Definition: div Let n, d 0. We define ndiv d as the least integer quotient obtained when n is divided by d. That is if

Size: px
Start display at page:

Download "Definition: div Let n, d 0. We define ndiv d as the least integer quotient obtained when n is divided by d. That is if"

Transcription

1 Section 5. Congruence Arithmetic A number of computer languages have built-in functions that compute the quotient and remainder of division. Definition: div Let n, d 0. We define ndiv d as the least integer quotient obtained when n is divided b d. That is if n dq r, then n div d q. Alternativel: ndiv d n d Eamples. Find ndiv d for the following: n 54, d div 4 13 n 32, d ( 4) 4 32 div 9 4 Eercises: Find ndiv d for the following: n 54, d 4 n 54, d 70 WUCT121 Numbers 138

2 Definition: mod Let n, d 0. We define n mod d as the integer remainder obtained when n is divided b d. That is if n dq r, then n mod d r Eamples. Find n mod d for the following: n 54, d mod 4 2 n 32, d ( 4) 4 32 mod 9 4 Eercises: Find n mod d for the following: n 54, d 4 n 54, d 70 For n, for n mod 5 Congruence Arithmetic centres around a relation based on the idea of mod. WUCT121 Numbers 139

3 5.1. Definition: Congruence modulo n. Let n. We will define a relation on Ÿ called congruence modulo n (denoted ) b: a, b,( a b(mod n) n ( a b). Notes: a b(mod n) reads a is congruent to b modulo n. The definition sas that a b(mod n) if and onl if n divides the difference between a and b Another wa to think about congruence modulo n is in terms of remainders: a b(mod n) if and onl if a(mod n) b(mod n), that is, if a and b have the same remainder after being divided b n WUCT121 Numbers 140

4 Eamples: 38 2(mod 6) because and also 38 (mod 6) 2 and 2 (mod 6) 2 Find such that 12 (mod 5) Require such that 5 (12 ). That is need 12 5k, k. Set k 0, gives Set k 1, gives Set k 2, gives Hence, Eercises: K, 3,2,7,12, K Find possible values for m in each case. 14 m(mod 8) 13 m(mod 7) WUCT121 Numbers 141

5 ( n 1) m(mod n), n > 1 Determine whether each of the following is true or false. 7 9(mod 8) 2 8(mod11) 11 1(mod 5) Find values for in each case. 1(mod7) WUCT121 Numbers 142

6 3(mod5) 4(mod9) If m 0(mod 2), what can ou sa about m? If n 1(mod 2), what can ou sa about n? Fill in the spaces with the smallest possible nonnegative number. 21 (mod 4) 18 (mod 4) WUCT121 Numbers 143

7 5.2. Congruence Arithmetic Theorem: Congruence Addition Let n, and a, b, c, d If a b(mod n) and c d(mod n), then ( a c) ( b d )(mod n). Proof: We know; a b(mod n) p, a b c d(modn) q, c d np K(1) nqk(2) We must show : ( a c) ( b d )(mod n), that is r, ( a c) ( b d ) nr Adding (1) and (2) gives ( a b) ( c d ) np nq ( a c) ( b d ) n( p q) nr r n ( a c) ( b d ) ( a c) ( b d )(mod n) p q WUCT121 Numbers 144

8 Eamples: 21 1(mod 4), 18 2(mod 4) (mod 4) 12 2(mod 5), 101 1(mod 5) (mod 5) Eercises: B considering 18 (mod12) and 73 (mod12), determine what time of da it will be 73 hours after 6pm on Sunda. B considering 15 (mod 60) and 135 (mod 60), determine where the minute hand on an analog clock will be located 135 minutes after 11:15. WUCT121 Numbers 145

9 Theorem: Congruence Multiplication Let n, and a, b, c, d If a b(mod n) and c d(mod n), then ac bd(mod n). Eercises: Complete the proof for congruence multiplication WUCT121 Numbers 146

10 Eamples: 21 1(mod 4), 18 2(mod 4) (mod 4) Find such that 3 9 (mod5), 0 < (mod 5) 2(mod 5) (mod 5) (mod 5) (mod 5) 12(mod 5) (mod 5) 3(mod 5) (mod 5) (mod 5) 4(mod 5) 2 4(mod 5) 8(mod 5) 3(mod 5) WUCT121 Numbers 147

11 Eercises: Find the remainder when 7 7 is divided b 16. Need to find such that 7 7 ( mod16) 0 < 16 and Find such that 9 7 (mod15), 0 < 15. WUCT121 Numbers 148

12 Theorem: Cancellation Law Let n, and a, b, c If gcd( a, n) 1 and ab ac(mod n), then b c(mod n) Proof: We know; gcd( a, n) 1 and ab ac(mod n) Now, b the definition of congruence modulo n, we have ( ab ac) n a( b c) n ( b c) n see note b c(mod n) Note: Recall if gcd( a, b) 1 and a bc, then a c Eamples: gcd( 5,4) 1 and (mod 4), that is 30 10(mod 4) 6 2(mod 4) WUCT121 Numbers 149

13 gcd( 6,3) 3 and (mod 3) that is, 6 12(mod 3). However, 1 / 2(mod 3) Eercises: Given (mod 9) Find such that 1363 (mod 9), 0 < 9. Simplif 6 36(mod10) WUCT121 Numbers 150

14 5.3. Congruence Classes Modulo n Lemma: Let n. If, then is congruent (modulo n) to eactl one element in { 0, 1, 2,, n 1} K. This lemma is important as it allows us to group integers according to their remainder after dividing b a given number n Definition: Equivalence Class Let n. The equivalence class determined b s, denoted s, is defined as s { : s(mod n)}. Eamples: The following are equivalence classes when n 3 o 0 { K, 12, 9, 6, 3, 0, 3, 6, 9,12,K} o 1 { K, 8, 5, 2, 1, 4, 7,K} o 2 { K, 7, 4, 1, 2, 5, 8,K} o 3 { K, 12, 9, 6, 3, 0, 3, 6, 9,12,K} WUCT121 Numbers 151

15 Eercises: Write down 10 elements in the following equivalence classes if n 4. o 0 o 1 o 2 o 3 o 4 o 5 How man distinct (i.e., different) equivalence classes (mod 4) do ou epect there to be? WUCT121 Numbers 152

16 Lemma: If n, then there are eactl n distinct equivalence classes determined b n, namel 0, 1, 2,, n 1. Proof: B previous Lemma, ever one of the numbers 0, 1, 2,, n 1. is congruent to eactl Therefore, is congruent to one of 0, 1, 2,, n 1. Hence, we have n classes. To prove the equivalence classes are distinct (disjoint), we must show that for Let 0 i < j n 1. Suppose that that i and j. Then, we have i j, i j. i j ; that is, there eists such i i(mod n) and j j(mod n) However, this contradicts the lemma that is congruent modulo n to eactl one of 0, 1, 2,, n 1., so our assumption that the result follows. i j is false, so i j and WUCT121 Numbers 153

17 5.4. Definition: Set of Residues Ÿ n For all and sa that Eercises: n, let { 0, 1, 2, K, n 1 } n n is the complete set of residues modulo n. What are 3, 218 and 1? In 3, what are the sets 4, 2,7,40 usuall epressed as? How man names" are there for 3 in 10? List three. In n, K n 1 and K n 1. WUCT121 Numbers 154

18 As seen above, an infinite number of names. Aside: n is a set of elements, each of which has Consider, the set of all rational numbers. For all, has an infinite number of names. Eample: L How have we defined addition of rational numbers? Eample: Wh couldn't we define addition as follows? When we define and on n, we must make sure our definitions do NOT depend on the name of the equivalence class. We can then sa that and on or consistent. n are well-defined WUCT121 Numbers 155

19 Definition: Addition on Ÿ n Addition on n is defined as follows: a, b n, a b a b. To prove that addition is consistent relies on the following propert a b a b(mod n) Proof: Let a c and b d in n. We must prove that a b c d. a c a c(mod n) K(1) and b d b d(mod n) K(2) Adding (1) and (2) using congruence addition gives ( a b) a b ( c d )(mod n) c d Therefore, addition on Eample: n is consistent. In 3, we know 1 4 and 2 5. We want Now, and Therefore, WUCT121 Numbers 156

20 Definition: Multiplication on Ÿ n Multiplication on n is defined as follows: a, b n, a b a b. Proof: Let a c and b d in n. We must prove that a b c d. a c a c(mod n) K(1) and b d b d(mod n) K(2) Adding (1) and (2) using congruence multiplication gives ( a b) ( c d )(mod n) a b c d Therefore, multiplication on Eample: n is consistent. In 3, we know 1 4 and 2 5. We want Now, and Therefore, WUCT121 Numbers 157

21 Eercises: Write out the addition and multiplication tables for Are addition and multiplication closed operations on 3? Solve these equations for in 3. o 2 0 o 2 1 o 0 1 o 0 2 Is 3 commutative under addition or multiplication? WUCT121 Numbers 158

22 WUCT121 Numbers 159 Is 3 associative under addition or multiplication? Does it have the distributive propert? How would ou prove or disprove our answers? Commutativit: and, 3 Associativit: ) ( ) ( ) ( ) ( and ) ( ) ( ) ( ) (,, 3

23 WUCT121 Numbers 160 Distributivit: ) ( ) ( ) ( ) ( and ) ) ( ) (,, 3 Does 3 have an identit under addition or multiplication? Does each element of 3 have an inverse under addition? What are the?

24 Does each element of 3 have an inverse under multiplication? What are the? Eercises: Write out the multiplication table for Is multiplication a closed operation on 4? Solve these equations for in 4. o 2 2 o 2 0 o 2 1 o 3 1 WUCT121 Numbers 161

25 Is 4 commutative or associative under multiplication? Does 4 have an identit under multiplication? Does each element of 4 (ecept 0) have an inverse under multiplication? WUCT121 Numbers 162

26 Properties of Ÿ: Properties of n: Addition and multiplication are closed operations Commutative under addition and multiplication Associative under addition and multiplication Distributive Identities: 0 under addition; 1 under multiplication Inverses: Addition: of a a is the inverse Multiplication: onl ±1 have inverses Addition and multiplication are closed operations Commutative under addition and multiplication Associative under addition and multiplication Distributive Identities: 0 under addition; 1 under multiplication Inverses: Addition: In n, each element has an additive inverse: a (or n a) Multiplication: For certain values of n, each element, other than 0, has an inverse. WUCT121 Numbers 163

27 Notes: All non-ero elements in onl for certain values of n. n have multiplicative inverses In 3, ever non-ero element has a multiplicative inverse. In 4, 2 has no multiplicative inverse. What do ou think might be the condition on n for all nonero elements in n must be prime. n to have multiplicative inverses? WUCT121 Numbers 164

Chapter 3 Basic Number Theory

Chapter 3 Basic Number Theory Chapter 3 Basic Number Theory What is Number Theory? Well... What is Number Theory? Well... Number Theory The study of the natural numbers (Z + ), especially the relationship between different sorts of

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Crptograph Part I (Solution to Practice Set) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinit to positive infinit. The set of

More information

The set of integers will be denoted by Z = {, -3, -2, -1, 0, 1, 2, 3, 4, }

The set of integers will be denoted by Z = {, -3, -2, -1, 0, 1, 2, 3, 4, } Integers and Division 1 The Integers and Division This area of discrete mathematics belongs to the area of Number Theory. Some applications of the concepts in this section include generating pseudorandom

More information

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.4 2.6 of Rosen Introduction I When talking

More information

Part V. Chapter 19. Congruence of integers

Part V. Chapter 19. Congruence of integers Part V. Chapter 19. Congruence of integers Congruence modulo m Let m be a positive integer. Definition. Integers a and b are congruent modulo m if and only if a b is divisible by m. For example, 1. 277

More information

3 The fundamentals: Algorithms, the integers, and matrices

3 The fundamentals: Algorithms, the integers, and matrices 3 The fundamentals: Algorithms, the integers, and matrices 3.4 The integers and division This section introduces the basics of number theory number theory is the part of mathematics involving integers

More information

4 Number Theory and Cryptography

4 Number Theory and Cryptography 4 Number Theory and Cryptography 4.1 Divisibility and Modular Arithmetic This section introduces the basics of number theory number theory is the part of mathematics involving integers and their properties.

More information

8. BOOLEAN ALGEBRAS x x

8. BOOLEAN ALGEBRAS x x 8. BOOLEAN ALGEBRAS 8.1. Definition of a Boolean Algebra There are man sstems of interest to computing scientists that have a common underling structure. It makes sense to describe such a mathematical

More information

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635

COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635 COMP239: Mathematics for Computer Science II Prof. Chadi Assi assi@ciise.concordia.ca EV7.635 The Euclidean Algorithm The Euclidean Algorithm Finding the GCD of two numbers using prime factorization is

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 10-1 Chapter 10 Mathematical Systems 10.1 Groups Definitions A mathematical system consists of a set of elements and at least one binary operation. A

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Wilson s Theorem and Fermat s Little Theorem

Wilson s Theorem and Fermat s Little Theorem Wilson s Theorem and Fermat s Little Theorem Wilson stheorem THEOREM 1 (Wilson s Theorem): (p 1)! 1 (mod p) if and only if p is prime. EXAMPLE: We have (2 1)!+1 = 2 (3 1)!+1 = 3 (4 1)!+1 = 7 (5 1)!+1 =

More information

Chapter R REVIEW OF BASIC CONCEPTS. Section R.1: Sets

Chapter R REVIEW OF BASIC CONCEPTS. Section R.1: Sets Chapter R REVIEW OF BASIC CONCEPTS Section R.: Sets. The elements of the set {,,,, 0} are all the natural numbers from to 0 inclusive. There are 9 elements in the set, {,,,,, 7,, 9, 0}.. Each element of

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

3.7 InveRSe FUnCTIOnS

3.7 InveRSe FUnCTIOnS CHAPTER functions learning ObjeCTIveS In this section, ou will: Verif inverse functions. Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.

More information

WUCT121. Discrete Mathematics. Logic

WUCT121. Discrete Mathematics. Logic WUCT11 Discrete Mathematics Logic 1. Logic. Predicate Logic 3. Proofs 4. Set Theor 5. Relations and Functions WUCT11 Logic 1 Section 1. Logic 1.1. Introduction. In developing a mathematical theor, assertions

More information

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers: WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

More information

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z: NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

More information

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}.

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. 2 Arithmetic This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}. (See [Houston, Chapters 27 & 28]) 2.1 Greatest common divisors Definition 2.16. If a, b are integers, we say

More information

ELEMENTS OF NUMBER THEORY

ELEMENTS OF NUMBER THEORY ELEMENTS OF NUMBER THEORY Examination corner 1 one mark question in part A 1 - two mark question in part B 1 five mark OR 3mark+2 mark question in part C 1 two or four mark question in part E concepts

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits . Infinite Limits and Vertical Asmptotes. Infinite Limits and Vertical Asmptotes In this section we etend the concept of it to infinite its, which are not its as before, but rather an entirel new use of

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors Math.3336: Discrete Mathematics Primes and Greatest Common Divisors Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

Math Lesson 2-2 Properties of Exponents

Math Lesson 2-2 Properties of Exponents Math-00 Lesson - Properties of Eponents Properties of Eponents What is a power? Power: An epression formed b repeated multiplication of the base. Coefficient Base Eponent The eponent applies to the number

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polnomial and Rational Functions 3.1 Quadratic Functions and Models 3.2 Polnomial Functions and Their Graphs 3.3 Dividing Polnomials 3.4 Real Zeros of Polnomials 3.5 Comple Zeros and the Fundamental

More information

This exam contains 5 pages (including this cover page) and 4 questions. The total number of points is 100. Grade Table

This exam contains 5 pages (including this cover page) and 4 questions. The total number of points is 100. Grade Table MAT115A-21 Summer Session 2 2018 Practice Final Solutions Name: Time Limit: 1 Hour 40 Minutes Instructor: Nathaniel Gallup This exam contains 5 pages (including this cover page) and 4 questions. The total

More information

7.2 Applications of Euler s and Fermat s Theorem.

7.2 Applications of Euler s and Fermat s Theorem. 7.2 Applications of Euler s and Fermat s Theorem. i) Finding and using inverses. From Fermat s Little Theorem we see that if p is prime and p a then a p 1 1 mod p, or equivalently a p 2 a 1 mod p. This

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

5.4 dividing POlynOmIAlS

5.4 dividing POlynOmIAlS SECTION 5.4 dividing PolNomiAls 3 9 3 learning ObjeCTIveS In this section, ou will: Use long division to divide polnomials. Use snthetic division to divide polnomials. 5.4 dividing POlnOmIAlS Figure 1

More information

4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups 4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

More information

1.7 Inverse Functions

1.7 Inverse Functions 71_0107.qd 1/7/0 10: AM Page 17 Section 1.7 Inverse Functions 17 1.7 Inverse Functions Inverse Functions Recall from Section 1. that a function can be represented b a set of ordered pairs. For instance,

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

Lecture 7: Number Theory Steven Skiena. skiena

Lecture 7: Number Theory Steven Skiena.   skiena Lecture 7: Number Theory Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Number Theory and Divisibility G-d created

More information

3.7 Non-linear Diophantine Equations

3.7 Non-linear Diophantine Equations 37 Non-linear Diophantine Equations As an example of the use of congruences we can use them to show when some Diophantine equations do not have integer solutions This is quite a negative application -

More information

Name: There are 8 questions on 13 pages, including this cover.

Name: There are 8 questions on 13 pages, including this cover. Name: There are 8 questions on 13 pages, including this cover. There are several blank pages at the end of your exam which you may as scrap paper or as additional space to continue an answer, if needed.

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Nov 13, 2014 Quiz announcement The second quiz will be held on Thursday,

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1.

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Solutions Quiz 9 Nov. 8, 2010 1. Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Answer. We prove the contrapositive. Suppose a, b, m are integers such that a < 3m

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 70 7 80 8 0 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of work b MeasuringWorth)

More information

Math-2. Lesson:1-2 Properties of Exponents

Math-2. Lesson:1-2 Properties of Exponents Math- Lesson:- Properties of Eponents Properties of Eponents What is a power? Power: An epression formed b repeated multiplication of the same factor. Coefficient Base Eponent The eponent applies to the

More information

1. multiplication is commutative and associative;

1. multiplication is commutative and associative; Chapter 4 The Arithmetic of Z In this chapter, we start by introducing the concept of congruences; these are used in our proof (going back to Gauss 1 ) that every integer has a unique prime factorization.

More information

Tomáš Madaras Congruence classes

Tomáš Madaras Congruence classes Congruence classes For given integer m 2, the congruence relation modulo m at the set Z is the equivalence relation, thus, it provides a corresponding partition of Z into mutually disjoint sets. Definition

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

Solutions I.N. Herstein- Second Edition

Solutions I.N. Herstein- Second Edition Solutions I.N. Herstein- Second Edition Sadiah Zahoor Please email me if any corrections at sadiahzahoor@cantab.net. R is a ring in all problems. Problem 0.1. If a, b, c, d R, evaluate (a + b)(c + d).

More information

7. Prime Numbers Part VI of PJE

7. Prime Numbers Part VI of PJE 7. Prime Numbers Part VI of PJE 7.1 Definition (p.277) A positive integer n is prime when n > 1 and the only divisors are ±1 and +n. That is D (n) = { n 1 1 n}. Otherwise n > 1 is said to be composite.

More information

Sub chapter 1. Fundamentals. 1)If Z 2 = 0,1 then (Z 2, +) is group where. + is addition modulo 2. 2) Z 2 Z 2 = (0,0),(0,1)(1,0)(1,1)

Sub chapter 1. Fundamentals. 1)If Z 2 = 0,1 then (Z 2, +) is group where. + is addition modulo 2. 2) Z 2 Z 2 = (0,0),(0,1)(1,0)(1,1) DISCRETE MATHEMATICS CODING THEORY Sub chapter. Fundamentals. )If Z 2 =, then (Z 2, +) is group where + is addition modulo 2. 2) Z 2 Z 2 = (,),(,)(,)(,) Written for the sake of simplicit as Z 2 Z 2 =,,,

More information

Infinite Limits. Let f be the function given by. f x 3 x 2.

Infinite Limits. Let f be the function given by. f x 3 x 2. 0_005.qd //0 :07 PM Page 8 SECTION.5 Infinite Limits 8, as Section.5, as + f() = f increases and decreases without bound as approaches. Figure.9 Infinite Limits Determine infinite its from the left and

More information

MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST

MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST MATH 115, SUMMER 2012 LECTURE 4 THURSDAY, JUNE 21ST JAMES MCIVOR Today we enter Chapter 2, which is the heart of this subject. Before starting, recall that last time we saw the integers have unique factorization

More information

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II CS 5319 Advanced Discrete Structure Lecture 9: Introduction to Number Theory II Divisibility Outline Greatest Common Divisor Fundamental Theorem of Arithmetic Modular Arithmetic Euler Phi Function RSA

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-13 Recap Divisibility Prime Number Theorem Euclid s Lemma Fundamental Theorem of Arithmetic Euclidean Algorithm Basic Notions - Section

More information

( 3x. Chapter Review. Review Key Vocabulary. Review Examples and Exercises 6.1 Properties of Square Roots (pp )

( 3x. Chapter Review. Review Key Vocabulary. Review Examples and Exercises 6.1 Properties of Square Roots (pp ) 6 Chapter Review Review Ke Vocabular closed, p. 266 nth root, p. 278 eponential function, p. 286 eponential growth, p. 296 eponential growth function, p. 296 compound interest, p. 297 Vocabular Help eponential

More information

. In particular if a b then N(

. In particular if a b then N( Gaussian Integers II Let us summarise what we now about Gaussian integers so far: If a, b Z[ i], then N( ab) N( a) N( b). In particular if a b then N( a ) N( b). Let z Z[i]. If N( z ) is an integer prime,

More information

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer Solutions to Section 21 Homework Problems S F Ellermeyer 1 [13] 9 = f13; 22; 31; 40; : : :g [ f4; 5; 14; : : :g [3] 10 = f3; 13; 23; 33; : : :g [ f 7; 17; 27; : : :g [4] 11 = f4; 15; 26; : : :g [ f 7;

More information

a the relation arb is defined if and only if = 2 k, k

a the relation arb is defined if and only if = 2 k, k DISCRETE MATHEMATICS Past Paper Questions in Number Theory 1. Prove that 3k + 2 and 5k + 3, k are relatively prime. (Total 6 marks) 2. (a) Given that the integers m and n are such that 3 (m 2 + n 2 ),

More information

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology.

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology. MATH 501 Discrete Mathematics Lecture 6: Number theory Prof. Dr. Slim Abdennadher, slim.abdennadher@guc.edu.eg German University Cairo, Department of Media Engineering and Technology 1 Number theory Number

More information

CIS 6930/4930 Computer and Network Security. Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.1 Basic Number Theory -- Foundation of Public Key Cryptography 1 Review of Modular Arithmetic 2 Remainders and Congruency For any integer a and any positive

More information

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1 Solutions to the Math 0 Sample Final Eam (from Spring 00) Page Part : Multiple Choice Questions. Here ou work out the problems and then select the answer that matches our answer. No partial credit is given

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Sacred Heart University DigitalCommons@SHU Academic Festival Apr 20th, 9:30 AM - 10:45 AM The Chinese Remainder Theorem Nancirose Piazza Follow this and additional works at: http://digitalcommons.sacredheart.edu/acadfest

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

With Question/Answer Animations. Chapter 4

With Question/Answer Animations. Chapter 4 With Question/Answer Animations Chapter 4 Chapter Motivation Number theory is the part of mathematics devoted to the study of the integers and their properties. Key ideas in number theory include divisibility

More information

or just I if the set A is clear. Hence we have for all x in A the identity function I ( )

or just I if the set A is clear. Hence we have for all x in A the identity function I ( ) 3 Functions 46 SECTON E Properties of Composite Functions the end of this section ou will be able to understand what is meant b the identit function prove properties of inverse function prove properties

More information

Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences. Congruences Let n be a postive integer. The integers a and b are called congruent modulo n if they have the same

More information

Chapter 0: Algebraic Concepts

Chapter 0: Algebraic Concepts Chapter 0: Algebraic Concepts Eercise 0.. {,, z, a}. {,,,,...}. {,,,, } 7. {, 7,,,,, } 9. {: is a natural number greater than and less than 8}. Yes. Ever element of A is an element of B.. No. c A but c

More information

Citrus Valley High School

Citrus Valley High School Citrus Valle High School Dear Math I Honors Student, Familiarit with pre-high school math concepts is essential for success in the Integrated Math I Honors class. The majorit of the questions in Math I

More information

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors

Math.3336: Discrete Mathematics. Primes and Greatest Common Divisors Math.3336: Discrete Mathematics Primes and Greatest Common Divisors Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

More information

Number Theory Solutions Packet

Number Theory Solutions Packet Number Theory Solutions Pacet 1 There exist two distinct positive integers, both of which are divisors of 10 10, with sum equal to 157 What are they? Solution Suppose 157 = x + y for x and y divisors of

More information

The RSA Encryption/Decryption method is based on the Euler's and Fermat's Theorem

The RSA Encryption/Decryption method is based on the Euler's and Fermat's Theorem 1 RSA method and Number Theory The RSA Encryption/Decryption method is based on the Euler's and Fermat's Theorem in number theory. The original task of number theory was the investigation of the properties

More information

Proofs. Methods of Proof Divisibility Floor and Ceiling Contradiction & Contrapositive Euclidean Algorithm. Reading (Epp s textbook)

Proofs. Methods of Proof Divisibility Floor and Ceiling Contradiction & Contrapositive Euclidean Algorithm. Reading (Epp s textbook) Proofs Methods of Proof Divisibility Floor and Ceiling Contradiction & Contrapositive Euclidean Algorithm Reading (Epp s textbook) 4.3 4.8 1 Divisibility The notation d n is read d divides n. Symbolically,

More information

For your quiz in recitation this week, refer to these exercise generators:

For your quiz in recitation this week, refer to these exercise generators: Monday, Oct 29 Today we will talk about inverses in modular arithmetic, and the use of inverses to solve linear congruences. For your quiz in recitation this week, refer to these exercise generators: GCD

More information

Chapter 5. Number Theory. 5.1 Base b representations

Chapter 5. Number Theory. 5.1 Base b representations Chapter 5 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,

More information

CISC-102 Fall 2017 Week 6

CISC-102 Fall 2017 Week 6 Week 6 page 1! of! 15 CISC-102 Fall 2017 Week 6 We will see two different, yet similar, proofs that there are infinitely many prime numbers. One proof would surely suffice. However, seeing two different

More information

Relations. Relations. Definition. Let A and B be sets.

Relations. Relations. Definition. Let A and B be sets. Relations Relations. Definition. Let A and B be sets. A relation R from A to B is a subset R A B. If a A and b B, we write a R b if (a, b) R, and a /R b if (a, b) / R. A relation from A to A is called

More information

Limits 4: Continuity

Limits 4: Continuity Limits 4: Continuit 55 Limits 4: Continuit Model : Continuit I. II. III. IV. z V. VI. z a VII. VIII. IX. Construct Your Understanding Questions (to do in class). Which is the correct value of f (a) in

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Integers and Division

Integers and Division Integers and Division Notations Z: set of integers N : set of natural numbers R: set of real numbers Z + : set of positive integers Some elements of number theory are needed in: Data structures, Random

More information

Ch 4.2 Divisibility Properties

Ch 4.2 Divisibility Properties Ch 4.2 Divisibility Properties - Prime numbers and composite numbers - Procedure for determining whether or not a positive integer is a prime - GCF: procedure for finding gcf (Euclidean Algorithm) - Definition:

More information

MATH Fundamental Concepts of Algebra

MATH Fundamental Concepts of Algebra MATH 4001 Fundamental Concepts of Algebra Instructor: Darci L. Kracht Kent State University April, 015 0 Introduction We will begin our study of mathematics this semester with the familiar notion of even

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

Senior Math Circles Cryptography and Number Theory Week 2

Senior Math Circles Cryptography and Number Theory Week 2 Senior Math Circles Cryptography and Number Theory Week 2 Dale Brydon Feb. 9, 2014 1 Divisibility and Inverses At the end of last time, we saw that not all numbers have inverses mod n, but some do. We

More information

Lesson 15: Piecewise Functions

Lesson 15: Piecewise Functions Classwork Opening Eercise For each real number aa, the absolute value of aa is the distance between 0 and aa on the number line and is denoted aa. 1. Solve each one variable equation. a. = 6 b. = 4 c.

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

3.2 Solving linear congruences. v3

3.2 Solving linear congruences. v3 3.2 Solving linear congruences. v3 Solving equations of the form ax b (mod m), where x is an unknown integer. Example (i) Find an integer x for which 56x 1 mod 93. Solution We have already solved this

More information

Properties of Limits

Properties of Limits 33460_003qd //04 :3 PM Page 59 SECTION 3 Evaluating Limits Analticall 59 Section 3 Evaluating Limits Analticall Evaluate a it using properties of its Develop and use a strateg for finding its Evaluate

More information

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results Euclid s Division Lemma : Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 r < b. Euclid s Division

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 3

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 3 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 3 Modular Arithmetic In several settings, such as error-correcting codes and cryptography, we sometimes wish to work over a smaller

More information

4Cubic. polynomials UNCORRECTED PAGE PROOFS

4Cubic. polynomials UNCORRECTED PAGE PROOFS 4Cubic polnomials 4.1 Kick off with CAS 4. Polnomials 4.3 The remainder and factor theorems 4.4 Graphs of cubic polnomials 4.5 Equations of cubic polnomials 4.6 Cubic models and applications 4.7 Review

More information

Math Theory of Number Homework 1

Math Theory of Number Homework 1 Math 4050 Theory of Number Homework 1 Due Wednesday, 015-09-09, in class Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5. 1. Find all rational numbers and y satisfying

More information