An Optimization Problem With a Surprisingly Simple Solution

Size: px
Start display at page:

Download "An Optimization Problem With a Surprisingly Simple Solution"

Transcription

1 An Optimization Problem With a Surprisinly Simple Solution D. Drinen, K. G. Kennedy, and W. M. Priestley 1 INTRODUCTION. Suppose you and n of your friends play the followin ame. A random number from the uniform distribution on [0, 1] will be enerated. This number is called the taret. Each of you will independently uess what the taret number will be and the person whose uess is closest will be declared the winner. In order to investiate an optimal stratey for this ame, we need to assume somethin about your friends uesses. Consider first the case where you have complete knowlede of all your friends uesses before you make yours. In that case the optimal stratey is trivial: simply order their uesses and then find the larest ap between successive uesses. If that ap is at least twice as lare as that between 0 and the smallest uess and also that between the larest uess and 1, then position yourself halfway between those two uesses. If not, then position yourself as close as the rules allow to the left of the smallest uess or the riht of the larest uess, as appropriate. Your friends would likely not find this ame to be worth playin and even you would probably not find it interestin. Let us now assume that you do not have exact knowlede of your friends uesses. Most of the papers on similar ames (see, for example, [1], [7], [], and [3]) make the assumption that your friends will behave ame-theoretically. That is, they will make uesses based on what they think your uess will be, knowin that your uess also depends on what they are likely to uess. With this approach it seems necessary also to assume the number of players is small, for if n is lare such strateical thinkin is probably not as feasible and the computations may become much more difficult. Here we are primarily interested in lare n, so we take a different viewpoint: we assume that you have probabilistic knowlede about your friends uesses. That is, you do not know what the uesses will be, but you know that they will all come from a particular probability distribution. We will consider several distributions in the sections ahead, but for now let us focus on the mathematics of a relatively simple case. If your friends are all computers prorammed to uess a uniform random number between 0 and 1, then the optimal stratey can be found. Before we do it, thouh, take a moment to uess what the answer is. If you 1

2 were playin this ame for a lare cash reward, what number would be your choice? Most people we have asked both mathematicians and others have said that they would choose 1/, and this seems like a reasonable choice. Indeed, you miht define your score to be the distance from your uess to the taret number, and since the player with the lowest score is the winner, it would make sense to try to minimize your expected score. A uess of 1/ accomplishes that, as the reader may easily verify. But the crux of the matter is that minimizin your expected score is not equivalent to maximizin your probability of attainin the minimum score. As it turns out, for n < 5 the best choice would indeed be 1/. But when n = 5 the optimal choice is not 1/, but is approximately.3 (or, if you prefer it,.7). A uess of.3 ives you rouhly an 18.39% chance of winnin, compared to a uess of 1/, which ives you a 17.97% chance. When n = 10, the best choice turns out to be almost exactly 1/6. In eneral, if n is lare, the optimal uess is approximately /(n + ). We will prove this in Section 4. Now let s examine what happens to those of us who would have uessed 1/. When n = 10, the probability of winnin with a uess of 1/ turns out to be about If n = 0, the win probability associated with a uess of 1/ is about If n = 99, the probability of winnin if you uess 1/ is This number, of course, is extremely close to 1/(n + 1), which is what your win probability would be if you made a completely random (uniform) uess. To see this, note that if you made a random uess, you would be indistinuishable from each of your friends and would therefore have the same win probability as each of them. Thus your win probability would be 1/(n + 1). It therefore turns out to be the case that, for lare n, a uess of 1/ is no better than a completely random uess. Later we will show that, for lare n, what is true for a uess of 1/ is also true for any other number in the open interval (0, 1). That is, if W n () denotes the win probability associated with a uess of, then for any in the open interval, the ratio of W n () to 1/(n + 1) approaches 1 as n ets lare. Officially, the theorem can be stated as follows: Theorem 1. Let X 1, X,..., X n, and T be independent uniform random variables on the unit interval. For any in the unit interval, define W n () = P ( T < min i X i T ). Then for any in the open interval (0, 1), as n approaches infinity. W n () 1/(n + 1) 1

3 In Section 4 we will establish in formula (6) an explicit expression for W n. For now, we can et a feel for the behavior of W n by lookin at its raph for various values of n. Fiure 1 shows raphs of W n () for n = 4, 9, and 49. Also shown on each plot is a horizontal line at 1/(n + 1). Fiure 1: Win probability as a function of your uess, with taret and uesses distributed uniformly on [0, 1]. 0. n = 4 n = 9 n = Two symmetric small peaks materialize in the raph of W n when n = 5 and evolve thereafter in an intriuin way. One can see that the peak on the raph of W n (for the sake of definiteness, we will always focus our attention on the left peak) moves toward zero as n ets larer. Also, the rane of choices for that yield win probabilities nontrivially reater than 1/(n + 1) becomes narrower. Hence, if you know n exactly you can make an optimal choice for, but if you only have the vaue knowlede that n is lare, then you miht not wish to try for the optimal value. If you think n is 500 for example, then the uess you make will be disappointin if n turns out to be only 00. So if a few thousand of your friends are makin uniform random uesses at a uniform random number, then it does not much matter what your uess is. Perhaps this is not surprisin. It may be surprisin, however, that it does not matter that the distribution is uniform. If the taret number is exponentially distributed, for example, and your friends uesses are also exponentially distributed (with the same parameter), is an analoue of Theorem 1 still true? It is. A main result of this paper is the followin eneralization of Theorem 1. Theorem. Let X 1, X,..., X n, and T be independent random variables from the same continuous distribution havin density function f. Let be any number for which both lim t f(t) and lim t + f(t) exist and are nonzero. Define W n () = P ( T < min i X i T ). Then as n approaches infinity. W n () 1/(n + 1) 1 By a continuous distribution we mean one with a continuous cumulative distribution function (cdf), thouh its associated density function (pdf) need 3

4 not be continuous. We restrict our attention to continuous random variables (those associated with continuous distributions), where the probability of a tie in the ame described at the beinnin of the paper will be zero. To et a feel for the content of this theorem, consider the case where the taret random number T is a standard normal random variable (mean 0, standard deviation 1), and your friends uesses are also distributed as independent standard normal random variables. The taret number is likely to be near zero, so you miht be tempted to uess zero or somethin close to it. But the uesses are likely to be clustered around zero as well, so a uess near zero will win only if the taret number ends up in a very narrow rane around your uess. At the other extreme, if you make a uess that is far away from zero, you have carved out a wider rane of winnin possibilities for the taret number. But because you are far from zero, the probability of the taret s landin in that wide rane may (or may not) be less than the probability of landin in some narrow rane near zero. Rouhly speakin, your choice is between claimin a tall skinny piece of the distribution (a uess near zero), a short fat piece (a uess far from zero), or somethin in between. The restriction on in the statement of the theorem simply means that your uess is reasonable in some sense. So Theorem says it doesn t matter what you choose, as lon as your uess is reasonable. Guess whatever you want. As lon as n is lare enouh, the crowdin out of uesses near the tall part of the distribution will almost exactly counterbalance the unlikelihood of uesses in the short part, makin your uess no better or worse than a random uess from the same distribution as the taret number. In Fiure we see Mathematica-enerated raphs of the function W n () for n = 9, 99, and 999 in the case where the X i s and T come from a standard normal distribution. Note the asymptotic converence to a horizontal line at 1/(n+1), and also note the small peaks movin outward. We shall see in Section 5 that this behavior, which we also saw in the uniform case, is typical. Fiure : Win probability as a function of your uess, with taret and uesses distributed as standard normals. n = 9 n = 99 n = In the next section we will state and prove a eneral formula for W n (), and the followin section contains the proof of Theorem. In Section 4 we specialize once aain to the settin considered in Theorem 1 and explore a few interestin aspects of the uniform case. Section 5 will compare raphs of W n () 4

5 for several different probability distributions, whose behavior is clarified by a eneralization of Theorem. We will close in Section 6 with remarks about related questions. A GENERAL FORMULA FOR W n (). Theorem 3. Suppose X 1, X,..., X n are independent identically distributed continuous random variables with pdf f X and cdf F X. Suppose that T is a continuous random variable with pdf f T, and that X 1, X,..., X n, T are independent. For any real number, let W n () = P ( T < min i X i T ). Then W n () = as (1 F X ()+F X (t )) n f T (t) dt+ (1 F X (t )+F X ()) n f T (t) dt. Before beinnin the proof, we should note that W n () can also be written (1) h (t) n f T (t) dt, () where h (t) is the probability that X 1 does not lie between and t. Formula (1) is handy in eneratin Mathematica plots as in Fiure, while the conceptually simpler formula () will be seen to suest a proof of Theorem. To prove Theorem 3, we start by notin that W n () = P (you win) = P (T, you win) + P (T >, you win). We will show that these two terms correspond to the two interals in formula (1). If you uess, you win if and only if each of X 1,..., X n lies outside the interval of lenth T centered at T, as seen in Fiure 3. We will consider in detail the case when T. P (T, you win) = P (T, and all X i are outside of [T, ]). If you are to win, then k of the X i s must be reater than and n k must be less than T, for some k between 0 and n. So your probability of winnin is n k=0 ( ) n P (T, X 1,..., X k >, and X k+1,..., X n < T ). k We will now rewrite the above as a sum of interals of the joint pdf f X1,...,X n,t : n k=0 ( ) n k t } {{ } k times t } {{ } n k times f X1,...,X n,t (x 1,..., x n, t)dx n dx 1 dt. 5

6 Fiure 3: T T T T By our independence assumption this becomes n ( ) n t f X1 (x 1 )dx 1 f Xk (x k )dx k f Xk+1 (x k+1 )dx k+1 k k=0 Each of the latter n k interals is equal to F X (t ) and each of the former k interals is equal to 1 F X (). So we have n ( ) n (1 F X ()) k F X (t ) n k f T (t)dt. k k=0 Passin the sum inside the interal and applyin the binomial theorem yields P (T, you win) = (1 F X () + F X (t )) n f T (t)dt. A similar computation produces the analoous result in the T > case: P (T >, you win) = (1 F X (t ) + F X ()) n f T (t)dt. These two equalities imply formula (1), which completes the proof of Theorem 3. The rewritin of formula (1) as () is straihtforward. 3 PROOF OF THEOREM. The representation of W n () in terms of h (t) as iven in equation () motivates our proof. Fix as in the hypotheses of Theorem and fix ɛ > 0. Focussin t f Xn (x n )dx n f T (t)dt. 6

7 for now on the positivity of the riht-hand limit at, we first bracket this limit close enouh to obtain positive numbers p 1, p, and δ so that 1 ɛ < p 1 /p < p /p 1 < 1 + ɛ and p 1 < f(x) < p (3) for x in (, + δ). If necessary, we shrink δ so that p δ < 1. Note that if t, h (t) = P (X 1 [, t ]) = 1 t f(x) dx. To use inequality (3) in estimatin the interand we must have x in (, +δ), for which it is sufficient to restrict t to the interval (, + δ/). Thus, the riht inequality in (3) implies h (t) 1 p (t ) for all t in (, + δ/). (4) Note also that p δ < 1 implies that the riht side of inequality (4) is strictly positive. Now, the left inequality in (3), toether with (4) and a simple antiderivative, can be used to conclude that +δ/ (n + 1)h (t) n f(t) dt p 1 p > p 1 p ( 1 1 ) (1 p δ) n+1 ( 1 ɛ ) if n is sufficiently lare. Because p 1 /p > 1 ɛ it follows that for such n, 1 ɛ < +δ/ (n + 1)h (t) n f(t) dt. Similar estimates usin inequality (3) in the other direction show that +δ/ and hence for sufficiently lare n we have 1 ɛ < (n + 1)h (t) n f(t) dt < 1 + ɛ, +δ/ (n + 1)h (t) n f(t) dt < 1 + ɛ. (5) Now we consider the interal +δ/ (n + 1)h (t) n f(t) dt. The function h is decreasin on (, ), so h (t) h ( + δ/) 1 p 1 δ if t > + δ/. Thus, for sufficiently lare n we have 0 +δ/ (n + 1)h (t) n f(t) dt (n + 1)(1 p 1 δ) n < (n + 1)(1 p 1 δ) n < ɛ. +δ/ f(t) dt 7

8 Combinin the above with inequality (5), we see that for lare n, so that 1 ɛ < lim n (n + 1)h (t) n f(t) dt < 1 + ɛ, (n + 1)h (t) n f(t) dt = 1. Similar reasonin applies to the interal on (, ), so and the result follows. lim n (n + 1)h (t) n f(t) dt = 1, 4 THE UNIFORM CASE. We now specialize to the ame described at the beinnin of Section 1, where the other players uesses and the taret are uniformly distributed with cdf F. In this case, { 0 if x / [0, 1], f(x) = f X1 (x) = f X (x) =... = f Xn (x) = f T (x) = 1 if x [0, 1]. Since F (t ) is 1 for t 1, 0 for t 0, and equal to t when t (0, 1), we have: 0 if t, F (t ) = t if < t < 1+, 1 if t 1+. Assume 0 1. To calculate W n () here, we will break up the first interal in equation (1) as 0 (1 F () + F (t )) n f(t)dt + and the second interal as 1+ 1 (1 + F () F (t )) n f(t)dt + 1+ (1 F () + F (t )) n f(t)dt, (1 + F () F (t )) n f(t)dt. Applyin what we know about the functions F and f, we deduce that W n () is iven by 0 (1 ) n dt + (1 + t) n dt (1 + t) n dt + n dt. 1+ 8

9 Routine interation yields W n () = 1 n Rearranin terms, we have ( (1 ) n + n (1 ) 1 n + 1 (n+1 + (1 ) n+1 ) ). (6) (n+1)w n () = n+1 +(n+1) n (1 )+(n+1)(1 ) n (1 ) n+1, (7) showin that the raph of W n has the same shape as the polynomial in on the riht-hand side but shifted and scaled. For lare n, this polynomial is easily seen to take very small positive values on a lare portion of the center of the interval [0, 1], but its behavior near the endpoints requires more scrutiny. Despite takin its minimum value of 1 at the endpoints 0 and 1, the polynomial takes a maximum value approachin e close to the points 1 = /(n+) and = n/(n+), thereby producin throuh formula (6) the small peaks in the raph of W n when n 5. To see this more clearly, let us first restrict our attention to in the interval [0, 1/]. Here the first two terms of the riht-hand side of equation (7) approach 0 uniformly, so the two sides of the approximation (n + 1)W n () (n + 1)(1 ) n (1 ) n+1 become uniformly close on [0, 1/] as n increases. It is a routine calculus exercise to verify that the riht-hand side attains at = 1 = /(n + ) its maximum value of (1 /(n + )) n, which approaches e as n. From this it follows that (n + 1)W n ( 1 ) 1 + e, (8) a result that, with a little more effort, can be derived directly from formula (6) via l Hôpital s Rule. By symmetry of W n the same limit is approached near the riht endpoint when = = n/(n + ). Note that (8) holds even thouh Theorem uarantees that for any fixed in the open interval (0, 1) we have (n + 1)W n () 1. The overshoot revealed by (8) may remind us of the Gibbs phenomenon encountered in approximations by Fourier series near a jump discontinuity of the limit function [4, pp. 6 66]. Here, this behavior may be related to constraints encountered in approximations by Bernstein polynomials, as we shall note below. Let us first summarize, however, the results of the foreoin discussion of the uniform case. Remark 4. If n 5, the maximum of W n () iven by formula (6) occurs at approximately 1 = /(n + ) and = n/(n + ), and max W n ()/(1/(n + 1)) approaches 1 + 1/(e ) as n approaches infinity. The implications for anyone who is playin the uessin ame described at the beinnin of the paper are as follows: 9

10 If you know precisely how many players n are in the ame, and if n is lare, you should uess /(n + ) or, equivalently, uess n/(n + ). This stratey will provide you with a win probability approximately 1/(e ) 6.767% better than a uniform random uess. Readers familiar with approximation properties expected of Bernstein polynomials [5] may be unsurprised by (8), once it is reconized that the polynomial on the riht-hand side of formula (7) is the (n+1)th Bernstein approximation of a function f specified to be identically zero on [0, 1] except near the endpoints, where f(0) = 1 = f(1) and f(1/(n + 1)) = 1 = f(n/(n + 1)). The polynomial must then aree with f at the endpoints and must try to approximate f uniformly on [0, 1], while of course encounterin difficulty because of the quick fluctuations of f near the endpoints. The resultin trade-off produces the shape of the raph of this Bernstein polynomial and, throuh formula (6), produces overshoots in W n () near the endpoints. The uniform case discussed in this section is one of the few situations where we have been able to simplify equation (1) to obtain an explicit formula for W n (). As we shall observe in the next section, thouh, the overshoots in the uniform case appear to manifest themselves in more eneral settins at points naturally correspondin to 1 and. In fact, the existence, for lare n, of overshoots near 0 and 1 in the uniform case may be seen to be due not so much to the fact that these points are endpoints, but that they are unreasonable uesses that lie in the support of the pdf under consideration. 5 NON-UNIFORM DISTRIBUTIONS. For non-uniform distributions, the interals in equation (1) are very difficult or impossible to evaluate symbolically, so we asked Mathematica to estimate them numerically. Shown here are the raphs of W n when n = 9, 99, and 999 for several different distributions. In accordance with Theorem, the raphs of W n approach 1/(n + 1) asymptotically at all reasonable values of. We will comment shortly on some of the unreasonable uesses. Fiure 4: Win probability as a function of your uess, with taret and uesses distributed accordin to the pdf f(x) = x on [0, 1] n = 9 n = 99 n =

11 Fiure 5: Win probability as a function of your uess, with taret and uesses distributed accordin to the pdf f(x) = e x on [0, ) n = 9 n = 99 n = In Section 4 we found that the uniform distribution of uesses produces the function W n iven by equation (6), whose raph exhibits small peaks near 1 = /(n + ) and = n/(n + ) if n 5. For other distributions we miht be led on intuitive rounds (see [6, Proposition 9.3.1]) to expect the resultin W n to approximate the composition of the function of equation (6) with the cdf F of the distribution in question, provided we are at a point where F has a positive derivative. We should then enerally expect Mathematica to plot new peaks near F 1 ( 1 ) and F 1 ( ) when n 5, and this seems to be the case in Fiures, 4, and 5. In Fiure 4, for example, the peaks seem to be located, as we should expect, near 1 and, for n = 9, 99, and 999, respectively. Surprises may occur, however, in more complicated settins where the cdf fails to be differentiable or where its derivative vanishes, as seen in Fiures 6, 7, and 8. Also, at the end of this section we note what can happen if the raph of the cdf has a vertical tanent. Fiure 6: Win probability as a function of your uess, with taret and uesses distributed accordin to the piecewise uniform distribution with pdf f(x) = 1/ on [0, 1/] and f(x) = 3/ on (1/, 1] n = 9 n = 99 n = Recall that the pdf of the distribution need not be continuous in order for Theorem to hold, but the example in Fiure 6 shows that some intriuin behavior may occur near a point of discontinuity. In particular, we did not expect to see a local minimum just to the left of 1/. The two distributions used in Fiures 7 and 8 are very similar and in each 11

12 Fiure 7: Win probability as a function of your uess, with taret and uesses distributed accordin to the pdf f(x) = 4 x 1/ on the unit interval n = 9 n = 99 n = Fiure 8: Win probability as a function of your uess, with taret and uesses distributed accordin to the pdf f(x) = 1(x 1/) on the unit interval n = 9 n = 99 n = case the hypotheses of Theorem fail to be satisfied at = 1/. We should therefore not be too surprised that W n (1/) does not approach 1/(n+1) asymptotically. That the limitin value of (n+1)w n (1/) differs between the two cases is attributable to the followin eneralization of Theorem. Theorem 5. Let X 1, X,..., X n, and T be independent random variables from the same continuous distribution and let f be their common pdf. For a iven, suppose there exist real numbers k and k, both reater than 1, such that lim t + f(t) and lim t k t f(t) t k both exist and are nonzero. Then lim (n + 1)W n() = 1 n k k +1. (9) Theorem is Theorem 5 with k = k = 0. Fortunately, the proof of Theorem eneralizes to this larer settin, althouh we encounter slihtly more complicated expressions. The requirement p δ < 1 made at the outset of the proof of Theorem must be modified to ensure that p δ k+1 < k + 1 in eneral. Other modifications suest themselves. We ask the reader to fill in the details of the proof of Theorem 5. What does Theorem 5 tell us? At = 0 in Fiure 4, we have essentially a one-sided case where k = 1, so (n + 1)W n (0) 1/4. In Fiure 7, we have 1

13 k = k = 1 at = 1/, so (n + 1)W n (1/) 1/; while in Fiure 8 we have k = k =, so (n + 1)W n (1/) 1/4. We rarely deal with unbounded pdf s, but they can produce interestin effects, such as makin the riht-hand side of equation (9) exceed 1 and forcin the raph of the associated cdf to have a vertical tanent. Consider, for example, the distribution on [ 1, 1] iven by the pdf f(x) = (1/4) x 1/. Here, k = k = 1/ at = 0, so (n + 1)W n (0). Moreover, despite what our foreoin discussions miht have led us to expect, W n seems to attain its maximum here for all n at = 0. 6 RELATED QUESTIONS. Here we mention some issues that, for lack of space and/or insiht, seem to deserve more attention than we can provide. 6.1 UNREASONABLE GUESSES AND INDUCED OVER- SHOOTS? More precise definitions may help us better study the intriuin relationship suested in the Mathematica plots we have seen. To that end, we define an unreasonable uess to be a point lyin in the support of the common pdf f of the X i s and T such that lim sup(n + 1)W n () = L < 1. Theorem 5 often enables us to calculate L easily, and shows that unreasonable uesses include not only endpoints but also points like 1/ in Fiures 7 and 8 where the pdf tends to zero. We will say that we have an overshoot at if for each neihborhood N of, lim inf M n = M > 1, where M n is the supremum of (n + 1)W n on N. Remark 4 confirms that we have overshoots (M = 1 + e /) at 0 and at 1 in the uniform case. The heuristic arument in Section 5 suests that we should expect the same value of M associated with all unreasonable uesses in Fiures 1,, 4, and 5 where in Fiure we should consider and to be unreasonable uesses. We do not know whether there must necessarily be an overshoot at each unreasonable uess. Note, however, that if you decide to uess accordin to the same pdf f as your n friends then you would be indistinuishable from them, so all of you would have the same win probability of 1/(n + 1). Therefore, W n ()f() d = 1 n + 1. (10) Hence, for each n, the continuous function (n + 1)W n interates to 1 aainst the pdf f. This remark, toether with Theorem, seems to make it at least plausible that if is a point in the support of f where the lim sup L is less than 1, then the lim inf M should exceed 1, but we don t see a proof. 13

14 6. WHEN THE GUESSES DIFFER FROM THE TAR- GET. While most of this paper has focussed on the case where the taret and your friends uesses come from the same distribution, equation (1) is eneral enouh to handle situations where the taret random variable T differs from the uesses X 1,..., X n. Suppose for example that the taret is standard normal. Theorem says that, if your friends uesses are also standard normal, then for lare enouh n, any uess you make is essentially as ood as any other. Suppose instead, however, that your friends uesses cluster around zero more tihtly than the taret. Then uesses near zero will be crowded out, hence becomin less profitable for you, and uesses far from zero (thouh not too far) will become more profitable. If, on the other hand, your friends uesses are slihtly more spread out than the taret, then uessin near zero becomes a better stratey for you. Shown in Fiure 9 are pictures of W n for n = 999 if the taret T is standard normal while your friends uesses are normally distributed with mean zero and standard deviations.98 and 1.0, respectively. Compare these pictures with Fiure. Fiure 9: Win probability as a function of your uess, where the distribution of uesses differs from distribution of the taret. n = 999 n = THE PRICE IS RIGHT. One variation on the ame is to play it Price is Riht style, where the winner is the player whose uess is closest to the taret amon all uesses less than the taret. Here, a player is disqualified if he or she overbids. Followin the stratey outlined in the proof of Theorem 3, the reader may verify that in this case the probability of winnin with a uess of is iven by W n () = (1 F X (t) + F X ()) n f T (t) dt, where F X represents the cdf of the uesses and f T represents the pdf of the taret. 14

15 If the uesses are assumed to come from the same distribution as the taret, and if the pdf of the taret is a continuous function, then this interal is surprisinly simple to evaluate: W n () = 1 n + 1 (1 F X() n+1 ). Note that W n is decreasin (no overshoots here), so it follows that the optimal stratey is to make the minimum allowable uess. If the least uess is an allowable option, it ives you the optimal win probability of 1/(n + 1). Also note that, in effect, there are n + players here, since the house wins if you and your n friends all overbid. 6.4 AN APPLICATION? We close with a few remarks about the motivation for this problem. This paper arose out of an attempt by the first author to build an abstract model for the optimal selection of an entry in an NCAA basketball tournament prediction contest with a lare number of entrants, such as those run each year by major sports websites like ESPN.com and yahoo.com. There are some vaue similarities between a basketball pool and the ame described in this paper. In both cases, somethin will happen, lots of people will make a uess at what that somethin will be, and the one who is closest will be declared the winner. In the abstract ame of this paper, the participant must choose between makin a uess in the tall part of the taret distribution and potentially bein crowded out by many other participants makin similar uesses, and makin a uess in the short part of the taret distribution, which has less likelihood of bein close to the taret but a better chance of winnin if it does happen to be close. In the basketball pool, the former choice corresponds to pickin the teams who are favored to win while the latter corresponds to choosin an entry with many lon shot teams. If you believe that the entries in a lare pool satisfy somethin approximatin the conditions of Theorem, then our results miht be loosely interpreted to mean that it doesn t really matter what kind of entry you fill out. Serious basketball fans miht be disappointed to learn that all their basketball knowlede is for nauht in these lare contests. Casual basketball fans, on the other hand, miht find this result liberatin. They can fill in their brackets based on the eoraphy of the teams, their uniform color, or the relative fierceness of their mascots, and their chances will be as ood as anyone else s. While we were pleased with the mathematics that arose from the investiation, even the first author must concede that the connection between our abstract ame and its real-life inspiration is probably too loose to offer much practical advice for those who wish to enter such contests. Dedication. This paper is dedicated to Sherwood F. Ebey, whose enthusiasm for the study of probability has proven to be infectious. 15

16 References [1] S. Even, The price is riht ame, this Monthly 73 (1966) [] T. Feder, Toetjes, this Monthly 97 (1990) [3] T. Feruson and C. Genest, Toetjes na, Mathematical Statistics and Applications: Festschrift for Constance van Eeden, IMS Lecture Notes/Monoraph Series 4 (003) [4] T. Körner, Fourier Analysis, Cambride University Press, Cambride, [5] G. Lorentz, Bernstein Polynomials, Chelsea Publishin, [6] S. Ross, Probability Models for Computer Science, Harcourt/Academic Press, San Dieo, 00. [7] J. Steele and J. Zidek, Optimal strateies for second uessers, Journal of the American Statistical Association 75 (1980) Dou Drinen is an associate professor at the University of the South. He received a B.A. from Trinity University (TX) in 1993 and a Ph.D. from Arizona State in He only very occasionally thinks about anythin other than sports or math, so he is always excited when he can save some time by thinkin about both simultaneously. Department of Mathematics and Computer Science, Sewanee: The University of the South, Sewanee, TN ddrinen@sewanee.edu K. Grace Kennedy raduated from the University of the South in 006 majorin in mathematics and French literature. She is currently pursuin a Masters in roup theory at the Université de Picardie in Amiens, France. In the spirit of the liberal arts tradition, Grace will try to see every work of art in the Louvre that she studied in Art History 103 at Sewanee. Soon, she hopes to return to the US for raduate study on roup theory topics related to eneralizations of the braid roup. kracekennedy@alumni.sewanee.edu Mac Priestley has tauht at the University of the South since 1967, havin received a B.A. there in 196. His Ph.D. deree is from Princeton. He wrote an elementary text, Calculus: A Liberal Art (Spriner-Verla, 1998), to support a one-semester eneral education course for liberal arts majors who may lack a stron backround in mathematics. In 006 he received the Distinuished Teachin Award from the Southeastern Section of the MAA. Department of Mathematics and Computer Science, Sewanee: The University of the South, Sewanee, TN wpriestl@sewanee.edu 16

Energizing Math with Engineering Applications

Energizing Math with Engineering Applications Enerizin Math with Enineerin Applications Understandin the Math behind Launchin a Straw-Rocket throuh the use of Simulations. Activity created by Ira Rosenthal (rosenthi@palmbeachstate.edu) as part of

More information

Physics 20 Homework 1 SIMS 2016

Physics 20 Homework 1 SIMS 2016 Physics 20 Homework 1 SIMS 2016 Due: Wednesday, Auust 17 th Problem 1 The idea of this problem is to et some practice in approachin a situation where you miht not initially know how to proceed, and need

More information

Matrix multiplication: a group-theoretic approach

Matrix multiplication: a group-theoretic approach CSG399: Gems of Theoretical Computer Science. Lec. 21-23. Mar. 27-Apr. 3, 2009. Instructor: Emanuele Viola Scribe: Ravi Sundaram Matrix multiplication: a roup-theoretic approach Given two n n matrices

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0 PROJECTILE MOTION Velocity We seek to explore the velocity of the projectile, includin its final value as it hits the round, or a taret above the round. The anle made by the velocity vector with the local

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

Graph Entropy, Network Coding and Guessing games

Graph Entropy, Network Coding and Guessing games Graph Entropy, Network Codin and Guessin ames Søren Riis November 25, 2007 Abstract We introduce the (private) entropy of a directed raph (in a new network codin sense) as well as a number of related concepts.

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance CHAPTER 7 PROJECTILES 7 No Air Resistance We suppose that a particle is projected from a point O at the oriin of a coordinate system, the y-axis bein vertical and the x-axis directed alon the round The

More information

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion

Mechanics Cycle 3 Chapter 12++ Chapter 12++ Revisit Circular Motion Chapter 12++ Revisit Circular Motion Revisit: Anular variables Second laws for radial and tanential acceleration Circular motion CM 2 nd aw with F net To-Do: Vertical circular motion in ravity Complete

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license. 201,

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics L HOSPITAL TYPE RULES FOR OSCILLATION, WITH APPLICATIONS IOSIF PINELIS Department of Mathematical Sciences, Michian Technoloical University, Houhton,

More information

Metric spaces and metrizability

Metric spaces and metrizability 1 Motivation Metric spaces and metrizability By this point in the course, this section should not need much in the way of motivation. From the very beginning, we have talked about R n usual and how relatively

More information

Stoichiometry of the reaction of sodium carbonate with hydrochloric acid

Stoichiometry of the reaction of sodium carbonate with hydrochloric acid Stoichiometry of the reaction of sodium carbonate with hydrochloric acid Purpose: To calculate the theoretical (expected) yield of product in a reaction. To weih the actual (experimental) mass of product

More information

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers.

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers. 2 VECTORS, POINTS, and LINEAR ALGEBRA. At first glance, vectors seem to be very simple. It is easy enough to draw vector arrows, and the operations (vector addition, dot product, etc.) are also easy to

More information

F (x) = P [X x[. DF1 F is nondecreasing. DF2 F is right-continuous

F (x) = P [X x[. DF1 F is nondecreasing. DF2 F is right-continuous 7: /4/ TOPIC Distribution functions their inverses This section develops properties of probability distribution functions their inverses Two main topics are the so-called probability integral transformation

More information

XIUMEI LI AND MIN SHA

XIUMEI LI AND MIN SHA GAUSS FACTORIALS OF POLYNOMIALS OVER FINITE FIELDS arxiv:1704.0497v [math.nt] 18 Apr 017 XIUMEI LI AND MIN SHA Abstract. In this paper we initiate a study on Gauss factorials of polynomials over finite

More information

At the start of the term, we saw the following formula for computing the sum of the first n integers:

At the start of the term, we saw the following formula for computing the sum of the first n integers: Chapter 11 Induction This chapter covers mathematical induction. 11.1 Introduction to induction At the start of the term, we saw the following formula for computing the sum of the first n integers: Claim

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1.

4.3. Solving Friction Problems. Static Friction Problems. Tutorial 1 Static Friction Acting on Several Objects. Sample Problem 1. Solvin Friction Problems Sometimes friction is desirable and we want to increase the coefficient of friction to help keep objects at rest. For example, a runnin shoe is typically desined to have a lare

More information

THE SIGNAL ESTIMATOR LIMIT SETTING METHOD

THE SIGNAL ESTIMATOR LIMIT SETTING METHOD ' THE SIGNAL ESTIMATOR LIMIT SETTING METHOD Shan Jin, Peter McNamara Department of Physics, University of Wisconsin Madison, Madison, WI 53706 Abstract A new method of backround subtraction is presented

More information

Disclaimer: This lab write-up is not

Disclaimer: This lab write-up is not Disclaimer: This lab write-up is not to be copied, in whole or in part, unless a proper reference is made as to the source. (It is stronly recommended that you use this document only to enerate ideas,

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

6 Mole Concept. g mol. g mol. g mol ) + 1( g : mol ratios are the units of molar mass. It does not matter which unit is on the

6 Mole Concept. g mol. g mol. g mol ) + 1( g : mol ratios are the units of molar mass. It does not matter which unit is on the What is a e? 6 Mole Concept The nature of chemistry is to chane one ecule into one or more new ecules in order to create new substances such as paints, fertilizers, food additives, medicines, etc. When

More information

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

Problem Set 2 Solutions

Problem Set 2 Solutions UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Sprin 2009 Problem Set 2 Solutions The followin three problems are due 20 January 2009 at the beinnin of class. 1. (H,R,&W 4.39)

More information

An analogy from Calculus: limits

An analogy from Calculus: limits COMP 250 Fall 2018 35 - big O Nov. 30, 2018 We have seen several algorithms in the course, and we have loosely characterized their runtimes in terms of the size n of the input. We say that the algorithm

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Nick Egbert MA 158 Lesson 6. Recall that we define +,,, / on functions by performing these operations on the outputs.

Nick Egbert MA 158 Lesson 6. Recall that we define +,,, / on functions by performing these operations on the outputs. Nick Ebert MA 158 Lesson 6 Function arithmetic Recall that we define +,,, / on functions by performin these operations on the outputs. So we have (f + )(x) f(x) + (x) (f )(x) f(x) (x) (f)(x) f(x)(x) (

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Phase Diagrams: construction and comparative statics

Phase Diagrams: construction and comparative statics 1 / 11 Phase Diarams: construction and comparative statics November 13, 215 Alecos Papadopoulos PhD Candidate Department of Economics, Athens University of Economics and Business papadopalex@aueb.r, https://alecospapadopoulos.wordpress.com

More information

Calculus at Rutgers. Course descriptions

Calculus at Rutgers. Course descriptions Calculus at Rutgers This edition of Jon Rogawski s text, Calculus Early Transcendentals, is intended for students to use in the three-semester calculus sequence Math 151/152/251 beginning with Math 151

More information

CS 124 Math Review Section January 29, 2018

CS 124 Math Review Section January 29, 2018 CS 124 Math Review Section CS 124 is more math intensive than most of the introductory courses in the department. You re going to need to be able to do two things: 1. Perform some clever calculations to

More information

A Constant Complexity Fair Scheduler with O(log N) Delay Guarantee

A Constant Complexity Fair Scheduler with O(log N) Delay Guarantee A Constant Complexity Fair Scheduler with O(lo N) Delay Guarantee Den Pan and Yuanyuan Yan 2 Deptment of Computer Science State University of New York at Stony Brook, Stony Brook, NY 79 denpan@cs.sunysb.edu

More information

First- and Second Order Phase Transitions in the Holstein- Hubbard Model

First- and Second Order Phase Transitions in the Holstein- Hubbard Model Europhysics Letters PREPRINT First- and Second Order Phase Transitions in the Holstein- Hubbard Model W. Koller 1, D. Meyer 1,Y.Ōno 2 and A. C. Hewson 1 1 Department of Mathematics, Imperial Collee, London

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

2.1 Convergence of Sequences

2.1 Convergence of Sequences Chapter 2 Sequences 2. Convergence of Sequences A sequence is a function f : N R. We write f) = a, f2) = a 2, and in general fn) = a n. We usually identify the sequence with the range of f, which is written

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a AP Physics C: Mechanics Greetings, For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a brief introduction to Calculus that gives you an operational knowledge of

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

1 Basic Game Modelling

1 Basic Game Modelling Max-Planck-Institut für Informatik, Winter 2017 Advanced Topic Course Algorithmic Game Theory, Mechanism Design & Computational Economics Lecturer: CHEUNG, Yun Kuen (Marco) Lecture 1: Basic Game Modelling,

More information

Mixture Behavior, Stability, and Azeotropy

Mixture Behavior, Stability, and Azeotropy 7 Mixture Behavior, Stability, and Azeotropy Copyrihted Material CRC Press/Taylor & Francis 6 BASIC RELATIONS As compounds mix to some deree in the liquid phase, the Gibbs enery o the system decreases

More information

LP Rounding and Combinatorial Algorithms for Minimizing Active and Busy Time

LP Rounding and Combinatorial Algorithms for Minimizing Active and Busy Time LP Roundin and Combinatorial Alorithms for Minimizin Active and Busy Time Jessica Chan, Samir Khuller, and Koyel Mukherjee University of Maryland, Collee Park {jschan,samir,koyelm}@cs.umd.edu Abstract.

More information

An Outline of Some Basic Theorems on Infinite Series

An Outline of Some Basic Theorems on Infinite Series An Outline of Some Basic Theorems on Infinite Series I. Introduction In class, we will be discussing the fact that well-behaved functions can be expressed as infinite sums or infinite polynomials. For

More information

Slopes of Lefschetz fibrations and separating vanishing cycles

Slopes of Lefschetz fibrations and separating vanishing cycles Slopes of Lefschetz fibrations and separatin vanishin cycles Yusuf Z. Gürtaş Abstract. In this article we find upper and lower bounds for the slope of enus hyperelliptic Lefschetz fibrations. We demonstrate

More information

Assignment 6. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 6. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assinment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Round your answer, if appropriate. 1) A man 6 ft tall walks at a rate of 3 ft/sec

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Causal Bayesian Networks

Causal Bayesian Networks Causal Bayesian Networks () Ste7 (2) (3) Kss Fus3 Ste2 () Fiure : Simple Example While Bayesian networks should typically be viewed as acausal, it is possible to impose a causal interpretation on these

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YER CLCULUS W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Stat260: Bayesian Modeling and Inference Lecture Date: March 10, 2010

Stat260: Bayesian Modeling and Inference Lecture Date: March 10, 2010 Stat60: Bayesian Modelin and Inference Lecture Date: March 10, 010 Bayes Factors, -priors, and Model Selection for Reression Lecturer: Michael I. Jordan Scribe: Tamara Broderick The readin for this lecture

More information

Limits and Continuity

Limits and Continuity Chapter Limits and Continuity. Limits of Sequences.. The Concept of Limit and Its Properties A sequence { } is an ordered infinite list x,x,...,,... The n-th term of the sequence is, and n is the index

More information

A Short Journey Through the Riemann Integral

A Short Journey Through the Riemann Integral A Short Journey Through the Riemann Integral Jesse Keyton April 23, 2014 Abstract An introductory-level theory of integration was studied, focusing primarily on the well-known Riemann integral and ending

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

numerical analysis 1

numerical analysis 1 numerical analysis 1 1.1 Differential equations In this chapter we are going to study differential equations, with particular emphasis on how to solve them with computers. We assume that the reader has

More information

CALCULUS AB SUMMER ASSIGNMENT

CALCULUS AB SUMMER ASSIGNMENT CALCULUS AB SUMMER ASSIGNMENT Dear Prospective Calculus Students, Welcome to AP Calculus. This is a rigorous, yet rewarding, math course. Most of the students who have taken Calculus in the past are amazed

More information

Instructor Notes for Chapters 3 & 4

Instructor Notes for Chapters 3 & 4 Algebra for Calculus Fall 0 Section 3. Complex Numbers Goal for students: Instructor Notes for Chapters 3 & 4 perform computations involving complex numbers You might want to review the quadratic formula

More information

Unit 5: Applications of Differentiation

Unit 5: Applications of Differentiation Unit 5: Applications of Differentiation DAY TOPIC ASSIGNMENT 1 Implicit Differentiation (p. 1) p. 7-73 Implicit Differentiation p. 74-75 3 Implicit Differentiation Review 4 QUIZ 1 5 Related Rates (p. 8)

More information

Appendix: Mathiness in the Theory of Economic Growth by Paul Romer

Appendix: Mathiness in the Theory of Economic Growth by Paul Romer Appendix: Mathiness in the Theory of Economic Growth by Paul Romer This appendix exists as both a Mathematica notebook called Mathiness Appendix.nb and as two different pdf print-outs. The notebook is

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Renormalization Group Theory

Renormalization Group Theory Chapter 16 Renormalization Group Theory In the previous chapter a procedure was developed where hiher order 2 n cycles were related to lower order cycles throuh a functional composition and rescalin procedure.

More information

7.5 Partial Fractions and Integration

7.5 Partial Fractions and Integration 650 CHPTER 7. DVNCED INTEGRTION TECHNIQUES 7.5 Partial Fractions and Integration In this section we are interested in techniques for computing integrals of the form P(x) dx, (7.49) Q(x) where P(x) and

More information

Sign of derivative test: when does a function decreases or increases:

Sign of derivative test: when does a function decreases or increases: Sign of derivative test: when does a function decreases or increases: If for all then is increasing on. If for all then is decreasing on. If then the function is not increasing or decreasing at. We defined

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Isotropic diffeomorphisms: solutions to a differential system for a deformed random fields study

Isotropic diffeomorphisms: solutions to a differential system for a deformed random fields study Isotropic diffeomorphisms: solutions to a differential system for a deformed random fields study Marc Briant, Julie Fournier To cite this version: Marc Briant, Julie Fournier. Isotropic diffeomorphisms:

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

1.1 Simple functions and equations Polynomials and polynomial equations

1.1 Simple functions and equations Polynomials and polynomial equations 1 Preliminary algebra This opening chapter reviews the basic algebra of which a working knowledge is presumed in the rest of the book. Many students will be familiar with much, if not all, of it, but recent

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES You will be expected to reread and digest these typed notes after class, line by line, trying to follow why the line is true, for example how it

More information

Lecture 3: Sizes of Infinity

Lecture 3: Sizes of Infinity Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 3: Sizes of Infinity Week 2 UCSB 204 Sizes of Infinity On one hand, we know that the real numbers contain more elements than the rational

More information

3. LIMITS AND CONTINUITY

3. LIMITS AND CONTINUITY 3. LIMITS AND CONTINUITY Algebra reveals much about many functions. However, there are places where the algebra breaks down thanks to division by zero. We have sometimes stated that there is division by

More information

CONSTRUCTION OF sequence of rational approximations to sets of rational approximating sequences, all with the same tail behaviour Definition 1.

CONSTRUCTION OF sequence of rational approximations to sets of rational approximating sequences, all with the same tail behaviour Definition 1. CONSTRUCTION OF R 1. MOTIVATION We are used to thinking of real numbers as successive approximations. For example, we write π = 3.14159... to mean that π is a real number which, accurate to 5 decimal places,

More information

On the falling (or not) of the folded inextensible string

On the falling (or not) of the folded inextensible string On the fallin (or not) of the folded inextensible strin Tyler McMillen Proram in Applied and Computational Mathematics, Princeton University, Fine Hall, Princeton, NJ 8544-1 e-mail: mcmillen@princeton.edu

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Misconceptions about sinking and floating

Misconceptions about sinking and floating pplyin Scientific Principles to Resolve Student Misconceptions by Yue Yin whether a bar of soap will sink or float. Then students are asked to observe (O) what happens. Finally, students are asked to explain

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

3.4 Introduction to power series

3.4 Introduction to power series 3.4 Introduction to power series Definition 3.4.. A polynomial in the variable x is an expression of the form n a i x i = a 0 + a x + a 2 x 2 + + a n x n + a n x n i=0 or a n x n + a n x n + + a 2 x 2

More information

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT Mini-Course on Limits and Sequences by Peter Kwadwo Asante B.S., Kwame Nkrumah University of Science and Technology, Ghana, 204 A REPORT submitted in partial fulfillment of the requirements for the degree

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

UMS 7/2/14. Nawaz John Sultani. July 12, Abstract

UMS 7/2/14. Nawaz John Sultani. July 12, Abstract UMS 7/2/14 Nawaz John Sultani July 12, 2014 Notes or July, 2 2014 UMS lecture Abstract 1 Quick Review o Universals Deinition 1.1. I S : D C is a unctor and c an object o C, a universal arrow rom c to S

More information

A General Overview of Parametric Estimation and Inference Techniques.

A General Overview of Parametric Estimation and Inference Techniques. A General Overview of Parametric Estimation and Inference Techniques. Moulinath Banerjee University of Michigan September 11, 2012 The object of statistical inference is to glean information about an underlying

More information

Conical Pendulum Linearization Analyses

Conical Pendulum Linearization Analyses European J of Physics Education Volume 7 Issue 3 309-70 Dean et al. Conical Pendulum inearization Analyses Kevin Dean Jyothi Mathew Physics Department he Petroleum Institute Abu Dhabi, PO Box 533 United

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

#A52 INTEGERS 15 (2015) AN IMPROVED UPPER BOUND FOR RAMANUJAN PRIMES

#A52 INTEGERS 15 (2015) AN IMPROVED UPPER BOUND FOR RAMANUJAN PRIMES #A5 INTEGERS 15 (015) AN IMPROVED UPPER BOUND FOR RAMANUJAN PRIMES Anitha Srinivasan Dept. of Mathematics, Saint Louis University Madrid Campus, Madrid, Spain asriniv@slu.edu John W. Nicholson Decatur,

More information

Convergence of DFT eigenvalues with cell volume and vacuum level

Convergence of DFT eigenvalues with cell volume and vacuum level Converence of DFT eienvalues with cell volume and vacuum level Sohrab Ismail-Beii October 4, 2013 Computin work functions or absolute DFT eienvalues (e.. ionization potentials) requires some care. Obviously,

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

An introductory example

An introductory example CS1 Lecture 9 An introductory example Suppose that a company that produces three products wishes to decide the level of production of each so as to maximize profits. Let x 1 be the amount of Product 1

More information

Generalization of Vieta's Formula

Generalization of Vieta's Formula Rose-Hulman Underraduate Mathematics Journal Volume 7 Issue Article 4 Generalization of Vieta's Formula Al-Jalila Al-Abri Sultan Qaboos University in Oman Follow this and additional wors at: https://scholar.rose-hulman.edu/rhumj

More information