A Provably Secure Group Signature Scheme from Code-Based Assumptions

Size: px
Start display at page:

Download "A Provably Secure Group Signature Scheme from Code-Based Assumptions"

Transcription

1 A Provably Secure Group Signature Scheme from Code-Based Assumptions Martianus Frederic Ezerman, Hyung Tae Lee, San Ling, Khoa Nguyen, Huaxiong Wang NTU, Singapore ASIACRYPT 15-01/12/15

2 Group Signatures [CH91] U 1... U i... U N Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 2 / 11

3 Group Signatures [CH91] (Σ, ) U 1... U i... U N Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 2 / 11

4 Group Signatures [CH91] (Σ, ) Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 2 / 11

5 Group Signatures [CH91] (Σ, ) U i Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 2 / 11

6 The [BMW 03] Model 4 algorithms: 1 KeyGen(λ, N) ( gpk, gmsk, {gsk[j]} N 1 j=0 2 Sign(gsk[j], M) Σ. 3 Verify(gpk, M, Σ) {0, 1}. 4 Open(gmsk, M, Σ) {j, }. ). Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 3 / 11

7 The [BMW 03] Model 4 algorithms: 1 KeyGen(λ, N) ( gpk, gmsk, {gsk[j]} N 1 j=0 2 Sign(gsk[j], M) Σ. 3 Verify(gpk, M, Σ) {0, 1}. 4 Open(gmsk, M, Σ) {j, }. ). 3 requirements: correctness, anonymity, traceability. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 3 / 11

8 The [BMW 03] Model 4 algorithms: 1 KeyGen(λ, N) ( gpk, gmsk, {gsk[j]} N 1 j=0 2 Sign(gsk[j], M) Σ. 3 Verify(gpk, M, Σ) {0, 1}. 4 Open(gmsk, M, Σ) {j, }. ). 3 requirements: correctness, anonymity, traceability. 3 cryptographic ingredients: ordinary digital signature, encryption scheme, zero-knowledge protocol. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 3 / 11

9 Post-Quantum Group Signatures Shor s quantum algorithm [Shor 94] post-quantum cryptography. 6 candidates of post-quantum group signatures have been published in the last 5 years [GKV 10,CNR 12,LLLS 13,LLNW 14,LNW 15,NZZ 15]. [NZZ 15] is arguably the most efficient in the asymptotic sense. All are based on lattice assumptions. Large key and signature sizes. No implementation so far. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 4 / 11

10 Post-Quantum Group Signatures Shor s quantum algorithm [Shor 94] post-quantum cryptography. 6 candidates of post-quantum group signatures have been published in the last 5 years [GKV 10,CNR 12,LLLS 13,LLNW 14,LNW 15,NZZ 15]. [NZZ 15] is arguably the most efficient in the asymptotic sense. All are based on lattice assumptions. Large key and signature sizes. No implementation so far. Open questions: 1 More diversity? 2 More practical construction? E.g., an easy-to-implement and competitively efficient code-based group signature scheme would be desirable. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 4 / 11

11 A Provably Secure Code-Based Group Signature? Needed ingredients: 1 Ordinary signature: CFS [CFS 01] and variants: No known convincing security proof. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 5 / 11

12 A Provably Secure Code-Based Group Signature? Needed ingredients: 1 Ordinary signature: CFS [CFS 01] and variants: No known convincing security proof. Stern s protocol [Ste 96] + Fiat-Shamir transform [FS 86]. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 5 / 11

13 A Provably Secure Code-Based Group Signature? Needed ingredients: 1 Ordinary signature: CFS [CFS 01] and variants: No known convincing security proof. Stern s protocol [Ste 96] + Fiat-Shamir transform [FS 86]. 2 Encryption scheme: Provably secure variants of McEliece s [McE 78] and Niederreiter s [Nie 86] schemes. E.g., randomized McEliece [NIKM 08]. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 5 / 11

14 A Provably Secure Code-Based Group Signature? Needed ingredients: 1 Ordinary signature: CFS [CFS 01] and variants: No known convincing security proof. Stern s protocol [Ste 96] + Fiat-Shamir transform [FS 86]. 2 Encryption scheme: Provably secure variants of McEliece s [McE 78] and Niederreiter s [Nie 86] schemes. E.g., randomized McEliece [NIKM 08]. 3 The bottleneck is a ZK protocol connecting the first two layers. The signer should demonstrate that the given group signature is generated by certain certified group user who honestly encrypts his identifying information while keeping both the certificate and the identity secret! An open question in code-based cryptography. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 5 / 11

15 Our Results A code-based GS scheme provably secure in the ROM: CPA-anonymity: Learning Parity with (fixed-weight) Noise + McEliece. Traceability: Syndrome Decoding. Implementation results: The first ones for post-quantum group signatures. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 6 / 11

16 Our Results A code-based GS scheme provably secure in the ROM: CPA-anonymity: Learning Parity with (fixed-weight) Noise + McEliece. Traceability: Syndrome Decoding. Implementation results: The first ones for post-quantum group signatures. Efficiency comparison with recent lattice-based schemes: Asymptotically, ours is less efficient: O(N) vs. O(log N). Practically: (rough estimation) N Public key Signature KB 1.07 MB Our scheme MB 2.21 MB GB 294 MB [NZZ 15] GB 579 MB Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 6 / 11

17 Our Construction McEliece para (n, k, t); SD para (m, r, ω); maximum group size N = 2 l. Notations: B(m, ω) = {s {0, 1} m wt(s) = ω}; B(n, t) is defined similarly. KeyGen: 1 (G F k n 2, dk) McE.Kg; H $ F r m $ 2 ; j [0, N 1]: s j B(m, ω), y j = H s j. 2 Output gpk = (G, H, y 0,..., y N 1 ); gmsk = dk; and gsk[j] = s j, j. Sign(gsk[j] = s, M): 1 Encrypt I2B(j) {0, 1} l - the bin. rep. of j [0, N 1] - using randomized McEliece [NIKM 08]: Sample u $ F k l 2, e $ B(n, t), and compute c = ( u I2B(j) ) G e F n 2. 2 Generate a NIZK argument Π to show the knowledge of (j, s, u, e) s.t.: s = gsk[j] and c is a correct encryption of I2B(j) with randomness (u, e). (Π is made non-interactive via Fiat-Shamir, with M included in the RO hashing.) 3 Output Σ = (c, Π). Verify: check Π. Open: decrypt c using dk. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 7 / 11

18 The Underlying Zero-Knowledge Argument of Knowledge Common input: G F k n 2 ; H F r m 2 ; y 0,..., y N 1 F r 2 ; c Fn 2. Prover s input: (j, s, u, e) [0, N 1] B(m, ω) F k l 2 B(n, t). Prover s goal: Prove in ZK that H s = y j and c = ( u I2B(j) ) G e. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 8 / 11

19 The Underlying Zero-Knowledge Argument of Knowledge Common input: G F k n 2 ; H F r m 2 ; y 0,..., y N 1 F r 2 ; c Fn 2. Prover s input: (j, s, u, e) [0, N 1] B(m, ω) F k l 2 B(n, t). Prover s goal: Prove in ZK that H s = y j and c = ( u I2B(j) ) G e. H s = y j H s A x = 0 Transform c = ( u I2B(j) ) G e c = ( u f ) (1) Ĝ e, A = [ y 0 y N 1] ; and x = δ N j - the N-dim. unit-vector with 1 at j-th pos. f = Encode(j)=(1 j 0, j 0,..., 1 j l 1, j l 1 ) F 2l 2 - ext. of I2B(j)=(j 0,..., j l 1 ) and Ĝ - extension of G. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 8 / 11

20 The Underlying Zero-Knowledge Argument of Knowledge Common input: G F k n 2 ; H F r m 2 ; y 0,..., y N 1 F r 2 ; c Fn 2. Prover s input: (j, s, u, e) [0, N 1] B(m, ω) F k l 2 B(n, t). Prover s goal: Prove in ZK that H s = y j and c = ( u I2B(j) ) G e. H s = y j H s A x = 0 Transform c = ( u I2B(j) ) G e c = ( u f ) (1) Ĝ e, A = [ y 0 y N 1] ; and x = δ N j - the N-dim. unit-vector with 1 at j-th pos. f = Encode(j)=(1 j 0, j 0,..., 1 j l 1, j l 1 ) F 2l 2 - ext. of I2B(j)=(j 0,..., j l 1 ) and Ĝ - extension of G. Now, the task is to prove in ZK that: (1) holds with s B(m, ω); u F k l 2 ; e B(n, t); x = δ N j ; f = Encode(j). Green: Can be done with Stern s protocol. Red: Needs additional technique! Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 8 / 11

21 Proving that x = δ N j & f = Encode(j) for some hidden j Let B2I : {0, 1} l [0, N 1] be the inverse function of I2B( ). For every b {0, 1} l, we carefully define 2 permutations T b : F N 2 F N 2 and T b : F 2l 2 F 2l 2, s.t. the following equivalences hold: j [0, N 1] and b {0, 1} l, x = δj N T b (x) = δb2i(i2b(j) b) N f = Encode(j) T b(f) = Encode(B2I(I2B(j) b)). Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 9 / 11

22 Proving that x = δ N j & f = Encode(j) for some hidden j Let B2I : {0, 1} l [0, N 1] be the inverse function of I2B( ). For every b {0, 1} l, we carefully define 2 permutations T b : F N 2 F N 2 and T b : F 2l 2 F 2l 2, s.t. the following equivalences hold: j [0, N 1] and b {0, 1} l, x = δj N T b (x) = δb2i(i2b(j) b) N f = Encode(j) T b(f) = Encode(B2I(I2B(j) b)). To prove that the LHS holds in ZK: sample b $ {0, 1} l, send b 1 = I2B(j) b, x 1 = T b (x), f 1 = T b(f), and let the verifier check that the RHS holds. Idea: b acts as a one-time pad j is completely hidden (inspired by a method proposed by [LLNW 14]). Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 9 / 11

23 Implementation Results Testing platform: PC with 3.5 GHz CPU, 16 GB RAM. To achieve 80-bit security, repeat Stern s protocol 140 times. McEliece para: (n, k, t) = (2 11, 1696, 32); SD para: (m, r, ω) = (2756, 550, 121). N Public key Signature KeyGen Sign Verify Open KB 111 KB KB 114 KB KB 159 KB MB 876 KB MB 12.4 MB GB 196 MB Unit for time: second. Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 10 / 11

24 Summary of our contributions: 1 A provably secure code-based GS scheme. 2 Implementation results. Open questions: Code-based GS with 1 CCA-anonymity? 2 Logarithmic-size signature? 3 Revocation? Dynamic enrollment of users? Thank you! Khoa Nguyen, NTU Code-Based Group Signature ASIACRYPT 15-01/12/15 11 / 11

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-based

Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-based Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-based San Ling and Khoa Nguyen and Huaxiong Wang NTU, Singapore ENS de Lyon, 30/09/2015 Content 1 Introduction Previous Works on Lattice-Based

More information

Improved Zero-knowledge Protocol for the ISIS Problem, and Applications

Improved Zero-knowledge Protocol for the ISIS Problem, and Applications Improved Zero-knowledge Protocol for the ISIS Problem, and Applications Khoa Nguyen, Nanyang Technological University (Based on a joint work with San Ling, Damien Stehlé and Huaxiong Wang) December, 29,

More information

A Code-based Group Signature Scheme with Shorter Public Key Length

A Code-based Group Signature Scheme with Shorter Public Key Length Hafsa Assidi, Edoukou Berenger Ayebie and El Mamoun Souidi Mohammed V University in Rabat, Faculty of Sciences, Laboratory of Mathematics, Computer Science and Applications, BP 1014 RP, Rabat, Morocco

More information

Lattice-Based Zero-Knowledge Arguments for Integer Relations

Lattice-Based Zero-Knowledge Arguments for Integer Relations Lattice-Based Zero-Knowledge Arguments for Integer Relations Benoît Libert 1 San Ling 2 Khoa Nguyen 2 Huaxiong Wang 2 1 CNRS and ENS Lyon, France 2 Nanyang Technological University, Singapore CRYPTO 2018,

More information

Code-based cryptography

Code-based cryptography Code-based graphy Laboratoire Hubert Curien, UMR CNRS 5516, Bâtiment F 18 rue du professeur Benoît Lauras 42000 Saint-Etienne France pierre.louis.cayrel@univ-st-etienne.fr June 4th 2013 Pierre-Louis CAYREL

More information

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease San Ling, Khoa Nguyen, Huaxiong Wang, Yanhong Xu Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang

More information

A new zero-knowledge code based identification scheme with reduced communication

A new zero-knowledge code based identification scheme with reduced communication A new zero-knowledge code based identification scheme with reduced communication Carlos Aguilar, Philippe Gaborit, Julien Schrek Université de Limoges, France. {carlos.aguilar,philippe.gaborit,julien.schrek}@xlim.fr

More information

Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures without Trapdoors

Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures without Trapdoors Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures without Trapdoors Benoît Libert 1, San Ling 2, Khoa Nguyen 2, and Huaxiong Wang 2 1 Ecole

More information

A brief survey of post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago

A brief survey of post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago A brief survey of post-quantum cryptography D. J. Bernstein University of Illinois at Chicago Once the enormous energy boost that quantum computers are expected to provide hits the street, most encryption

More information

arxiv: v1 [cs.cr] 25 Jan 2018

arxiv: v1 [cs.cr] 25 Jan 2018 Forward-Secure Group Signatures from Lattices San Ling, Khoa Nguyen, Huaxiong Wang, Yanhong Xu arxiv:1801.08323v1 [cs.cr] 25 Jan 2018 Division of Mathematical Sciences, School of Physical and Mathematical

More information

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors Qian Guo Thomas Johansson Paul Stankovski Dept. of Electrical and Information Technology, Lund University ASIACRYPT 2016 Dec 8th, 2016

More information

Cryptographie basée sur les codes correcteurs d erreurs et arithmétique

Cryptographie basée sur les codes correcteurs d erreurs et arithmétique with Cryptographie basée sur les correcteurs d erreurs et arithmétique with with Laboratoire Hubert Curien, UMR CNRS 5516, Bâtiment F 18 rue du professeur Benoît Lauras 42000 Saint-Etienne France pierre.louis.cayrel@univ-st-etienne.fr

More information

Forward-Secure Group Signatures from Lattices

Forward-Secure Group Signatures from Lattices Forward-Secure Group Signatures from Lattices San Ling, Khoa Nguyen, Huaxiong Wang, Yanhong Xu Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University,

More information

Non-Interactive Zero-Knowledge Proofs of Non-Membership

Non-Interactive Zero-Knowledge Proofs of Non-Membership Non-Interactive Zero-Knowledge Proofs of Non-Membership O. Blazy, C. Chevalier, D. Vergnaud XLim / Université Paris II / ENS O. Blazy (XLim) Negative-NIZK CT-RSA 2015 1 / 22 1 Brief Overview 2 Building

More information

A Lattice-Based Group Signature Scheme with Message-Dependent Opening

A Lattice-Based Group Signature Scheme with Message-Dependent Opening A Lattice-Based Group Signature Scheme with Message-Dependent Opening Benoît Libert, Fabrice Mouhartem, Khoa Nguyen To cite this version: Benoît Libert, Fabrice Mouhartem, Khoa Nguyen. A Lattice-Based

More information

A Lattice-Based Threshold Ring Signature Scheme (TRSS-L)

A Lattice-Based Threshold Ring Signature Scheme (TRSS-L) A Lattice-Based Threshold Ring Signature Scheme (TRSS-L) Pierre-Louis Cayrel 1 Richard Lindner 2 Markus Rückert 2 Rosemberg Silva 3 1 Center for Advanced Security Research Darmstadt (CASED) 2 Technische

More information

Picnic Post-Quantum Signatures from Zero Knowledge Proofs

Picnic Post-Quantum Signatures from Zero Knowledge Proofs Picnic Post-Quantum Signatures from Zero Knowledge Proofs MELISSA CHASE, MSR THE PICNIC TEAM DAVID DERLER STEVEN GOLDFEDER JONATHAN KATZ VLAD KOLESNIKOV CLAUDIO ORLANDI SEBASTIAN RAMACHER CHRISTIAN RECHBERGER

More information

Boneh-Franklin Identity Based Encryption Revisited

Boneh-Franklin Identity Based Encryption Revisited Boneh-Franklin Identity Based Encryption Revisited David Galindo Institute for Computing and Information Sciences Radboud University Nijmegen P.O.Box 9010 6500 GL, Nijmegen, The Netherlands. d.galindo@cs.ru.nl

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller Daniele Micciancio 1 Chris Peikert 2 1 UC San Diego 2 Georgia Tech April 2012 1 / 16 Lattice-Based Cryptography y = g x mod p m e mod N e(g a,

More information

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives S C I E N C E P A S S I O N T E C H N O L O G Y Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives David Derler, Christian Hanser, and Daniel Slamanig, IAIK,

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05

Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05 Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05 Fangguo Zhang 1 and Xiaofeng Chen 2 1 Department of Electronics and Communication Engineering, Sun Yat-sen

More information

High-speed cryptography, part 3: more cryptosystems. Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

High-speed cryptography, part 3: more cryptosystems. Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven High-speed cryptography, part 3: more cryptosystems Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven Cryptographers Working systems Cryptanalytic algorithm designers

More information

Improving the efficiency of Generalized Birthday Attacks against certain structured cryptosystems

Improving the efficiency of Generalized Birthday Attacks against certain structured cryptosystems Improving the efficiency of Generalized Birthday Attacks against certain structured cryptosystems Robert Niebuhr 1, Pierre-Louis Cayrel 2, and Johannes Buchmann 1,2 1 Technische Universität Darmstadt Fachbereich

More information

Cryptographic Protocols Notes 2

Cryptographic Protocols Notes 2 ETH Zurich, Department of Computer Science SS 2018 Prof. Ueli Maurer Dr. Martin Hirt Chen-Da Liu Zhang Cryptographic Protocols Notes 2 Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang) About the notes:

More information

Side-channel analysis in code-based cryptography

Side-channel analysis in code-based cryptography 1 Side-channel analysis in code-based cryptography Tania RICHMOND IMATH Laboratory University of Toulon SoSySec Seminar Rennes, April 5, 2017 Outline McEliece cryptosystem Timing Attack Power consumption

More information

What are we talking about when we talk about post-quantum cryptography?

What are we talking about when we talk about post-quantum cryptography? PQC Asia Forum Seoul, 2016 What are we talking about when we talk about post-quantum cryptography? Fang Song Portland State University PQC Asia Forum Seoul, 2016 A personal view on postquantum cryptography

More information

Code-based Cryptography

Code-based Cryptography a Hands-On Introduction Daniel Loebenberger Ηράκλειο, September 27, 2018 Post-Quantum Cryptography Various flavours: Lattice-based cryptography Hash-based cryptography Code-based

More information

Structure Preserving CCA Secure Encryption

Structure Preserving CCA Secure Encryption Structure Preserving CCA Secure Encryption presented by ZHANG Tao 1 / 9 Introduction Veriable Encryption enable validity check of the encryption (Camenisch et al. @ CRYPTO'03): veriable encryption of discrete

More information

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08:

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08: CHALMERS GÖTEBORGS UNIVERSITET EXAM IN CRYPTOGRAPHY TDA352 (Chalmers) - DIT250 (GU) 18 January 2019, 08:30 12.30 Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande

More information

Applied cryptography

Applied cryptography Applied cryptography Identity-based Cryptography Andreas Hülsing 19 November 2015 1 / 37 The public key problem How to obtain the correct public key of a user? How to check its authenticity? General answer:

More information

SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL. Mark Zhandry Stanford University

SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL. Mark Zhandry Stanford University SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL Mark Zhandry Stanford University Random Oracle Model (ROM) Sometimes, we can t prove a scheme secure in the standard model. Instead,

More information

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt NTRUReEncrypt An Efficient Proxy Re-Encryption Scheme based on NTRU David Nuñez, Isaac Agudo, and Javier Lopez Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain

More information

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1 Cryptography CS 555 Topic 23: Zero-Knowledge Proof and Cryptographic Commitment CS555 Topic 23 1 Outline and Readings Outline Zero-knowledge proof Fiat-Shamir protocol Schnorr protocol Commitment schemes

More information

Lossy Trapdoor Functions and Their Applications

Lossy Trapdoor Functions and Their Applications 1 / 15 Lossy Trapdoor Functions and Their Applications Chris Peikert Brent Waters SRI International On Losing Information 2 / 15 On Losing Information 2 / 15 On Losing Information 2 / 15 On Losing Information

More information

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms Made by: Ehsan Ebrahimi Theory of Cryptography Conference, Beijing, China Oct. 31 - Nov. 3, 2016 Joint work with Dominique Unruh Motivation:

More information

Post-Quantum Cryptography

Post-Quantum Cryptography Post-Quantum Cryptography Code-Based Cryptography Tanja Lange with some slides by Tung Chou and Christiane Peters Technische Universiteit Eindhoven ASCrypto Summer School: 18 September 2017 Error correction

More information

CRYPTANALYSIS OF COMPACT-LWE

CRYPTANALYSIS OF COMPACT-LWE SESSION ID: CRYP-T10 CRYPTANALYSIS OF COMPACT-LWE Jonathan Bootle, Mehdi Tibouchi, Keita Xagawa Background Information Lattice-based cryptographic assumption Based on the learning-with-errors (LWE) assumption

More information

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay Digital Signatures Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 24, 2018 1 / 29 Group Theory Recap Groups Definition A set

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification

Lecture 10. Public Key Cryptography: Encryption + Signatures. Identification Lecture 10 Public Key Cryptography: Encryption + Signatures 1 Identification Public key cryptography can be also used for IDENTIFICATION Identification is an interactive protocol whereby one party: prover

More information

Convertible Group Undeniable Signatures

Convertible Group Undeniable Signatures Convertible Group Undeniable Signatures Yuh-Dauh Lyuu 1 and Ming-Luen Wu 2 1 Dept. of Computer Science & Information Engineering and Dept. of Finance, National Taiwan University, Taiwan lyuu@csie.ntu.edu.tw

More information

Random Oracles in a Quantum World

Random Oracles in a Quantum World Random Oracles in a Quantum World AsiaISG Research Seminars 2011/2012 Özgür Dagdelen, Marc Fischlin (TU Darmstadt) Dan Boneh, Mark Zhandry (Stanford University) Anja Lehmann (IBM Zurich) Christian Schaffner

More information

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security The Game-based Methodology for Computational s David Pointcheval Ecole normale supérieure, CNRS & INRIA Computational and Symbolic Proofs of Security Atagawa Heights Japan April 6th, 2009 1/39 2/39 Public-Key

More information

Attacking and defending the McEliece cryptosystem

Attacking and defending the McEliece cryptosystem Attacking and defending the McEliece cryptosystem (Joint work with Daniel J. Bernstein and Tanja Lange) Christiane Peters Technische Universiteit Eindhoven PQCrypto 2nd Workshop on Postquantum Cryptography

More information

How to improve information set decoding exploiting that = 0 mod 2

How to improve information set decoding exploiting that = 0 mod 2 How to improve information set decoding exploiting that 1 + 1 = 0 mod 2 Anja Becker Postdoc at EPFL Seminar CCA January 11, 2013, Paris Representation Find unique solution to hard problem in cryptography

More information

McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks

McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks Hang Dinh Indiana Uniersity South Bend joint work with Cristopher Moore Uniersity of New Mexico Alexander Russell Uniersity

More information

FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes

FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes Wen Wang 1, Jakub Szefer 1, and Ruben Niederhagen 2 1. Yale University, USA 2. Fraunhofer Institute SIT, Germany April 9, 2018 PQCrypto 2018

More information

Identity-Based Online/Offline Encryption

Identity-Based Online/Offline Encryption Fuchun Guo 2 Yi Mu 1 Zhide Chen 2 1 University of Wollongong, Australia ymu@uow.edu.au 2 Fujian Normal University, Fuzhou, China fuchunguo1982@gmail.com Outline 1 2 3 4 Identity-based Encryption Review

More information

Code-based post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago

Code-based post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago Code-based post-quantum cryptography D. J. Bernstein University of Illinois at Chicago Once the enormous energy boost that quantum computers are expected to provide hits the street, most encryption security

More information

Errors, Eavesdroppers, and Enormous Matrices

Errors, Eavesdroppers, and Enormous Matrices Errors, Eavesdroppers, and Enormous Matrices Jessalyn Bolkema September 1, 2016 University of Nebraska - Lincoln Keep it secret, keep it safe Public Key Cryptography The idea: We want a one-way lock so,

More information

Systèmes de preuve Groth-Sahai et applications

Systèmes de preuve Groth-Sahai et applications Systèmes de preuve Groth-Sahai et applications Damien Vergnaud École normale supérieure C.N.R.S. I.N.R.I.A. 22 octobre 2010 Séminaire CCA D. Vergnaud (ENS) Groth-Sahai proof system and applications Oct.

More information

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol Non-Interactive ZK: The Feige-Lapidot-Shamir protocol April 20, 2009 Remainders FLS protocol Definition (Interactive proof system) A pair of interactive machines (P, V ) is called an interactive proof

More information

Adaptive partitioning. Dennis Hofheinz (KIT, Karlsruhe)

Adaptive partitioning. Dennis Hofheinz (KIT, Karlsruhe) Adaptive partitioning Dennis Hofheinz (KIT, Karlsruhe) Public-Key Encryption Public-Key Encryption Accepted security notion: chosen-ciphertext security (IND-CCA) Public-Key Encryption Accepted security

More information

Efficient and Provably Secure Trapdoor-free Group Signature Schemes from Bilinear Pairings

Efficient and Provably Secure Trapdoor-free Group Signature Schemes from Bilinear Pairings Efficient and Provably Secure Trapdoor-free Group Signature Schemes from Bilinear Pairings 1 Lan Nguyen and Rei Safavi-Naini School of Information Technology and Computer Science University of Wollongong,

More information

Lattice-Based Non-Interactive Arugment Systems

Lattice-Based Non-Interactive Arugment Systems Lattice-Based Non-Interactive Arugment Systems David Wu Stanford University Based on joint works with Dan Boneh, Yuval Ishai, Sam Kim, and Amit Sahai Soundness: x L, P Pr P, V (x) = accept = 0 No prover

More information

Floppy-Sized Group Signatures from Lattices

Floppy-Sized Group Signatures from Lattices Floppy-Sized Group Signatures from Lattices Cecilia Boschini 1,2( ), Jan Camenisch 1, and Gregory Neven 1 1 IBM Research, Zurich, Switzerland 2 Università della Svizzera Italiana, Lugano, Switzerland {bos,jca,nev}@zurich.ibm.com

More information

A Group Signature Scheme from Lattice Assumptions

A Group Signature Scheme from Lattice Assumptions A Group Signature Scheme from Lattice Assumptions S. Dov Gordon Jonathan Katz Vinod Vaikuntanathan Abstract Group signature schemes allow users to sign messages on behalf of a group while (1) maintaining

More information

Cryptography in the Quantum Era. Tomas Rosa and Jiri Pavlu Cryptology and Biometrics Competence Centre, Raiffeisen BANK International

Cryptography in the Quantum Era. Tomas Rosa and Jiri Pavlu Cryptology and Biometrics Competence Centre, Raiffeisen BANK International Cryptography in the Quantum Era Tomas Rosa and Jiri Pavlu Cryptology and Biometrics Competence Centre, Raiffeisen BANK International Postulate #1: Qubit state belongs to Hilbert space of dimension 2 ψ

More information

Gurgen Khachatrian Martun Karapetyan

Gurgen Khachatrian Martun Karapetyan 34 International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016 On a public key encryption algorithm based on Permutation Polynomials and performance analyses Gurgen Khachatrian

More information

Security Arguments for Digital Signatures and Blind Signatures

Security Arguments for Digital Signatures and Blind Signatures J. Cryptology (2000) 13: 361 396 DOI: 10.1007/s001450010003 2000 International Association for Cryptologic Research Security Arguments for Digital Signatures and Blind Signatures David Pointcheval and

More information

Efficient Group Signatures without Trapdoors

Efficient Group Signatures without Trapdoors Efficient Group Signatures without Trapdoors Giuseppe Ateniese and Breno de Medeiros The Johns Hopkins University Department of Computer Science Baltimore, MD 21218, USA ateniese@cs.jhu.edu, breno.demedeiros@acm.org

More information

Lattice-Based Fault Attacks on RSA Signatures

Lattice-Based Fault Attacks on RSA Signatures Lattice-Based Fault Attacks on RSA Signatures Mehdi Tibouchi École normale supérieure Workshop on Applied Cryptography, Singapore, 2010-12-03 Gist of this talk Review a classical attack on RSA signatures

More information

A new security notion for asymmetric encryption Draft #8

A new security notion for asymmetric encryption Draft #8 A new security notion for asymmetric encryption Draft #8 Muhammad Rezal Kamel Ariffin 1,2 1 Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, 2 Department of Mathematics,

More information

Post-Quantum Cryptography & Privacy. Andreas Hülsing

Post-Quantum Cryptography & Privacy. Andreas Hülsing Post-Quantum Cryptography & Privacy Andreas Hülsing Privacy? Too abstract? How to achieve privacy? Under the hood... Public-key crypto ECC RSA DSA Secret-key crypto AES SHA2 SHA1... Combination of both

More information

Quantum-secure symmetric-key cryptography based on Hidden Shifts

Quantum-secure symmetric-key cryptography based on Hidden Shifts Quantum-secure symmetric-key cryptography based on Hidden Shifts Gorjan Alagic QMATH, Department of Mathematical Sciences University of Copenhagen Alexander Russell Department of Computer Science & Engineering

More information

arxiv: v1 [cs.cr] 16 Dec 2013

arxiv: v1 [cs.cr] 16 Dec 2013 Post-Quantum Cryptography: Code-based Signatures Pierre-Louis Cayrel and Mohammed Meziani CASED Center for Advanced Security Research Darmstadt Mornewegstrasse, 64293 Darmstadt, Germany pierre-louis.cayrel@cased.de

More information

Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives

Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives David Derler 1, Sebastian Ramacher 1, and Daniel Slamanig 2 1 IAIK, Graz University

More information

Proofs on Encrypted Values in Bilinear Groups and an Application to Anonymity of Signatures

Proofs on Encrypted Values in Bilinear Groups and an Application to Anonymity of Signatures Proofs on Encrypted Values in Bilinear Groups and an Application to Anonymity of Signatures G. Fuchsbauer D. Pointcheval École normale supérieure Pairing'09, 13.08.2009 Fuchsbauer, Pointcheval (ENS) Proofs

More information

Analysis - "Post-Quantum Security of Fiat-Shamir" by Dominic Unruh

Analysis - Post-Quantum Security of Fiat-Shamir by Dominic Unruh Analysis - "Post-Quantum Security of Fiat-Shamir" by Dominic Unruh Bruno Produit Institute of Computer Science University of Tartu produit@ut.ee December 19, 2017 Abstract This document is an analysis

More information

Ring Group Signatures

Ring Group Signatures Ring Group Signatures Liqun Chen Hewlett-Packard Laboratories, Long Down Avenue, Stoke Gifford, Bristol, BS34 8QZ, United Kingdom. liqun.chen@hp.com Abstract. In many applications of group signatures,

More information

Some ZK security proofs for Belenios

Some ZK security proofs for Belenios Some ZK security proofs for Belenios Pierrick Gaudry CNRS, INRIA, Université de Lorraine January 30, 2017 The purpose of this document is to justify the use of ZK proofs in Belenios. Most of them are exactly

More information

From NewHope to Kyber. Peter Schwabe April 7, 2017

From NewHope to Kyber. Peter Schwabe   April 7, 2017 From NewHope to Kyber Peter Schwabe peter@cryptojedi.org https://cryptojedi.org April 7, 2017 In the past, people have said, maybe it s 50 years away, it s a dream, maybe it ll happen sometime. I used

More information

A Strong Identity Based Key-Insulated Cryptosystem

A Strong Identity Based Key-Insulated Cryptosystem A Strong Identity Based Key-Insulated Cryptosystem Jin Li 1, Fangguo Zhang 2,3, and Yanming Wang 1,4 1 School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, P.R.China

More information

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 13 More

More information

Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model. Shuichi Katsumata (The University of Tokyo /AIST) Takashi Yamakawa (NTT)

Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model. Shuichi Katsumata (The University of Tokyo /AIST) Takashi Yamakawa (NTT) 1 Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model (The University of Tokyo /AIST) *Pronounced as Shuichi Katsumata (The University of Tokyo /AIST) Shota Yamada (AIST) Takashi Yamakawa

More information

Code-based identification and signature schemes in software

Code-based identification and signature schemes in software Author manuscript, published in "MoCrySEn 2013, Germany (2013)" Code-based identification and signature schemes in software Sidi Mohamed El Yousfi Alaoui 1, Pierre-Louis Cayrel 2, Rachid El Bansarkhani

More information

Hidden Field Equations

Hidden Field Equations Security of Hidden Field Equations (HFE) 1 The security of Hidden Field Equations ( H F E ) Nicolas T. Courtois INRIA, Paris 6 and Toulon University courtois@minrank.org Permanent HFE web page : hfe.minrank.org

More information

Notes for Lecture 9. Last time, we introduced zero knowledge proofs and showed how interactive zero knowledge proofs could be constructed from OWFs.

Notes for Lecture 9. Last time, we introduced zero knowledge proofs and showed how interactive zero knowledge proofs could be constructed from OWFs. COS 533: Advanced Cryptography Lecture 9 (October 11, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Udaya Ghai Notes for Lecture 9 1 Last Time Last time, we introduced zero knowledge proofs

More information

Algorithmic Number Theory and Public-key Cryptography

Algorithmic Number Theory and Public-key Cryptography Algorithmic Number Theory and Public-key Cryptography Course 3 University of Luxembourg March 22, 2018 The RSA algorithm The RSA algorithm is the most widely-used public-key encryption algorithm Invented

More information

Noisy Diffie-Hellman protocols

Noisy Diffie-Hellman protocols Noisy Diffie-Hellman protocols Carlos Aguilar 1, Philippe Gaborit 1, Patrick Lacharme 1, Julien Schrek 1 and Gilles Zémor 2 1 University of Limoges, France, 2 University of Bordeaux, France. Classical

More information

Blind Collective Signature Protocol

Blind Collective Signature Protocol Computer Science Journal of Moldova, vol.19, no.1(55), 2011 Blind Collective Signature Protocol Nikolay A. Moldovyan Abstract Using the digital signature (DS) scheme specified by Belarusian DS standard

More information

Public-Key Identification Schemes based on Multivariate Quadratic Polynomials

Public-Key Identification Schemes based on Multivariate Quadratic Polynomials Public-Key Identification Schemes based on Multivariate Quadratic Polynomials Koichi Sakumoto, Taizo Shirai, Harunaga Hiwatari from Tokyo, Japan Sony Corporation @CRYPTO2011 Motivation Finding a new alternative

More information

Fang Song. Joint work with Sean Hallgren and Adam Smith. Computer Science and Engineering Penn State University

Fang Song. Joint work with Sean Hallgren and Adam Smith. Computer Science and Engineering Penn State University Fang Song Joint work with Sean Hallgren and Adam Smith Computer Science and Engineering Penn State University Are classical cryptographic protocols secure against quantum attackers? 2 Are classical cryptographic

More information

Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics

Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics Privacy and Computer Science (ECI 2015) Day 4 - Zero Knowledge Proofs Mathematics F. Prost Frederic.Prost@ens-lyon.fr Ecole Normale Supérieure de Lyon July 2015 F. Prost Frederic.Prost@ens-lyon.fr (Ecole

More information

Post-Quantum Code-Based Cryptography

Post-Quantum Code-Based Cryptography Big Data Photonics UCLA Post-Quantum Code-Based Cryptography 03-25-2016 Valérie Gauthier Umaña Assistant Professor valeriee.gauthier@urosario.edu.co Cryptography Alice 1 Cryptography Alice Bob 1 Cryptography

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Identification Identification Non- Repudiation Consider signature- based C- R sk ch=r res = Sig(vk,ch) Bob can prove to police

More information

George Danezis Microsoft Research, Cambridge, UK

George Danezis Microsoft Research, Cambridge, UK George Danezis Microsoft Research, Cambridge, UK Identity as a proxy to check credentials Username decides access in Access Control Matrix Sometime it leaks too much information Real world examples Tickets

More information

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08:

EXAM IN. TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08: CHALMERS GÖTEBORGS UNIVERSITET EXAM IN CRYPTOGRAPHY TDA352 (Chalmers) - DIT250 (GU) 12 January 2018, 08:30 12.30 Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

The failure of McEliece PKC based on Reed-Muller codes.

The failure of McEliece PKC based on Reed-Muller codes. The failure of McEliece PKC based on Reed-Muller codes. May 8, 2013 I. V. Chizhov 1, M. A. Borodin 2 1 Lomonosov Moscow State University. email: ivchizhov@gmail.com, ichizhov@cs.msu.ru 2 Lomonosov Moscow

More information

On the Big Gap Between p and q in DSA

On the Big Gap Between p and q in DSA On the Big Gap Between p and in DSA Zhengjun Cao Department of Mathematics, Shanghai University, Shanghai, China, 200444. caozhj@shu.edu.cn Abstract We introduce a message attack against DSA and show that

More information

Lecture Notes 20: Zero-Knowledge Proofs

Lecture Notes 20: Zero-Knowledge Proofs CS 127/CSCI E-127: Introduction to Cryptography Prof. Salil Vadhan Fall 2013 Lecture Notes 20: Zero-Knowledge Proofs Reading. Katz-Lindell Ÿ14.6.0-14.6.4,14.7 1 Interactive Proofs Motivation: how can parties

More information

On the Impossibility of Batch Update for Cryptographic Accumulators

On the Impossibility of Batch Update for Cryptographic Accumulators for Philippe Camacho (pcamacho@dcc.uchile.cl) Alejandro Hevia (ahevia@dcc.uchile.cl) FMCrypto Workshop: Formal Methods in Cryptography University of Chile March 24, 2010 Introduction This work is about

More information

Random Oracles in a Quantum World

Random Oracles in a Quantum World Dan Boneh 1 Özgür Dagdelen 2 Marc Fischlin 2 Anja Lehmann 3 Christian Schaffner 4 Mark Zhandry 1 1 Stanford University, USA 2 CASED & Darmstadt University of Technology, Germany 3 IBM Research Zurich,

More information

Notes for Lecture 9. 1 Combining Encryption and Authentication

Notes for Lecture 9. 1 Combining Encryption and Authentication U.C. Berkeley CS276: Cryptography Handout N9 Luca Trevisan February 17, 2009 Notes for Lecture 9 Notes scribed by Joel Weinberger, posted March 1, 2009 Summary Last time, we showed that combining a CPA-secure

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

A New Hard Problem over Non- Commutative Finite Groups for Cryptographic Protocols

A New Hard Problem over Non- Commutative Finite Groups for Cryptographic Protocols Moldovyan D.N., Moldovyan N.A. St.etersburg, Russia, SPIIRAS A New Hard Problem over Non- Commutative Finite Groups for Cryptographic Protocols Reporter: Moldovyan N.A. Structure of the report 1. Hard

More information