(MSU) Solving Difference Equations (UNO)

Size: px
Start display at page:

Download "(MSU) Solving Difference Equations (UNO)"

Transcription

1 The Gamma Function (XULA) Laguerre Polynomials (LSU) Solving Laplace (MSU) Solving Difference Equations (UNO) Stephen SaraMargaret Mladenka Kimbely Ward Tri Ngo

2 The Gamma Function - Research Forthcoming

3 The Laguerre Polynomial el.jpg The Laguerre equation is given by: ty + (1 t)y + ny = 0 where y(0) = 1 and n is non-negative integer

4 The Laguerre Polynomial 1 The Laguerre Polynomial of order n l n (t) = n k=0 n!( 1) k t k (k!) 2 (n k)! 2 For n m, e t l n (t)l m (t)dt = 0 0

5 The Laguerre Polynomials The first few polynomials are: 1 l 0 = 1 2 l 1 = t l 2 = 1 2 (t2 4t + 2) 4 l 3 = 1 6 ( t3 + 9t 2 18t + 6)

6 The Laguerre Polynomials on a Graph C:/Latek/Laguerre_Graph.jpg

7 Differential Operators and Relationships 1 E = td 2 + D 2 E l n = nl n 1 3 E O = 2tD 2 + (2 2t)D 1 4 E O l n = (2n + 1)l n 5 E + = td 2 + (1 2t)D + (t 1) 6 E + l n = (n + 1)l n+1 7 LIE BRACKET [E 0, E + ] = E 0 E + E + E 0 = 2E 0

8 The Laplace Transform 1 L n = L{l n (t)} = (s 1)n s n+1 2 L{l n (at)} = (s a)n s n+1

9 Laguerre Polynomial Properties t 1 0 l n(x)dx = l n (t) l n+1 (t) t 2 0 l n(x)l m (t x)dx = l m+n (t) l m+n+1 (t) 3 l n+1 (t) = 1 n+1 [(2n + 1 t)l n(t) nl n 1 (t)]

10 Solving Laplace Using DE s The Laplace Transform of a function, F (t), is f (s) = Therefore, Theorem If f (s) = L{F (t)}, then 1 sf (s) F (0) = L{F (t)} 2 f (s) = L{ tf (t)} 0 e at F (t)dt.

11 Theorems Theorem If X (t) At α (α > 1) as t 0, then x(s) AΓ(α + 1) s α+1 as s Theorem If X (t) Bt β (β > 1) as t, x(s) BΓ(β + 1) s β+1 as s 0

12 Table of Laplace f (s) F (t) x X sx X (0) X s 2 x sx (0) X (0) X x tx sx x tx s 2 x 2sx + X (0) tx x t 2 X sx + 2x t 2 X s 2 x + 4sx + 2x t 2 X Table: Basic Laplace

13 Laplace Transform Example Theorem The Laplace Transform of the zeroth-order Bessel Function is the following: 1 L{J 0 (t)} = s and the Laplace Transform of the first-order Bessel Function is: L{J 1 (t)} = s s s 2 + 1

14 Proving the Theorem Proof of Theorem. Given Equation X (t) = J 0 (a t) Differential Equation 4tX + 4X + a 2 X = 0 Laplace Transform x + 4s a2 x = 0 4s 2 Integrating Factor I = e a2 4s s Solve Diff. Equation Use Theorem 2 to find c. Plug in c = 1 a 2 ce 4s x(s) = s x(s) 1/s as s L{J 0 (a t)} = e a 4s 2 s.

15 Table of Inverse Laplace f (s) F (t) x X x tx x t 2 X sx X (0) X sx tx X sx t 2 X + 2tX s 2 x sx (0) X (0) X s 2 x + X (0) tx 2X s 2 x t 2 X + 4tX + 2X Table: Inverse Laplace

16 Inverse Laplace Transform Example Theorem The Bessel Differential Equation of the n th order can be defined as t 2 X + tx + (t 2 n 2 )X = 0 where the solutions of this differential equation are the n th order Bessel Functions.

17 Proving the Theorem Proof of Theorem. Given Equation x(s) = ( s 2 +1 s) n s 2 +1 Diff. Equation (s 2 + 1)x + 3sx + (1 n 2 )x = 0 Inverse Laplace t 2 X + tx + (t 2 n 2 )X = 0 Bessel s Equation X (t) = J n (t)

18 Solving Difference Equations a n+2 + ba n+1 + ca n = f (n) y(t) = a n, f (t) = f (n), for n t < n + 1 y(t + 2) + by(t + 1) + cy(t) = f (t) L{y(t + 1)} = e s Y (s) a 0e s (1 e s ) s L{y(t + 2)} = e 2s Y (s) es (1 e s )(a 0 e s + a 1 ) s L{f (t)} = 1 e s e sk f (k) s k=0

19 Solving Difference Equations - 2 Theorem a n = Aα n + Bβ n a n = (An + B)α n r 1 = α + iβ, r 2 = α iβ a n = u n (A cos(nθ) + B sin(nθ)) with u = α 2 + β 2, θ = sin 1 β u

20 Solving Difference Equations - 3 a n+2 a n+1 a n = 0, a 0 = 0, a 1 = 1 Y (s) = es (1 e s ) s Y (s) = es (1 e s ) s(α β) = 1 ( e s s(α β) a n = a n = (e s α)(e s β) ( 1 e s α 1 e s β ) 1 1 αe s 1 1 βe s 1 α β (αn β n ) [( 1 + ) n ( 5 2 ) 1 ) n ] 5 2

21 Solving Difference Equations - 4 Theorem Let a n,p be a fixed particular solution to the second order linear recursion relation a n+2 + ba n+1 + ca n = f (n). Then any other solution has the form a n = a n,h + a n,p, for some homogeneous solution a n,h.

22 Solving Difference Equations - 5 a n+2 + ba n+1 + ca n = f (n) (e 2s + be s + c)y (s) = p(e s ) sq(e s ) Y (s) = 1 s Y (s) = 1 s e sk H(k, p) = k=0 k=1 p(e s ) (1 rk e s ) p e sq c i (1 r k e s ) p 1 (1 re s ) p r n p 1 (p 1)! (n + k) = H(n, p) = L 1 1 e s { s(1 re s ) p }

23 Solving Difference Equations - 6 a n+2 5a n+1 + 6a n = n2 n, a 0 = 0, a 1 = 1 L{f (t)} = 1 e s s = 1 e s s = 1 e s s L{f (t)} = 1 e s s e sk k2 k k=0 ( ) e sk (k + 1)2 k e sk 2 k k=0 k=0 k=0 ( ) e sk H(k, 2) (2e s ) k k=0 ( ) 1 (1 2e s ) e s

24 Solving Difference Equations - 7 Y (s)(e 2s 5e s + 6) = 1 e s s 1 Y (s) = 1 e s s ( 1 (1 2e s ) ) 2 1 2e ( 3 1 3e s 5 2(1 2e s ) ) 1 2(1 2e s ) 3 s + es a n = 3 n n 1 H(n, 3){r = 2} 2 a n = 3 n+1 (n 2 + 3n + 12).2 n 2

25 Solving Difference Equations - 8 Theorem a n+2 + ba n+1 + ca n = g(n)r n, x 2 + bx + c = 0 deg(g) = k a n,p = g (n)r n, deg(g ) = k a n,p = g (n)r n, deg(g ) = k + 1 a n,p = g (n)r n, deg(g ) = k + 2

26 Solving Difference Equations - 9 a n+2 + ba n+1 + ca n = c 1 sin(kn) + c 2 cos(kn) a n,p = c 3 sin(kn) + c 4 cos(kn)

27 Solving Difference Equations - Conclusion a n+2 4a n+1 + 4a n = (n 2 + 1)2 n + n3 n + 2 sin(4n) + 3 cos(n) a n = g(n)2 n +h(n)3 n +c 1 sin(4n)+c 2 cos(4n)+c 3 sin(n)+c 4 cos(n) with deg(g) = 4 and deg(h) = 1.

28 Contact SaraMargaret Mladenka - smlade1@tigers.lsu.edu Tri Ngo - tmngo1@uno.edu Kimberly Ward - kaw205@msstate.edu Stephen - swilli13@xula.edu Website: rfrith1/math4999.html

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

i x i y i

i x i y i Department of Mathematics MTL107: Numerical Methods and Computations Exercise Set 8: Approximation-Linear Least Squares Polynomial approximation, Chebyshev Polynomial approximation. 1. Compute the linear

More information

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes, Dolors Roselló Ecuaciones diferenciales y transformadas de Laplace con aplicaciones L.M. Sánchez, M.P. Legua Ref.: 211-798 Capítulo

More information

d n dt n ( Laplace transform of Definition of the Laplace transform

d n dt n ( Laplace transform of Definition of the Laplace transform e t t m) Objectives. Recall the definition and some basic properties of the Laplace transform. Calculate the the following function (n < m): ( e t t ). m dt n Requirements. Integration by parts, change

More information

3.5 Undetermined Coefficients

3.5 Undetermined Coefficients 3.5. UNDETERMINED COEFFICIENTS 153 11. t 2 y + ty + 4y = 0, y(1) = 3, y (1) = 4 12. t 2 y 4ty + 6y = 0, y(0) = 1, y (0) = 1 3.5 Undetermined Coefficients In this section and the next we consider the nonhomogeneous

More information

Fourier series

Fourier series 11.1-11.2. Fourier series Yurii Lyubarskii, NTNU September 5, 2016 Periodic functions Function f defined on the whole real axis has period p if Properties f (t) = f (t + p) for all t R If f and g have

More information

Euler-Cauchy Using Undetermined Coefficients

Euler-Cauchy Using Undetermined Coefficients Euler-Cauchy Using Undetermined Coefficients Department of Mathematics California State University, Fresno doreendl@csufresno.edu Joint Mathematics Meetings January 14, 2010 Outline 1 2 3 Second Order

More information

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

What if the characteristic equation has a double root?

What if the characteristic equation has a double root? MA 360 Lecture 17 - Summary of Recurrence Relations Friday, November 30, 018. Objectives: Prove basic facts about basic recurrence relations. Last time, we looked at the relational formula for a sequence

More information

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is LINEAR RECURSIVE SEQUENCES BJORN POONEN 1. Sequences A sequence is an infinite list of numbers, like 1) 1, 2, 4, 8, 16, 32,.... The numbers in the sequence are called its terms. The general form of a sequence

More information

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

Study guide - Math 220

Study guide - Math 220 Study guide - Math 220 November 28, 2012 1 Exam I 1.1 Linear Equations An equation is linear, if in the form y + p(t)y = q(t). Introducing the integrating factor µ(t) = e p(t)dt the solutions is then in

More information

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality Math 408 - Mathematical Statistics Lecture 13-14. The Sample Mean and the Sample Variance Under Assumption of Normality February 20, 2013 Konstantin Zuev (USC) Math 408, Lecture 13-14 February 20, 2013

More information

ES.1803 Topic 7 Notes Jeremy Orloff. 7 Solving linear DEs; Method of undetermined coefficients

ES.1803 Topic 7 Notes Jeremy Orloff. 7 Solving linear DEs; Method of undetermined coefficients ES.1803 Topic 7 Notes Jeremy Orloff 7 Solving linear DEs; Method of undetermined coefficients 7.1 Goals 1. Be able to solve a linear differential equation by superpositioning a particular solution with

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Math 54. Selected Solutions for Week 10

Math 54. Selected Solutions for Week 10 Math 54. Selected Solutions for Week 10 Section 4.1 (Page 399) 9. Find a synchronous solution of the form A cos Ωt+B sin Ωt to the given forced oscillator equation using the method of Example 4 to solve

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information

Introduction to Sturm-Liouville Theory and the Theory of Generalized Fourier Series

Introduction to Sturm-Liouville Theory and the Theory of Generalized Fourier Series CHAPTER 5 Introduction to Sturm-Liouville Theory and the Theory of Generalized Fourier Series We start with some introductory examples. 5.. Cauchy s equation The homogeneous Euler-Cauchy equation (Leonhard

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations A Second Course in Elementary Differential Equations Marcel B Finan Arkansas Tech University c All Rights Reserved August 3, 23 Contents 28 Calculus of Matrix-Valued Functions of a Real Variable 4 29 nth

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals J. Wong (Fall 217) October 7, 217 What did we cover this week? Introduction to the Laplace transform Basic theory Domain and range of L Key

More information

Review Sol. of More Long Answer Questions

Review Sol. of More Long Answer Questions Review Sol. of More Long Answer Questions 1. Solve the integro-differential equation t y (t) e t v y(v)dv = t; y()=. (1) Solution. The key is to recognize the convolution: t e t v y(v) dv = e t y. () Now

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t) Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

Solutions of Spring 2008 Final Exam

Solutions of Spring 2008 Final Exam Solutions of Spring 008 Final Exam 1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along these lines is flat. The isocline for slope is the hyperbola on the left

More information

Lab Notes: Differential Equations for Engineers. by Malcolm Roberts and Samantha Marion

Lab Notes: Differential Equations for Engineers. by Malcolm Roberts and Samantha Marion Lab Notes: Differential Equations for Engineers by Malcolm Roberts and Samantha Marion Last edited March 19, 214 This (unofficial) manual was prepared for Graduates at Alberta Mathematics Etc. Malcolm

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

APPLIED MATHEMATICS Part 4: Fourier Analysis

APPLIED MATHEMATICS Part 4: Fourier Analysis APPLIED MATHEMATICS Part 4: Fourier Analysis Contents 1 Fourier Series, Integrals and Transforms 2 1.1 Periodic Functions. Trigonometric Series........... 3 1.2 Fourier Series..........................

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE General Certificate of Education Advanced Level FURTHER MATHEMATICS 9221/1 PAPER 1

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE General Certificate of Education Advanced Level FURTHER MATHEMATICS 9221/1 PAPER 1 ,--, ~"\, \ "~. "',,~ \ ~ 1.f8P;)1!,'" ;i *.~ UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE General Certificate of Education Advanced Level FURTHER MATHEMATICS 9221/1 PAPER 1 MAY/JUNE SESSION 2001

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

2. A Motivational Example: Consider the second-order homogeneous linear DE: y y 2y = 0

2. A Motivational Example: Consider the second-order homogeneous linear DE: y y 2y = 0 MATH 246: Chapter 2 Section 2 Justin Wyss-Gallifent 1. Introduction: Since even linear higher-order DEs are difficult we are going to simplify even more. For today we re going to look at homogeneous higher-order

More information

On asymptotic approximations of first integrals for second order difference equations

On asymptotic approximations of first integrals for second order difference equations Nonlinear Dyn (010) 61: 535 551 DOI 10.1007/s11071-010-9669-7 ORIGINAL PAPER On asymptotic approximations of first integrals for second order difference equations M. Rafei W.T. Van Horssen Received: 13

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 8.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE 20. TRANSFORM

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

HW2 Solutions

HW2 Solutions 8.024 HW2 Solutions February 4, 200 Apostol.3 4,7,8 4. Show that for all x and y in real Euclidean space: (x, y) 0 x + y 2 x 2 + y 2 Proof. By definition of the norm and the linearity of the inner product,

More information

Sec 4 Maths SET D PAPER 2

Sec 4 Maths SET D PAPER 2 S4MA Set D Paper Sec 4 Maths Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e Answer all questions. Write your answers and working on the separate Answer Paper provided.

More information

Department of Mathematics. MA 108 Ordinary Differential Equations

Department of Mathematics. MA 108 Ordinary Differential Equations Department of Mathematics Indian Institute of Technology, Bombay Powai, Mumbai 476, INDIA. MA 8 Ordinary Differential Equations Autumn 23 Instructor Santanu Dey Name : Roll No : Syllabus and Course Outline

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Lecture 4.6: Some special orthogonal functions

Lecture 4.6: Some special orthogonal functions Lecture 4.6: Some special orthogonal functions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

A First Course of Partial Differential Equations in Physical Sciences and Engineering

A First Course of Partial Differential Equations in Physical Sciences and Engineering A First Course of Partial Differential Equations in Physical Sciences and Engineering Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft August 29 2 Preface Partial differential

More information

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y =

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y = DIFFERENTIAL EQUATIONS. Solved exercises.. Find the set of all solutions of the following first order differential equations: (a) x = t (b) y = xy (c) x = x (d) x = (e) x = t (f) x = x t (g) x = x log

More information

arxiv:cond-mat/ v2 [cond-mat.other] 3 Jan 2006

arxiv:cond-mat/ v2 [cond-mat.other] 3 Jan 2006 Aug 3, 5, Rev Jan, 6 Some Square Lattice Green Function Formulas Stefan Hollos and Richard Hollos arxiv:cond-mat/58779v [cond-mat.other] 3 Jan 6 Exstrom Laboratories LLC, 66 Nelson Par Dr, Longmont, Colorado

More information

First order equations. The variation of parameters formula gives for the solution of the initial-value problem:

First order equations. The variation of parameters formula gives for the solution of the initial-value problem: Linear differential equations with discontinuous forcing terms Many external effects are modeled as forces starting to act on the system instantaneously at some positive time, either persisting or being

More information

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n

More information

LECTURE 10, MONDAY MARCH 15, 2004

LECTURE 10, MONDAY MARCH 15, 2004 LECTURE 10, MONDAY MARCH 15, 2004 FRANZ LEMMERMEYER 1. Minimal Polynomials Let α and β be algebraic numbers, and let f and g denote their minimal polynomials. Consider the resultant R(X) of the polynomials

More information

Chapter 3. Second Order Linear PDEs

Chapter 3. Second Order Linear PDEs Chapter 3. Second Order Linear PDEs 3.1 Introduction The general class of second order linear PDEs are of the form: ax, y)u xx + bx, y)u xy + cx, y)u yy + dx, y)u x + ex, y)u y + f x, y)u = gx, y). 3.1)

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

8.2 Graphs of Polar Equations

8.2 Graphs of Polar Equations 8. Graphs of Polar Equations Definition: A polar equation is an equation whose variables are polar coordinates. One method used to graph a polar equation is to convert the equation to rectangular form.

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

Math 341 Fall 2008 Friday December 12

Math 341 Fall 2008 Friday December 12 FINAL EXAM: Differential Equations Math 341 Fall 2008 Friday December 12 c 2008 Ron Buckmire 1:00pm-4:00pm Name: Directions: Read all problems first before answering any of them. There are 17 pages in

More information

2. First Order Linear Equations and Bernoulli s Differential Equation

2. First Order Linear Equations and Bernoulli s Differential Equation August 19, 2013 2-1 2. First Order Linear Equations and Bernoulli s Differential Equation First Order Linear Equations A differential equation of the form y + p(t)y = g(t) (1) is called a first order scalar

More information

Alan H. SteinUniversity of Connecticut. Linear Differential Equations With Constant Coefficients

Alan H. SteinUniversity of Connecticut. Linear Differential Equations With Constant Coefficients Linear Differential Equations With Constant Coefficients Alan H. Stein University of Connecticut Linear Equations With Constant Coefficients Homogeneous: d n y a n dx n + a d n 1 y n 1 dx n 1 + a d n 2

More information

arxiv:math/ v1 [math.ca] 9 Jul 1993

arxiv:math/ v1 [math.ca] 9 Jul 1993 Some Integrals Involving Bessel Functions arxiv:math/9373v [math.ca] 9 Jul 993 M.L. Glasser Department of Physics and Department of Mathematics and Computer Science, Clarkson University, Potsdam, N.Y.

More information

Introduction to orthogonal polynomials. Michael Anshelevich

Introduction to orthogonal polynomials. Michael Anshelevich Introduction to orthogonal polynomials Michael Anshelevich November 6, 2003 µ = probability measure on R with finite moments m n (µ) = R xn dµ(x)

More information

Name: Solutions Exam 4

Name: Solutions Exam 4 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Forecasting Module 2. Learning Objectives. Trended Data. By Sue B. Schou Phone:

Forecasting Module 2. Learning Objectives. Trended Data. By Sue B. Schou Phone: Forecasting Module 2 By Sue B. Schou Phone: 8-282-408 Email: schosue@isu.edu Learning Objectives Make forecast models using trend analysis in Minitab Make forecast models using Holt s exponential smoothing

More information

The Laplace transform

The Laplace transform The Laplace transform Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1

More information

Solutions to Exercises, Section 2.5

Solutions to Exercises, Section 2.5 Instructor s Solutions Manual, Section 2.5 Exercise 1 Solutions to Exercises, Section 2.5 For Exercises 1 4, write the domain of the given function r as a union of intervals. 1. r(x) 5x3 12x 2 + 13 x 2

More information

K th -order linear difference equation (Normal Form)

K th -order linear difference equation (Normal Form) The standard form of the general K th -order difference equation is x n + 1 = F(x n, x n - 1, x n - 2,..., x n - K + 1, P) where P is a vector of parameters. However, linear equations are normally expressed

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Worksheet 1. Difference

Worksheet 1. Difference Worksheet Differences Remember: The difference of a sequence u n is: u n u n+ u n The falling factorial (power), n to the k falling, when k > 0, is: n k n(n )... (n k + ), Please complete the following

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5 Math 24 Final Exam Solution 17 December 1999 1. Find the general solution to the differential equation ty 0 +2y = sin t. Solution: Rewriting the equation in the form (for t 6= 0),we find that y 0 + 2 t

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

SC/MATH Partial Differential Equations Fall Assignment 3 Solutions

SC/MATH Partial Differential Equations Fall Assignment 3 Solutions November 16, 211 SC/MATH 3271 3. Partial Differential Equations Fall 211 Assignment 3 Solutions 1. 2.4.6 (a) on page 7 in the text To determine the equilibrium (also called steady-state) heat distribution

More information

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Consider an nth-order nonhomogeneous linear differential equation with constant coefficients:

More information

PHYS 404 Lecture 1: Legendre Functions

PHYS 404 Lecture 1: Legendre Functions PHYS 404 Lecture 1: Legendre Functions Dr. Vasileios Lempesis PHYS 404 - LECTURE 1 DR. V. LEMPESIS 1 Legendre Functions physical justification Legendre functions or Legendre polynomials are the solutions

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS

More information

Nonlinear Integral Equation Formulation of Orthogonal Polynomials

Nonlinear Integral Equation Formulation of Orthogonal Polynomials Nonlinear Integral Equation Formulation of Orthogonal Polynomials Eli Ben-Naim Theory Division, Los Alamos National Laboratory with: Carl Bender (Washington University, St. Louis) C.M. Bender and E. Ben-Naim,

More information

University of Warwick institutional repository:

University of Warwick institutional repository: University of Warwick institutional repository: http://go.warwick.ac.uk/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please

More information

Spanning Trees Exercises 2. Solutions

Spanning Trees Exercises 2. Solutions Spanning Trees Exercises 2. Solutions Instructor: Mednykh I. A. Sobolev Institute of Mathematics Novosibirsk State University Winter School in Harmonic Functions on Graphs and Combinatorial Designs 20-24

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

III. Time Domain Analysis of systems

III. Time Domain Analysis of systems 1 III. Time Domain Analysis of systems Here, we adapt properties of continuous time systems to discrete time systems Section 2.2-2.5, pp 17-39 System Notation y(n) = T[ x(n) ] A. Types of Systems Memoryless

More information

Material for review. By Lei. May, 2011

Material for review. By Lei. May, 2011 Material for review. By Lei. May, 20 You shouldn t only use this to do the review. Read your book and do the example problems. Do the problems in Midterms and homework once again to have a review. Some

More information

Two Step Method for Fuzzy Differential Equations

Two Step Method for Fuzzy Differential Equations International Mathematical Forum, 1, 2006, no. 17, 823-832 Two Step Method for Fuzzy Differential Equations T. Allahviranloo 1, N. Ahmady, E. Ahmady Department of Mathematics Science and Research Branch

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

1 Differential Equations

1 Differential Equations Reading [Simon], Chapter 24, p. 633-657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its

More information

Mathematics High School Functions

Mathematics High School Functions Mathematics High School Functions Functions describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage rate of 4.25% is a function

More information

Rodrigues-type formulae for Hermite and Laguerre polynomials

Rodrigues-type formulae for Hermite and Laguerre polynomials An. Şt. Univ. Ovidius Constanţa Vol. 16(2), 2008, 109 116 Rodrigues-type formulae for Hermite and Laguerre polynomials Vicenţiu RĂDULESCU Abstract In this paper we give new proofs of some elementary properties

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Corrected Version, 7th April 013 Comments to the author at keithmatt@gmail.com Chapter 1 LINEAR EQUATIONS 1.1

More information

Notes on Special Functions

Notes on Special Functions Spring 25 1 Notes on Special Functions Francis J. Narcowich Department of Mathematics Texas A&M University College Station, TX 77843-3368 Introduction These notes are for our classes on special functions.

More information

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases.

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Lecture 11 Andrei Antonenko February 6, 003 1 Examples of bases Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Example 1.1. Consider the vector space P the

More information