Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms

Size: px
Start display at page:

Download "Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms"

Transcription

1 Post-Quantum Security of the Fujisaki-Okamoto (FO) and OAEP Transforms Made by: Ehsan Ebrahimi Theory of Cryptography Conference, Beijing, China Oct Nov. 3, 2016 Joint work with Dominique Unruh

2 Motivation: Post-Quantum Cryptography Users intend to use classical cryptographic schemes, however, the adversary has the quantum computing power. 1 [Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

3 Motivation: Post-Quantum Cryptography Users intend to use classical cryptographic schemes, however, the adversary has the quantum computing power. 1 Quantum hard problems are needed. 1 [Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

4 Motivation: Post-Quantum Cryptography Users intend to use classical cryptographic schemes, however, the adversary has the quantum computing power. 1 Quantum hard problems are needed. 2 Design cryptographic schemes based on them. 1 [Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

5 Motivation: Post-Quantum Cryptography Users intend to use classical cryptographic schemes, however, the adversary has the quantum computing power. 1 Quantum hard problems are needed. 2 Design cryptographic schemes based on them. 3 Prove quantum security: classical security may not work. 1 [Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

6 Motivation: Post-Quantum Cryptography Users intend to use classical cryptographic schemes, however, the adversary has the quantum computing power. 1 Quantum hard problems are needed. 2 Design cryptographic schemes based on them. 3 Prove quantum security: classical security may not work. E.g. Security proofs in the Random Oracle Model. 1 [Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

7 Motivation: Post-Quantum Cryptography Users intend to use classical cryptographic schemes, however, the adversary has the quantum computing power. 1 Quantum hard problems are needed. 2 Design cryptographic schemes based on them. 3 Prove quantum security: classical security may not work. E.g. Security proofs in the Random Oracle Model. Relative to a specific oracle, the Fiat-Shamir transform is insecure in the quantum setting. 1 1 [Ambainis, Rosmanis and Unruh, Quantum attacks on classical proof systems (the hardness of quantum rewinding), FOCS 2014]

8 Our contribution Security of the slightly modified Fujisaki-Okamoto and OAEP transforms in the Quantum Random Oracle Model.

9 Random Oracle Model in quantum setting f Adversary Quantum Setting: Cryptographic Scheme 2 2 [Boneh et al. Random Oracles in a Quantum World. ASIACRYPT 2011]

10 Fujisaki-Okamoto (FO) transform Random δ G key priv Enc G δ H Randomness publ Enc pk Message m C 1 C 2

11 Fujisaki-Okamoto (FO) transform: properties of its ingredients The private-key encryption encryption scheme is One-Time secure.

12 Fujisaki-Okamoto (FO) transform: properties of its ingredients The private-key encryption encryption scheme is One-Time secure. The public-key encryption encryption scheme is One-Way secure.

13 Fujisaki-Okamoto (FO) transform: properties of its ingredients The private-key encryption encryption scheme is One-Time secure. The public-key encryption encryption scheme is One-Way secure. The public-key encryption encryption scheme if Well-Spread.

14 Fujisaki-Okamoto (FO) transform: properties of its ingredients The private-key encryption encryption scheme is One-Time secure. The public-key encryption encryption scheme is One-Way secure. The public-key encryption encryption scheme if Well-Spread. Security: IND-CCA secure in the Random Oracle Model

15 Fujisaki-Okamoto (FO) transform: properties of its ingredients The private-key encryption encryption scheme is One-Time secure. The public-key encryption encryption scheme is One-Way secure. The public-key encryption encryption scheme if Well-Spread. Security: IND-CCA secure in the Random Oracle Model Question: What about security in the Quantum Random Oracle Model (QROM)?

16 IND-CCA in the QROM Random oracles H, G Quantum Adversary (pk) m 0, m 1 y = Enc hy (m b, randomness) Decryption queries (not y) Challenger (pk,sk) b $ {0,1} Outputs b and wins if b = b

17 Challenges in the Quantum setting FO: Enc hy pk (m; δ) = ( Enc publ pk ( δ; H ( δ Enc priv G(δ) (m))), Enc priv G(δ) (m) ) Security techniques used in the classical proof:

18 Challenges in the Quantum setting FO: Enc hy pk (m; δ) = ( Enc publ pk ( δ; H ( δ Enc priv G(δ) (m))), Enc priv G(δ) (m) ) Security techniques used in the classical proof: 1 List of (δ, H(δ)) and (δ, G(δ)) are needed!

19 Challenges in the Quantum setting FO: Enc hy pk (m; δ) = ( Enc publ pk ( δ; H ( δ Enc priv G(δ) (m))), Enc priv G(δ) (m) ) Security techniques used in the classical proof: 1 List of (δ, H(δ)) and (δ, G(δ)) are needed! 2 Reprogramme the random oracle: E.g. They use some random elements instead of a given output G(δ ) and H(δ.)!

20 Challenges in the Quantum setting FO: Enc hy pk (m; δ) = ( Enc publ pk Security techniques used in the classical proof: 1 List of (δ, H(δ)) and (δ, G(δ)) are needed! ( δ; H ( δ Enc priv G(δ) (m))), Enc priv G(δ) (m) ) 2 Reprogramme the random oracle: E.g. They use some random elements instead of a given output G(δ ) and H(δ.)! 3 Finding x x st. Enc publ pk (δ ; H(x)) = Enc publ pk (δ ; H(x )) is hard!

21 Challenges in the Quantum setting FO: Enc hy pk (m; δ) = ( Enc publ pk Security techniques used in the classical proof: 1 List of (δ, H(δ)) and (δ, G(δ)) are needed! ( δ; H ( δ Enc priv G(δ) (m))), Enc priv G(δ) (m) ) 2 Reprogramme the random oracle: E.g. They use some random elements instead of a given output G(δ ) and H(δ.)! 3 Finding x x st. Enc publ pk (δ ; H(x)) = Enc publ pk (δ ; H(x )) is hard!

22 Solutions to the Challenges 1 List of (x, H(x)) and (x, G(x)) are needed! Add ( H (δ) to the ciphertext ( Enc asy pk δ; H ( ) δ Enc sy G(δ) (m))), Enc sy G(δ) (m), H (δ). 3 [Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014 ] 4 [Ebrahimi Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016]

23 Solutions to the Challenges 1 List of (x, H(x)) and (x, G(x)) are needed! Add ( H (δ) to the ciphertext ( Enc asy pk δ; H ( ) δ Enc sy G(δ) (m))), Enc sy G(δ) (m), H (δ) 2 It uses a random element instead of a given output H(δ) or G(δ)! Using One-way to hiding Lemmas 3 as a tool to reprogramme the random oracle. 3 [Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014 ] 4 [Ebrahimi Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016]

24 Solutions to the Challenges 1 List of (x, H(x)) and (x, G(x)) are needed! Add ( H (δ) to the ciphertext ( Enc asy pk δ; H ( ) δ Enc sy G(δ) (m))), Enc sy G(δ) (m), H (δ) 2 It uses a random element instead of a given output H(δ) or G(δ)! Using One-way to hiding Lemmas 3 as a tool to reprogramme the random oracle 3 Finding x x st. Enc asy pk (δ; H(x)) = Encasy pk (δ; H(x )) is hard! The collision-resistance of random functions with outputs sampled from a non-uniform distribution 4. 3 [Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014 ] 4 [Ebrahimi Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016]

25 Solutions to the Challenges 1 List of (x, H(x)) and (x, G(x)) are needed! Add ( H (δ) to the ciphertext ( Enc asy pk δ; H ( ) δ Enc sy G(δ) (m))), Enc sy G(δ) (m), H (δ) 2 It uses a random element instead of a given output H(δ) or G(δ)! Using One-way to hiding Lemmas 3 as a tool to reprogramme the random oracle 3 Finding x x st. Enc asy pk (δ; H(x)) = Encasy pk (δ; H(x )) is hard! The collision-resistance of random functions with outputs sampled from a non-uniform distribution 4 Comment: The same proof techniques work for OAEP transform 3 [Unruh, Revocable quantum timed-release encryption, Eurocrypt 2014 ] 4 [Ebrahimi Targhi, Tabia, Unruh. Quantum Collision-Resistance of Non-uniformly Distributed Functions. PQCrypto 2016].

26 Question? Thank you!

On Post-Quantum Cryptography

On Post-Quantum Cryptography On Post-Quantum Cryptography Ehsan Ebrahimi Quantum Cryptography Group University of Tartu, Estonia 15 March 2018 Information Security and Cryptography Group Seminar Post-Quantum Cryptography Users intend

More information

A Generic Hybrid Encryption Construction in the Quantum Random Oracle Model

A Generic Hybrid Encryption Construction in the Quantum Random Oracle Model A Generic Hybrid Encryption Construction in the Quantum Random Oracle Model Presented by: Angela Robinson Department of Mathematical Sciences, Florida Atlantic University April 4, 2018 Motivation Quantum-resistance

More information

Post-quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation.

Post-quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation. OFB, CTR, In CBC, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, Dominique Unruh University of Tartu February 4, 2016 Table of contents In CBC 1 2 3 4 In CBC PRF under quantum 5 6 Being optimistic about the emergence

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security The Game-based Methodology for Computational s David Pointcheval Ecole normale supérieure, CNRS & INRIA Computational and Symbolic Proofs of Security Atagawa Heights Japan April 6th, 2009 1/39 2/39 Public-Key

More information

Random Oracles in a Quantum World

Random Oracles in a Quantum World Dan Boneh 1 Özgür Dagdelen 2 Marc Fischlin 2 Anja Lehmann 3 Christian Schaffner 4 Mark Zhandry 1 1 Stanford University, USA 2 CASED & Darmstadt University of Technology, Germany 3 IBM Research Zurich,

More information

CRYPTANALYSIS OF COMPACT-LWE

CRYPTANALYSIS OF COMPACT-LWE SESSION ID: CRYP-T10 CRYPTANALYSIS OF COMPACT-LWE Jonathan Bootle, Mehdi Tibouchi, Keita Xagawa Background Information Lattice-based cryptographic assumption Based on the learning-with-errors (LWE) assumption

More information

SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL. Mark Zhandry Stanford University

SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL. Mark Zhandry Stanford University SECURE IDENTITY-BASED ENCRYPTION IN THE QUANTUM RANDOM ORACLE MODEL Mark Zhandry Stanford University Random Oracle Model (ROM) Sometimes, we can t prove a scheme secure in the standard model. Instead,

More information

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ongxing Lu and Zhenfu Cao Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.. China {cao-zf,

More information

A Strong Identity Based Key-Insulated Cryptosystem

A Strong Identity Based Key-Insulated Cryptosystem A Strong Identity Based Key-Insulated Cryptosystem Jin Li 1, Fangguo Zhang 2,3, and Yanming Wang 1,4 1 School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, P.R.China

More information

On the Selective-Opening Security of DHIES

On the Selective-Opening Security of DHIES On the Selective-Opening Security of DHIES and other practical encryption schemes UbiCrypt Research Retreat, Schloss Raesfeld: 29.& 30. Sep. 2014 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge Horst

More information

Boneh-Franklin Identity Based Encryption Revisited

Boneh-Franklin Identity Based Encryption Revisited Boneh-Franklin Identity Based Encryption Revisited David Galindo Institute for Computing and Information Sciences Radboud University Nijmegen P.O.Box 9010 6500 GL, Nijmegen, The Netherlands. d.galindo@cs.ru.nl

More information

Models and analysis of security protocols 1st Semester Symmetric Encryption Lecture 5

Models and analysis of security protocols 1st Semester Symmetric Encryption Lecture 5 Models and analysis of security protocols 1st Semester 2009-2010 Symmetric Encryption Lecture 5 Pascal Lafourcade Université Joseph Fourier, Verimag Master: September 29th 2009 1 / 60 Last Time (I) Security

More information

Analysis - "Post-Quantum Security of Fiat-Shamir" by Dominic Unruh

Analysis - Post-Quantum Security of Fiat-Shamir by Dominic Unruh Analysis - "Post-Quantum Security of Fiat-Shamir" by Dominic Unruh Bruno Produit Institute of Computer Science University of Tartu produit@ut.ee December 19, 2017 Abstract This document is an analysis

More information

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD Mark Zhandry Stanford University * Joint work with Dan Boneh But First: My Current Work Indistinguishability Obfuscation (and variants) Multiparty NIKE without

More information

On the power of non-adaptive quantum chosen-ciphertext attacks

On the power of non-adaptive quantum chosen-ciphertext attacks On the power of non-adaptive quantum chosen-ciphertext attacks joint work with Gorjan Alagic (UMD, NIST), Stacey Jeffery (QuSoft, CWI), and Maris Ozols (QuSoft, UvA) Alexander Poremba August 29, 2018 Heidelberg

More information

Gentry IBE Paper Reading

Gentry IBE Paper Reading Gentry IBE Paper Reading Y. Jiang 1 1 University of Wollongong September 5, 2014 Literature Craig Gentry. Practical Identity-Based Encryption Without Random Oracles. Advances in Cryptology - EUROCRYPT

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

arxiv: v2 [cs.cr] 14 Feb 2018

arxiv: v2 [cs.cr] 14 Feb 2018 Code-based Key Encapsulation from McEliece s Cryptosystem Edoardo Persichetti arxiv:1706.06306v2 [cs.cr] 14 Feb 2018 Florida Atlantic University Abstract. In this paper we show that it is possible to extend

More information

(Tightly) QCCA-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model

(Tightly) QCCA-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model (Tightly) QCCA-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model Keita Xagawa and Takashi Yamakawa October 19, 018 NTT Secure Platform Laboratories 3-9-11, Midori-cho umsashino-shi,

More information

Secure Certificateless Public Key Encryption without Redundancy

Secure Certificateless Public Key Encryption without Redundancy Secure Certificateless Public Key Encryption without Redundancy Yinxia Sun and Futai Zhang School of Mathematics and Computer Science Nanjing Normal University, Nanjing 210097, P.R.China Abstract. Certificateless

More information

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt NTRUReEncrypt An Efficient Proxy Re-Encryption Scheme based on NTRU David Nuñez, Isaac Agudo, and Javier Lopez Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain

More information

Practical CCA2-Secure and Masked Ring-LWE Implementation

Practical CCA2-Secure and Masked Ring-LWE Implementation Practical CCA2-Secure and Masked Ring-LWE Implementation Tobias Oder 1, Tobias Schneider 2, Thomas Pöppelmann 3, Tim Güneysu 1,4 1 Ruhr-University Bochum, 2 Université Catholique de Louvain, 3 Infineon

More information

Public Key Broadcast Encryption with Low Number of Keys and Constant Decryption Time

Public Key Broadcast Encryption with Low Number of Keys and Constant Decryption Time Public Key Broadcast Encryption with Low Number of Keys and Constant Decryption Time Yi-Ru Liu, Wen-Guey Tzeng Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 30050 Email:

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Ali El Kaafarani 1 Mathematical Institute 2 PQShield Ltd. 1 of 44 Outline 1 Public Key Encryption: security notions 2 RSA Encryption Scheme 2 of 44 Course main reference 3 of 44

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

Post-quantum security models for authenticated encryption

Post-quantum security models for authenticated encryption Post-quantum security models for authenticated encryption Vladimir Soukharev David R. Cheriton School of Computer Science February 24, 2016 Introduction Bellare and Namprempre in 2008, have shown that

More information

BEYOND POST QUANTUM CRYPTOGRAPHY

BEYOND POST QUANTUM CRYPTOGRAPHY BEYOND POST QUANTUM CRYPTOGRAPHY Mark Zhandry Stanford University Joint work with Dan Boneh Classical Cryptography Post-Quantum Cryptography All communication stays classical Beyond Post-Quantum Cryptography

More information

Quantum Attacks on Classical Proof Systems

Quantum Attacks on Classical Proof Systems Quantum Attacks on Classical Proof Systems The Hardness of Quantum Rewinding University of Tartu With Andris Ambainis, Ansis Rosmanis QCrypt 2014 Classical Crypto (Quick intro.) Quantum Attacks on Classical

More information

Verifiable Security of Boneh-Franklin Identity-Based Encryption. Federico Olmedo Gilles Barthe Santiago Zanella Béguelin

Verifiable Security of Boneh-Franklin Identity-Based Encryption. Federico Olmedo Gilles Barthe Santiago Zanella Béguelin Verifiable Security of Boneh-Franklin Identity-Based Encryption Federico Olmedo Gilles Barthe Santiago Zanella Béguelin IMDEA Software Institute, Madrid, Spain 5 th International Conference on Provable

More information

Solution of Exercise Sheet 7

Solution of Exercise Sheet 7 saarland Foundations of Cybersecurity (Winter 16/17) Prof. Dr. Michael Backes CISPA / Saarland University university computer science Solution of Exercise Sheet 7 1 Variants of Modes of Operation Let (K,

More information

Applied cryptography

Applied cryptography Applied cryptography Identity-based Cryptography Andreas Hülsing 19 November 2015 1 / 37 The public key problem How to obtain the correct public key of a user? How to check its authenticity? General answer:

More information

Extractable Perfectly One-way Functions

Extractable Perfectly One-way Functions Extractable Perfectly One-way Functions Ran Canetti 1 and Ronny Ramzi Dakdouk 2 1 IBM T. J. Watson Research Center, Hawthorne, NY. canetti@watson.ibm.com 2 Yale University, New Haven, CT. dakdouk@cs.yale.edu

More information

Quantum Collision-Finding in Non-Uniform Random Functions

Quantum Collision-Finding in Non-Uniform Random Functions Quantum Collision-Finding in Non-Uniform Random Functions Marko Balogh 1, Edward Eaton 2, and Fang Song 3 1 Department of Physics, Portland State University marko balogh@me.com 2 Department of Combinatorics

More information

Modern Cryptography Lecture 4

Modern Cryptography Lecture 4 Modern Cryptography Lecture 4 Pseudorandom Functions Block-Ciphers Modes of Operation Chosen-Ciphertext Security 1 October 30th, 2018 2 Webpage Page for first part, Homeworks, Slides http://pub.ist.ac.at/crypto/moderncrypto18.html

More information

REMARKS ON IBE SCHEME OF WANG AND CAO

REMARKS ON IBE SCHEME OF WANG AND CAO REMARKS ON IBE SCEME OF WANG AND CAO Sunder Lal and Priyam Sharma Derpartment of Mathematics, Dr. B.R.A.(Agra), University, Agra-800(UP), India. E-mail- sunder_lal@rediffmail.com, priyam_sharma.ibs@rediffmail.com

More information

On the CCA1-Security of Elgamal and Damgård s Elgamal

On the CCA1-Security of Elgamal and Damgård s Elgamal On the CCA1-Security of Elgamal and Damgård s Elgamal Cybernetica AS, Estonia Tallinn University, Estonia October 21, 2010 Outline I Motivation 1 Motivation 2 3 Motivation Three well-known security requirements

More information

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World Dan Boneh Mark Zhandry Stanford University {dabo,zhandry}@cs.stanford.edu Abstract We initiate the study of quantum-secure digital

More information

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University Secure Signatures and Chosen Ciphertext Security in a Quantu Coputing World Dan Boneh and Mark Zhandry Stanford University Classical Chosen Message Attack (CMA) σ = S(sk, ) signing key sk Classical CMA

More information

Chosen-Ciphertext Security without Redundancy

Chosen-Ciphertext Security without Redundancy This is the full version of the extended abstract which appears in Advances in Cryptology Proceedings of Asiacrypt 03 (30 november 4 december 2003, Taiwan) C. S. Laih Ed. Springer-Verlag, LNCS 2894, pages

More information

CPA-Security. Definition: A private-key encryption scheme

CPA-Security. Definition: A private-key encryption scheme CPA-Security The CPA Indistinguishability Experiment PrivK cpa A,Π n : 1. A key k is generated by running Gen 1 n. 2. The adversary A is given input 1 n and oracle access to Enc k, and outputs a pair of

More information

Evaluation of Security Level of Cryptography: The HIME(R) Encryption Scheme. Alfred Menezes University of Waterloo Contact:

Evaluation of Security Level of Cryptography: The HIME(R) Encryption Scheme. Alfred Menezes University of Waterloo Contact: Evaluation of Security Level of Cryptography: The HIME(R) Encryption Scheme Alfred Menezes University of Waterloo Contact: ajmeneze@uwaterloo.ca July 31, 2002 Contents Page 1 Contents 1 Executive Summary

More information

G Advanced Cryptography April 10th, Lecture 11

G Advanced Cryptography April 10th, Lecture 11 G.30-001 Advanced Cryptography April 10th, 007 Lecturer: Victor Shoup Lecture 11 Scribe: Kristiyan Haralambiev We continue the discussion of public key encryption. Last time, we studied Hash Proof Systems

More information

Chapter 11 : Private-Key Encryption

Chapter 11 : Private-Key Encryption COMP547 Claude Crépeau INTRODUCTION TO MODERN CRYPTOGRAPHY _ Second Edition _ Jonathan Katz Yehuda Lindell Chapter 11 : Private-Key Encryption 1 Chapter 11 Public-Key Encryption Apologies: all numbering

More information

CRYPTOGRAPHY IN THE AGE OF QUANTUM COMPUTERS

CRYPTOGRAPHY IN THE AGE OF QUANTUM COMPUTERS CRYPTOGRAPHY IN THE AGE OF QUANTUM COMPUTERS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Recent Advances in Identity-based Encryption Pairing-based Constructions

Recent Advances in Identity-based Encryption Pairing-based Constructions Fields Institute Workshop on New Directions in Cryptography 1 Recent Advances in Identity-based Encryption Pairing-based Constructions Kenny Paterson kenny.paterson@rhul.ac.uk June 25th 2008 Fields Institute

More information

f (x) f (x) easy easy

f (x) f (x) easy easy A General Construction of IND-CCA2 Secure Public Key Encryption? Eike Kiltz 1 and John Malone-Lee 2 1 Lehrstuhl Mathematik & Informatik, Fakultat fur Mathematik, Ruhr-Universitat Bochum, Germany. URL:

More information

Simple SK-ID-KEM 1. 1 Introduction

Simple SK-ID-KEM 1. 1 Introduction 1 Simple SK-ID-KEM 1 Zhaohui Cheng School of Computing Science, Middlesex University The Burroughs, Hendon, London, NW4 4BT, United Kingdom. m.z.cheng@mdx.ac.uk Abstract. In 2001, Boneh and Franklin presented

More information

III. Pseudorandom functions & encryption

III. Pseudorandom functions & encryption III. Pseudorandom functions & encryption Eavesdropping attacks not satisfactory security model - no security for multiple encryptions - does not cover practical attacks new and stronger security notion:

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Ali El Kaafarani Mathematical Institute Oxford University 1 of 60 Outline 1 RSA Encryption Scheme 2 Discrete Logarithm and Diffie-Hellman Algorithm 3 ElGamal Encryption Scheme 4

More information

Report on Learning with Errors over Rings-based HILA5 and its CCA Security

Report on Learning with Errors over Rings-based HILA5 and its CCA Security Report on Learning with Errors over Rings-based HILA5 and its CCA Security Jesús Antonio Soto Velázquez January 24, 2018 Abstract HILA5 is a cryptographic primitive based on lattices that was submitted

More information

A New Paradigm of Hybrid Encryption Scheme

A New Paradigm of Hybrid Encryption Scheme A New Paradigm of Hybrid Encryption Scheme Kaoru Kurosawa 1 and Yvo Desmedt 2 1 Ibaraki University, Japan kurosawa@cis.ibaraki.ac.jp 2 Dept. of Computer Science, University College London, UK, and Florida

More information

A new security notion for asymmetric encryption Draft #10

A new security notion for asymmetric encryption Draft #10 A new security notion for asymmetric encryption Draft #10 Muhammad Rezal Kamel Ariffin 1,2 1 Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, 2 Department of Mathematics,

More information

Question 2.1. Show that. is non-negligible. 2. Since. is non-negligible so is μ n +

Question 2.1. Show that. is non-negligible. 2. Since. is non-negligible so is μ n + Homework #2 Question 2.1 Show that 1 p n + μ n is non-negligible 1. μ n + 1 p n > 1 p n 2. Since 1 p n is non-negligible so is μ n + 1 p n Question 2.1 Show that 1 p n - μ n is non-negligible 1. μ n O(

More information

Efficient Identity-based Encryption Without Random Oracles

Efficient Identity-based Encryption Without Random Oracles Efficient Identity-based Encryption Without Random Oracles Brent Waters Weiwei Liu School of Computer Science and Software Engineering 1/32 Weiwei Liu Efficient Identity-based Encryption Without Random

More information

Lizard: Cut off the Tail! Practical Post-Quantum Public-Key Encryption from LWE and LWR

Lizard: Cut off the Tail! Practical Post-Quantum Public-Key Encryption from LWE and LWR Lizard: Cut off the Tail! Practical Post-Quantum Public-Key Encryption from LWE and LWR Jung Hee Cheon 1, Duhyeong Kim 1, Joohee Lee 1, and Yongsoo Song 1 1 Seoul National University (SNU), Republic of

More information

T Advanced Course in Cryptology. March 28 th, ID-based authentication frameworks and primitives. Mikko Kiviharju

T Advanced Course in Cryptology. March 28 th, ID-based authentication frameworks and primitives. Mikko Kiviharju March 28 th, 2006 ID-based authentication frameworks and primitives Helsinki University of Technology mkivihar@cc.hut.fi 1 Overview Motivation History and introduction of IB schemes Mathematical basis

More information

A new security notion for asymmetric encryption Draft #12

A new security notion for asymmetric encryption Draft #12 A new security notion for asymmetric encryption Draft #12 Muhammad Rezal Kamel Ariffin 1,2 1 Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, 2 Department of Mathematics,

More information

Random Oracles in a Quantum World

Random Oracles in a Quantum World Random Oracles in a Quantum World AsiaISG Research Seminars 2011/2012 Özgür Dagdelen, Marc Fischlin (TU Darmstadt) Dan Boneh, Mark Zhandry (Stanford University) Anja Lehmann (IBM Zurich) Christian Schaffner

More information

arxiv: v1 [quant-ph] 28 Apr 2014

arxiv: v1 [quant-ph] 28 Apr 2014 Quantum Attacks on Classical Proof Systems The Hardness of Quantum Rewinding Andris Ambainis University of Latvia and nstitute for Advanced Study Princeton Ansis Rosmanis nstitute for Quantum Computing

More information

Hybrid Key Encapsulation Mechanisms and Authenticated Key Exchange

Hybrid Key Encapsulation Mechanisms and Authenticated Key Exchange Hybrid Key Encapsulation Mechanisms and Authenticated Key Exchange Nina Bindel 1 Jacqueline Brendel 1 Marc Fischlin 1 Brian Goncalves 2 Douglas Stebila 3 1 Technische Universität Darmstadt, Darmstadt,

More information

Block ciphers And modes of operation. Table of contents

Block ciphers And modes of operation. Table of contents Block ciphers And modes of operation Foundations of Cryptography Computer Science Department Wellesley College Table of contents Introduction Pseudorandom permutations Block Ciphers Modes of Operation

More information

The Cramer-Shoup Cryptosystem

The Cramer-Shoup Cryptosystem The Cramer-Shoup Cryptosystem Eileen Wagner October 22, 2014 1 / 28 The Cramer-Shoup system is an asymmetric key encryption algorithm, and was the first efficient scheme proven to be secure against adaptive

More information

An efficient variant of Boneh-Gentry-Hamburg's identity-based encryption without pairing

An efficient variant of Boneh-Gentry-Hamburg's identity-based encryption without pairing University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 An efficient variant of Boneh-Gentry-Hamburg's

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

A new security notion for asymmetric encryption Draft #8

A new security notion for asymmetric encryption Draft #8 A new security notion for asymmetric encryption Draft #8 Muhammad Rezal Kamel Ariffin 1,2 1 Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, 2 Department of Mathematics,

More information

Secure and Practical Identity-Based Encryption

Secure and Practical Identity-Based Encryption Secure and Practical Identity-Based Encryption David Naccache Groupe de Cyptographie, Deṕartement d Informatique École Normale Supérieure 45 rue d Ulm, 75005 Paris, France david.nacache@ens.fr Abstract.

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Analysis of Random Oracle Instantiation Scenarios for OAEP and other Practical Schemes

Analysis of Random Oracle Instantiation Scenarios for OAEP and other Practical Schemes Analysis of Random Oracle Instantiation Scenarios for OAEP and other Practical Schemes Alexandra Boldyreva 1 and Marc Fischlin 2 1 College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,

More information

Semantic Security of RSA. Semantic Security

Semantic Security of RSA. Semantic Security Semantic Security of RSA Murat Kantarcioglu Semantic Security As before our goal is to come up with a public key system that protects against more than total break We want our system to be secure against

More information

Models and analysis of security protocols 1st Semester Symmetric Encryption Lecture 5

Models and analysis of security protocols 1st Semester Symmetric Encryption Lecture 5 Models and analysis of security protocols 1st Semester 2010-2011 Symmetric Encryption Lecture 5 Pascal Lafourcade Université Joseph Fourier, Verimag Master: October 11th 2010 1 / 61 Last Time (I) Security

More information

Short Exponent Diffie-Hellman Problems

Short Exponent Diffie-Hellman Problems Short Exponent Diffie-Hellman Problems Takeshi Koshiba 12 and Kaoru Kurosawa 3 1 Secure Computing Lab., Fujitsu Laboratories Ltd. 2 ERATO Quantum Computation and Information Project, Japan Science and

More information

Structure Preserving CCA Secure Encryption

Structure Preserving CCA Secure Encryption Structure Preserving CCA Secure Encryption presented by ZHANG Tao 1 / 9 Introduction Veriable Encryption enable validity check of the encryption (Camenisch et al. @ CRYPTO'03): veriable encryption of discrete

More information

Fang Song. Joint work with Sean Hallgren and Adam Smith. Computer Science and Engineering Penn State University

Fang Song. Joint work with Sean Hallgren and Adam Smith. Computer Science and Engineering Penn State University Fang Song Joint work with Sean Hallgren and Adam Smith Computer Science and Engineering Penn State University Are classical cryptographic protocols secure against quantum attackers? 2 Are classical cryptographic

More information

How to Enhance the Security of Public-Key. Encryption at Minimum Cost 3. NTT Laboratories, 1-1 Hikarinooka Yokosuka-shi Kanagawa Japan

How to Enhance the Security of Public-Key. Encryption at Minimum Cost 3. NTT Laboratories, 1-1 Hikarinooka Yokosuka-shi Kanagawa Japan How to Enhance the Security of Public-Key Encryption at Minimum Cost 3 Eiichiro Fujisaki Tatsuaki Okamoto NTT Laboratories, 1-1 Hikarinooka Yokosuka-shi Kanagawa 239-0847 Japan ffujisaki,okamotog@isl.ntt.co.jp

More information

A note on the equivalence of IND-CCA & INT-PTXT and IND-CCA & INT-CTXT

A note on the equivalence of IND-CCA & INT-PTXT and IND-CCA & INT-CTXT A note on the equivalence of IND-CCA & INT-PTXT and IND-CCA & INT-CTXT Daniel Jost, Christian Badertscher, Fabio Banfi Department of Computer Science, ETH Zurich, Switzerland daniel.jost@inf.ethz.ch christian.badertscher@inf.ethz.ch

More information

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017 Practice Final Exam Name: Winter 2017, CS 485/585 Crypto March 14, 2017 Portland State University Prof. Fang Song Instructions This exam contains 7 pages (including this cover page) and 5 questions. Total

More information

Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE

Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-Based PKE Yang Cui 1,2, Kirill Morozov 1, Kazukuni Kobara 1,2, and Hideki Imai 1,2 1 Research Center for Information

More information

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman Strongly Unforgeable Signatures Based on Computational Diffie-Hellman Dan Boneh 1, Emily Shen 1, and Brent Waters 2 1 Computer Science Department, Stanford University, Stanford, CA {dabo,emily}@cs.stanford.edu

More information

Quantum-secure symmetric-key cryptography based on Hidden Shifts

Quantum-secure symmetric-key cryptography based on Hidden Shifts Quantum-secure symmetric-key cryptography based on Hidden Shifts Gorjan Alagic QMATH, Department of Mathematical Sciences University of Copenhagen Alexander Russell Department of Computer Science & Engineering

More information

Provable Security for Public-Key Schemes. Outline. I Basics. Secrecy of Communications. Outline. David Pointcheval

Provable Security for Public-Key Schemes. Outline. I Basics. Secrecy of Communications. Outline. David Pointcheval Provable Security for Public-Key Schemes I Basics David Pointcheval Ecole normale supérieure, CNRS & INRIA IACR-SEAMS School Cryptographie: Foundations and New Directions November 2016 Hanoi Vietnam Introduction

More information

arxiv: v1 [quant-ph] 9 Sep 2015

arxiv: v1 [quant-ph] 9 Sep 2015 Making Existential-Unforgeable Signatures Strongly Unforgeable in the Quantum Random-Oracle Model Edward Eaton 1 and Fang Song 1,2 1 Department of Combinatorics & Optimization, University of Waterloo {eeaton,fang.song}@uwaterloo.ca

More information

arxiv: v2 [quant-ph] 19 Oct 2014

arxiv: v2 [quant-ph] 19 Oct 2014 Quantum Attacks on Classical Proof Systems The Hardness of Quantum Rewinding arxiv:1404.6898v2 [quant-ph] 19 Oct 2014 Andris Ambainis University of Latvia and Institute for Advanced Study Princeton Ansis

More information

Perfectly-Crafted Swiss Army Knives in Theory

Perfectly-Crafted Swiss Army Knives in Theory Perfectly-Crafted Swiss Army Knives in Theory Workshop Hash Functions in Cryptology * supported by Emmy Noether Program German Research Foundation (DFG) Hash Functions as a Universal Tool collision resistance

More information

Non-interactive zero-knowledge proofs in the quantum random oracle model

Non-interactive zero-knowledge proofs in the quantum random oracle model Non-interactive zero-knowledge proofs in the quantum random oracle model Dominique Unruh University of Tartu Abstract. We present a construction for non-interactive zero-knowledge proofs of knowledge in

More information

Public-Key Cryptography. Public-Key Certificates. Public-Key Certificates: Use

Public-Key Cryptography. Public-Key Certificates. Public-Key Certificates: Use Public-Key Cryptography Tutorial on Dr. Associate Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur http://cse.iitkgp.ac.in/ abhij/ January 30, 2017 Short

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator EXAMINATION ( End Semester ) SEMESTER ( Spring ) Roll Number Section Name Subject Number C S 6 0 0 8 8 Subject Name Foundations

More information

Pairing-Based Cryptography An Introduction

Pairing-Based Cryptography An Introduction ECRYPT Summer School Samos 1 Pairing-Based Cryptography An Introduction Kenny Paterson kenny.paterson@rhul.ac.uk May 4th 2007 ECRYPT Summer School Samos 2 The Pairings Explosion Pairings originally used

More information

Unforgeable quantum encryption. Christian Majenz Joint work with Gorjan Alagic and Tommaso Gagliardoni

Unforgeable quantum encryption. Christian Majenz Joint work with Gorjan Alagic and Tommaso Gagliardoni Unforgeable quantum encryption Christian Majenz Joint work with Gorjan Alagic and Tommaso Gagliardoni Authenticated Encryption! (Using AES with 128 bit block size in Galois Counter Mode and SHA2) Authenticated

More information

Lossy Trapdoor Functions and Their Applications

Lossy Trapdoor Functions and Their Applications 1 / 15 Lossy Trapdoor Functions and Their Applications Chris Peikert Brent Waters SRI International On Losing Information 2 / 15 On Losing Information 2 / 15 On Losing Information 2 / 15 On Losing Information

More information

The Theory and Applications of Homomorphic Cryptography

The Theory and Applications of Homomorphic Cryptography The Theory and Applications of Homomorphic Cryptography by Kevin Henry A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University March 26 2017 Outline RSA encryption in practice Transform RSA trapdoor

More information

Smooth Projective Hash Function and Its Applications

Smooth Projective Hash Function and Its Applications Smooth Projective Hash Function and Its Applications Rongmao Chen University of Wollongong November 21, 2014 Literature Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm for Adaptive

More information

Breaking Symmetric Cryptosystems Using Quantum Algorithms

Breaking Symmetric Cryptosystems Using Quantum Algorithms Breaking Symmetric Cryptosystems Using Quantum Algorithms Gaëtan Leurent Joined work with: Marc Kaplan Anthony Leverrier María Naya-Plasencia Inria, France FOQUS Workshop Gaëtan Leurent (Inria) Breaking

More information

RSA OAEP is Secure under the RSA Assumption

RSA OAEP is Secure under the RSA Assumption RSA OAEP is Secure under the RSA Assumption Eiichiro Fujisaki 1, Tatsuaki Okamoto 1, David Pointcheval 2, and Jacques Stern 2 1 NTT Labs, 1-1 Hikarino-oka, Yokosuka-shi, 239-0847 Japan. E-mail: {fujisaki,okamoto}@isl.ntt.co.jp.

More information

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3.

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3. COS 533: Advanced Cryptography Lecture 2 (September 18, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Mark Zhandry Notes for Lecture 2 1 Last Time Last time, we defined formally what an encryption

More information

Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model. Shuichi Katsumata (The University of Tokyo /AIST) Takashi Yamakawa (NTT)

Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model. Shuichi Katsumata (The University of Tokyo /AIST) Takashi Yamakawa (NTT) 1 Tighter Security Proofs for GPV-IBE in the Quantum Random Oracle Model (The University of Tokyo /AIST) *Pronounced as Shuichi Katsumata (The University of Tokyo /AIST) Shota Yamada (AIST) Takashi Yamakawa

More information

Chosen-Ciphertext Security (I)

Chosen-Ciphertext Security (I) Chosen-Ciphertext Security (I) CS 601.442/642 Modern Cryptography Fall 2018 S 601.442/642 Modern Cryptography Chosen-Ciphertext Security (I) Fall 2018 1 / 20 Recall: Public-Key Encryption Syntax: Genp1

More information