Solutions... 3

Inversion. Contents. 1 General Properties. 1 General Properties Problems Solutions... 3 c 007 The Author(s) and The IMO Compendium Group Contents Inversion Dušan Djukić 1 General Properties................................... 1 Problems........................................ 3 Solutions........................................

More information

NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES

NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES LECTURE 37 Proofs in Indian Mathematics - Part K. Ramasubramanian IIT Bombay Outline Proofs in Indian Mathematics - Part Volume of

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems (1 Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

Trigonometry. Sin θ Cos θ Tan θ Cot θ Sec θ Cosec θ. Sin = = cos = = tan = = cosec = sec = 1. cot = sin. cos. tan

Trigonometry. Sin θ Cos θ Tan θ Cot θ Sec θ Cosec θ. Sin = = cos = = tan = = cosec = sec = 1. cot = sin. cos. tan Trigonometry Trigonometry is one of the most interesting chapters of Quantitative Aptitude section. Basically, it is a part of SSC and other bank exams syllabus. We will tell you the easy method to learn

More information

Elizabeth City State University Elizabeth City, North Carolina STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET

Elizabeth City State University Elizabeth City, North Carolina STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET Elizabeth City State University Elizabeth City, North Carolina 7909 011 STATE REGIONAL MATHEMATICS CONTEST COMPREHENSIVE TEST BOOKLET Directions: Each problem in this test is followed by five suggested

More information

Solutions to the February problems.

Solutions to the February problems. Solutions to the February problems. 348. (b) Suppose that f(x) is a real-valued function defined for real values of x. Suppose that both f(x) 3x and f(x) x 3 are increasing functions. Must f(x) x x also

More information

Special Mathematics Notes

Special Mathematics Notes Special Mathematics Notes Tetbook: Classroom Mathematics Stds 9 & 10 CHAPTER 6 Trigonometr Trigonometr is a stud of measurements of sides of triangles as related to the angles, and the application of this

More information

1. Prove that for every positive integer n there exists an n-digit number divisible by 5 n all of whose digits are odd.

1. Prove that for every positive integer n there exists an n-digit number divisible by 5 n all of whose digits are odd. 32 nd United States of America Mathematical Olympiad Proposed Solutions May, 23 Remark: The general philosophy of this marking scheme follows that of IMO 22. This scheme encourages complete solutions.

More information

Complex Numbers in Geometry

Complex Numbers in Geometry Complex Numers in Geometry Seastian Jeon Decemer 3, 206 The Complex Plane. Definitions I assume familiarity with most, if not all, of the following definitions. Some knowledge of linear algera is also

More information

14 th Annual Harvard-MIT Mathematics Tournament Saturday 12 February 2011

14 th Annual Harvard-MIT Mathematics Tournament Saturday 12 February 2011 14 th Annual Harvard-MIT Mathematics Tournament Saturday 1 February 011 1. Let a, b, and c be positive real numbers. etermine the largest total number of real roots that the following three polynomials

More information

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :,

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :, Geometry A. Right Triangle Legs of a right triangle : a, b Hypotenuse : c Altitude : h Medians : m a, m b, m c Angles :, Radius of circumscribed circle : R Radius of inscribed circle : r Area : S 1. +

More information

Trigonometrical identities and inequalities

Trigonometrical identities and inequalities Trigonometrical identities and inequalities Finbarr Holland January 1, 010 1 A review of the trigonometrical functions These are sin, cos, & tan. These are discussed in the Maynooth Olympiad Manual, which

More information

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle?

1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle? 1 For all problems, NOTA stands for None of the Above. 1. If two angles of a triangle measure 40 and 80, what is the measure of the other angle of the triangle? (A) 40 (B) 60 (C) 80 (D) Cannot be determined

More information

LAMC Intermediate I March 8, Oleg Gleizer. Theorem 1 Any two inscribed angles subtending the same arc on a circle are congruent.

LAMC Intermediate I March 8, Oleg Gleizer. Theorem 1 Any two inscribed angles subtending the same arc on a circle are congruent. LAMC Intermediate I March 8, 2015 Oleg Gleizer prof1140g@math.ucla.edu Theorem 1 Any two inscribed angles subtending the same arc on a circle are congruent. α = β α O β Problem 1 Prove Theorem 1. 1 Theorem

More information