COMPARATIVE EVALUATION OF ENKF AND MLEF FOR ASSIMILATION OF STREAMFLOW DATA INTO NWS OPERATIONAL HYDROLOGIC MODELS

Size: px
Start display at page:

Download "COMPARATIVE EVALUATION OF ENKF AND MLEF FOR ASSIMILATION OF STREAMFLOW DATA INTO NWS OPERATIONAL HYDROLOGIC MODELS"

Transcription

1 COMPARATIVE EVALUATION OF ENKF AND MLEF FOR ASSIMILATION OF STREAMFLOW DATA INTO NWS OPERATIONAL HYDROLOGIC MODELS Arezoo Raieei Nasab 1, Dong-Jun Seo 1, Haksu Lee 2,3, Sunghee Kim 1 1 Dept. o Civil Eng., The Univ. o Texas at Arlington, Arlington, TX 2 NOAA/NWS, Oice o Climate, Water and Weather Services, Silver Spring, MD 3 Len Technologies, Oak Hill, VA 1

2 In this presentation Motivation Methodology EnKF, MLEF Problem ormulation Comparative evaluation o EnKF and MLEF Homoscedastic versus heteroscedastic error modeling Sensitivity analysis Conclusions and uture research recommendations Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 2

3 Motivation Streamlow is the most widely available, high inormationcontent hydrologic data or inerence o soil moisture states o the basin Assimilating streamlow data, however, involves highly nonlinear observation equations Ensemble Kalman ilter (EnKF) Relative simple and easy to implement Optimal only i the observation equation is linear Maximum likelihood ensemble ilter (MLEF) Ensemble extension o variational assimilation (VAR) Can handle nonlinear observation equations No need or adjoint code Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 3

4 Ensemble Kalman ilter Monte Carlo Approximation X t M t t Z H t. ( X ) 1 t X t Recursive updating o each ensemble trace Problem: Nonlinear observation operation Y n = X t Z t Solution?: Augment the state vector x with H(x) The obs eq is linear only in appearance, still assumes linear response o streamlow to soil moisture near the solution H =

5 Maximum likelihood ensemble ilter Use square-root orecast error covariance P p 1 2 [ p1 p2 pn i a M( x p ) M( x) i s ] Ensemble size p i p1, i p2, i ps, i State-space dimension Minimize cost unction (in ensemble subspace) J 1 T -1 x ] P [ x x ] 1 obs [ x 2 1 [ y 2 T - H ( x) ] R [ y - H ( x) ] obs Similar to VAR, but: Uses non-dierentiable iterative minimization with superior (Hessian) preconditioning Provides reduced rank solution in ensemble subspace Estimates analysis uncertainty From Zupanski (2005) 5

6 Fixed-lag smoother ormulation 1) Prescribe the initial background model states and their covariance 3) Solve or the initial model states, biases or precipitation and PE utilizing all available data within the current assimilation window 4) Integrate the model to the end o the assimilation window to obtain the updated IC s valid at the current prediction time, k 2) Propagate the model states and their uncertainty an hour orward k-1 k k+1 k+2 Time (hrs) 6

7 Study area MTPT2 Stream network MTPT2 in WGRFC (435 km 2, time-to-peak ~17 hrs) Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 7

8 Summary o parameter settings Experiment Streamlow error variance (m 3 /s) 2 MAP (mm/hr) 2 Additive error to TCI (mm/hr) 2 Fractional dynamical model error Ensemble size No. o Streamlow data used/cycle 1 2 Streamlow error variance Additive error variance to TCI Homoscedastic error modeling Heteroscedastic error modeling 1, 10, 50, , 0.1, 1, C Q =0.03, 0.3 C P =0.15, 0.25 Function o Z Q Fractional dynamical model error , 0.025, 0.075, Ensemble size , 9, 30, 50 1 No. o streamlow data used per cycle , 2, 4, 8 MAPE error variance = 1 (mm/hr) 2 8

9 Sensitivity to streamlow observation error variance The smaller the error variance, the closer the it through the observed streamlow Smaller RMSE at short lead times but at some expense o larger RMSE at large lead times The DA-aided simulation has slightly larger RMSE than DAless simulation at large lead times uncertainty modeling needs improvement Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 9

10 Heteroscedastic error modeling Error variance in model runo t Q t = {I τ + w(τ)} 0 σ 2 eq = σ2 w 0 t t u(t τ) 0 σ 2 eq = Q obs u t τ dτ u t s dsdτ 2 (cms) 2 Error variance in obs σ 2 q = C q Q obs + additive 2 (cms) 2 σ 2 P = (C p P obs + additive)2 (mm/hr) 2 σ 2 e = 1 (mm/hr)2 10

11 Heteroscedastic error modeling Heteroscedastic modeling o observation errors does not improve DA perormance over homoscedastic modeling 11

12 Summary o parameter settings Experiment Streamlow error variance (m 3 /s) 2 MAP (mm/hr) 2 Additive error to TCI (mm/hr) 2 Fractional dynamical model error Ensemble size No. o Streamlow data used/cycle 1 2 Streamlow error variance Additive error variance to TCI Homoscedastic error modeling Heteroscedastic error modeling 1, 10, 50, , 0.1, 1, C Q =0.03, 0.3 C P =0.15, 0.25 Function o Z Q Fractional dynamical model error , 0.025, 0.075, Ensemble size , 9, 30, 50 1 No. o streamlow data used per cycle , 2, 4, 8 MAPE error variance = 1 (mm/hr) 2 12

13 Model error MLEF raction o soil water bucket size EnKF raction o soil water content Accounting or model errors in soil moisture dynamics improves the perormance o DA signiicantly at short lead times Both MLEF and EnKF achieve their respective best with a raction o Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 13

14 Ensemble size MLEF is not very sensitive to ensemble size The EnKF solution generally improves with increasing ensemble size but does not come close to the MLEF solution even with 50 members The CPU time or MLEF is considerably smaller than that or EnKF Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 14

15 Number o streamlow obs assimilated per cycle Fixed lag smoother MLEF results deteriorate when a larger number o streamlow is assimilated. The perormance o EnKF improves up to 4 streamlow observations assimilated per cycle and then decreases Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 15

16 Example results 16

17 Example results (cont.) 17

18 An example o signiicantly dierent perormance between MLEF and EnKF Comparative Evaluation o EnKF and MLEF 18

19 Conclusions & uture research recommendations MLEF generally improves streamlow prediction over EnKF very signiicant at short lead times At large lead times, EnKF tends to perorm slightly better than MLEF Suggests possible overitting by MLEF Perormance o MLEF is much less sensitive to error modeling and ensemble size than that o EnKF Important consideration or operational applications Computational requirements or MLEF is smaller than those or EnKF While the streamlow results appear similar, the soil moisture results are quite dierent between MLEF and EnKF Relects possible under-determinedness o the problem Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 19

20 Conclusions & uture research recommendations (cont.) Approximate gradient evaluation in MLEF is not always successul (compared to the adjoint-based) May result in temporal discontinuity in streamlow and soil moisture results Need to test on larger-dimensional problems with varying degree o under-determinedness (will be covered by Sunghee Kim on Session 8: Real-world Applications o Data Assimilation in Operational Hydrology) Assess the quality o analysis (i.e. updated) ensembles via rigorous ensemble veriication or both streamlow and soil moisture Sep 11, 2014 CAHMDA-HEPEX/DAFOH Workshop, Austin, TX 20

21 THANK YOU Questions? For more ino, please contact 21

22 Formulation o assimilation problem Lumped SAC - Unit Hydrograph (1-hr timestep) UZTWC K-L UZFWC K-L LZTWC K-L LZFSC K-L LZFPC K-L ADIMP K-L state variables model states 2. update X P and X E and Model Error (k=k-l+1,, K) 1. orecast 3. orecast w/ update K-L K-L+1 K-L+2 K-1 K K+1 time k-1 k time (hr) assimilation window o size L (hrs) Measurements K-L Streamlow Observation P and ET and Model Error (k=k-l+1,, K) K-L+1 K-L+2 K-1 K K+1 assimilation window o size L (hrs) I don t think this slide is necessary time (hr) 22 time streamlow (m 3 /sec)

EVALUATION OF THE NWS DISTRIBUTED HYDROLOGIC MODEL OVER THE TRINITY RIVER BASIN IN TEXAS

EVALUATION OF THE NWS DISTRIBUTED HYDROLOGIC MODEL OVER THE TRINITY RIVER BASIN IN TEXAS 1 EVALUATION OF THE NWS DISTRIBUTED HYDROLOGIC MODEL OVER THE TRINITY RIVER BASIN IN TEXAS Arezoo Rafieei Nasab 1, Dong-Jun Seo 1, Robert Corby 2 and Paul McKee 2 1- Department of Civil Engineering, The

More information

An Ensemble Kalman Smoother for Nonlinear Dynamics

An Ensemble Kalman Smoother for Nonlinear Dynamics 1852 MONTHLY WEATHER REVIEW VOLUME 128 An Ensemble Kalman Smoother or Nonlinear Dynamics GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway PETER JAN VAN LEEUWEN Institute or Marine

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation A. Shah 1,2, M. E. Gharamti 1, L. Bertino 1 1 Nansen Environmental and Remote Sensing Center 2 University of Bergen

More information

ON IMPROVING ENSEMBLE FORECASTING OF EXTREME PRECIPITATION USING THE NWS METEOROLOGICAL ENSEMBLE FORECAST PROCESSOR (MEFP)

ON IMPROVING ENSEMBLE FORECASTING OF EXTREME PRECIPITATION USING THE NWS METEOROLOGICAL ENSEMBLE FORECAST PROCESSOR (MEFP) ON IMPROVING ENSEMBLE FORECASTING OF EXTREME PRECIPITATION USING THE NWS METEOROLOGICAL ENSEMBLE FORECAST PROCESSOR (MEFP) Dong-Jun Seo 1, James Brown 2, Theresa Modrick 3, Konstantine Georgakakos 3, Sunghee

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

DATA ASSIMILATION IN A COMBINED 1D-2D FLOOD MODEL

DATA ASSIMILATION IN A COMBINED 1D-2D FLOOD MODEL Proceedings o the International Conerence Innovation, Advances and Implementation o Flood Forecasting Technology, Tromsø, DATA ASSIMILATION IN A COMBINED 1D-2D FLOOD MODEL Johan Hartnac, Henri Madsen and

More information

HYDROLOGIC ENSEMBLE FORECASTING

HYDROLOGIC ENSEMBLE FORECASTING HYDROLOGIC ENSEMBLE FORECASTING Dong-Jun Seo 1, Sunghee Kim 1, Hossein Sadeghi 1, Frank Bell 2, Andrew Philpott 2 1 Dept. of Civil Eng., The University of Texas at Arlington, Arlington, TX 2 West Gulf

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Short tutorial on data assimilation

Short tutorial on data assimilation Mitglied der Helmholtz-Gemeinschaft Short tutorial on data assimilation 23 June 2015 Wolfgang Kurtz & Harrie-Jan Hendricks Franssen Institute of Bio- and Geosciences IBG-3 (Agrosphere), Forschungszentrum

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Introduction to Data Assimilation

Introduction to Data Assimilation Introduction to Data Assimilation Alan O Neill Data Assimilation Research Centre University of Reading What is data assimilation? Data assimilation is the technique whereby observational data are combined

More information

Weak Constraints 4D-Var

Weak Constraints 4D-Var Weak Constraints 4D-Var Yannick Trémolet ECMWF Training Course - Data Assimilation May 1, 2012 Yannick Trémolet Weak Constraints 4D-Var May 1, 2012 1 / 30 Outline 1 Introduction 2 The Maximum Likelihood

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

(Extended) Kalman Filter

(Extended) Kalman Filter (Extended) Kalman Filter Brian Hunt 7 June 2013 Goals of Data Assimilation (DA) Estimate the state of a system based on both current and all past observations of the system, using a model for the system

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas 1 Current issues in atmospheric data assimilation and its relationship with surfaces François Bouttier GAME/CNRM Météo-France 2nd workshop on remote sensing and modeling of surface properties, Toulouse,

More information

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation Revision of TR-9-25: A Hybrid Variational/Ensemble ilter Approach to Data Assimilation Adrian Sandu 1 and Haiyan Cheng 1 Computational Science Laboratory Department of Computer Science Virginia Polytechnic

More information

Comparisons between 4DEnVar and 4DVar on the Met Office global model

Comparisons between 4DEnVar and 4DVar on the Met Office global model Comparisons between 4DEnVar and 4DVar on the Met Office global model David Fairbairn University of Surrey/Met Office 26 th June 2013 Joint project by David Fairbairn, Stephen Pring, Andrew Lorenc, Neill

More information

Observation impact on data assimilation with dynamic background error formulation

Observation impact on data assimilation with dynamic background error formulation Observation impact on data assimilation with dynamic background error formulation ALEXANDER BECK alexander.beck@univie.ac.at Department of, Univ. Vienna, Austria Thanks to: Martin Ehrendorfer, Patrick

More information

Comparing the SEKF with the DEnKF on a land surface model

Comparing the SEKF with the DEnKF on a land surface model Comparing the SEKF with the DEnKF on a land surface model David Fairbairn, Alina Barbu, Emiliano Gelati, Jean-Francois Mahfouf and Jean-Christophe Caret CNRM - Meteo France Partly funded by European Union

More information

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Arif R. Albayrak a, Milija Zupanski b and Dusanka Zupanski c abc Colorado State University (CIRA), 137 Campus Delivery Fort Collins, CO

More information

Prospects for river discharge and depth estimation through assimilation of swath altimetry into a raster-based hydraulics model

Prospects for river discharge and depth estimation through assimilation of swath altimetry into a raster-based hydraulics model Prospects for river discharge and depth estimation through assimilation of swath altimetry into a raster-based hydraulics model Kostas Andreadis 1, Elizabeth Clark 2, Dennis Lettenmaier 1, and Doug Alsdorf

More information

Analysis of Radar-Rainfall Uncertainties and effects on Hydrologic Applications. Emad Habib, Ph.D., P.E. University of Louisiana at Lafayette

Analysis of Radar-Rainfall Uncertainties and effects on Hydrologic Applications. Emad Habib, Ph.D., P.E. University of Louisiana at Lafayette Analysis of Radar-Rainfall Uncertainties and effects on Hydrologic Applications Emad Habib, Ph.D., P.E. University of Louisiana at Lafayette Motivation Rainfall is a process with significant variability

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

Folsom Dam Water Control Manual Update

Folsom Dam Water Control Manual Update Folsom Dam Water Control Manual Update Public Workshop April 3, 2014 Location: Sterling Hotel Ballroom 1300 H Street, Sacramento US Army Corps of Engineers BUILDING STRONG WELCOME & INTRODUCTIONS 2 BUILDING

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective)

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) Dale Barker WWRP/THORPEX Workshop on 4D-Var and Ensemble Kalman Filter Intercomparisons Sociedad Cientifica Argentina, Buenos Aires,

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Some ideas for Ensemble Kalman Filter

Some ideas for Ensemble Kalman Filter Some ideas for Ensemble Kalman Filter Former students and Eugenia Kalnay UMCP Acknowledgements: UMD Chaos-Weather Group: Brian Hunt, Istvan Szunyogh, Ed Ott and Jim Yorke, Kayo Ide, and students Former

More information

Acknowledging: Paul R. Houser (CREW & GMU)

Acknowledging: Paul R. Houser (CREW & GMU) Recent Advances in Land Surace Data Assimilation Acknowledging: Paul R. Houser (CREW & GMU) Yan Luo, Xiwu Zhan, Je Walker, Brian Cosgrove, Jared Entin, Jiarui Dong, Alok Sahoo, Gabrielle de Lannoy Water

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

Hierarchical Bayes Ensemble Kalman Filter

Hierarchical Bayes Ensemble Kalman Filter Hierarchical Bayes Ensemble Kalman Filter M Tsyrulnikov and A Rakitko HydroMetCenter of Russia Wrocław, 7 Sep 2015 M Tsyrulnikov and A Rakitko (HMC) Hierarchical Bayes Ensemble Kalman Filter Wrocław, 7

More information

Operational Perspectives on Hydrologic Model Data Assimilation

Operational Perspectives on Hydrologic Model Data Assimilation Operational Perspectives on Hydrologic Model Data Assimilation Rob Hartman Hydrologist in Charge NOAA / National Weather Service California-Nevada River Forecast Center Sacramento, CA USA Outline Operational

More information

Analysis of the Sacramento Soil Moisture Accounting Model Using Variations in Precipitation Input

Analysis of the Sacramento Soil Moisture Accounting Model Using Variations in Precipitation Input Meteorology Senior Theses Undergraduate Theses and Capstone Projects 12-216 Analysis of the Sacramento Soil Moisture Accounting Model Using Variations in Precipitation Input Tyler Morrison Iowa State University,

More information

2016 HEPEX Workshop Université Laval, Quebec, Canada

2016 HEPEX Workshop Université Laval, Quebec, Canada 2016 HEPEX Workshop Université Laval, Quebec, Canada Evaluating the Usefulness of the US NWS Hydrologic Ensemble Forecast Service (HEFS) in the Middle Atlantic Region for Flood and Drought Applications

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi January 18, 2013, DA Workshop, Tachikawa, Japan Advances and Challenges in Ensemblebased Data Assimilation in Meteorology Takemasa Miyoshi RIKEN Advanced Institute for Computational Science Takemasa.Miyoshi@riken.jp

More information

The Maximum Likelihood Ensemble Filter as a non-differentiable minimization algorithm

The Maximum Likelihood Ensemble Filter as a non-differentiable minimization algorithm QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 134: 1039 1050 (2008) Published online in Wiley InterScience (www.interscience.wiley.com).251 The Maximum Likelihood Ensemble

More information

Comparing Variational, Ensemble-based and Hybrid Data Assimilations at Regional Scales

Comparing Variational, Ensemble-based and Hybrid Data Assimilations at Regional Scales Comparing Variational, Ensemble-based and Hybrid Data Assimilations at Regional Scales Meng Zhang and Fuqing Zhang Penn State University Xiang-Yu Huang and Xin Zhang NCAR 4 th EnDA Workshop, Albany, NY

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Kalman filtering based probabilistic nowcasting of object oriented tracked convective storms

Kalman filtering based probabilistic nowcasting of object oriented tracked convective storms Kalman iltering based probabilistic nowcasting o object oriented traced convective storms Pea J. Rossi,3, V. Chandrasear,2, Vesa Hasu 3 Finnish Meteorological Institute, Finland, Eri Palménin Auio, pea.rossi@mi.i

More information

NWS Mission 5/25/2017. Innovations in Flood Forecasting at the National Weather Service West Gulf River Forecast Center

NWS Mission 5/25/2017. Innovations in Flood Forecasting at the National Weather Service West Gulf River Forecast Center Innovations in Flood Forecasting at the National Weather Service West Gulf River Forecast Center Kris Lander, PE, CFM Gregory Waller NWS West Gulf River Forecast Center NWS Mission To provide weather,

More information

Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review Sensors 2012, 12, 16291-16333; doi:10.3390/s121216291 Review OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

More information

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: formulation and single resolution experiments with real data for NCEP GFS Ting Lei, Xuguang Wang University of Oklahoma, Norman,

More information

Towards operationalizing ensemble DA in hydrologic forecasting

Towards operationalizing ensemble DA in hydrologic forecasting Towards operationalizing ensemble DA in hydrologic forecasting Albrecht Weerts DAFOH Ensemble Kalman Filter Rhine assimilation water levels 14 locations Operational since 1-1-2008 with 48 members See also

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

Ensemble Kalman Filter potential

Ensemble Kalman Filter potential Ensemble Kalman Filter potential Former students (Shu-Chih( Yang, Takemasa Miyoshi, Hong Li, Junjie Liu, Chris Danforth, Ji-Sun Kang, Matt Hoffman), and Eugenia Kalnay University of Maryland Acknowledgements:

More information

16. Data Assimilation Research Team

16. Data Assimilation Research Team 16. Data Assimilation Research Team 16.1. Team members Takemasa Miyoshi (Team Leader) Shigenori Otsuka (Postdoctoral Researcher) Juan J. Ruiz (Visiting Researcher) Keiichi Kondo (Student Trainee) Yukiko

More information

Coupled atmosphere-ocean data assimilation in the presence of model error. Alison Fowler and Amos Lawless (University of Reading)

Coupled atmosphere-ocean data assimilation in the presence of model error. Alison Fowler and Amos Lawless (University of Reading) Coupled atmosphere-ocean data assimilation in the presence of model error Alison Fowler and Amos Lawless (University of Reading) Introduction Coupled DA methods are being developed to initialise forecasts

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Data assimilation. Polyphemus Training Session. June 9, Introduction 2

Data assimilation. Polyphemus Training Session. June 9, Introduction 2 Data assimilation Polyphemus Training Session June 9, 2009 About Purpose: introduction to optimal interpolation, Kalman filtering and variational data assimilation with Polair3D; application to photochemistry

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model

Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model Shu-Chih Yang 1,2, Eugenia Kalnay 1, Matteo Corazza 3, Alberto Carrassi 4 and Takemasa Miyoshi 5 1 University of

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Application of the Ensemble Kalman Filter to History Matching

Application of the Ensemble Kalman Filter to History Matching Application of the Ensemble Kalman Filter to History Matching Presented at Texas A&M, November 16,2010 Outline Philosophy EnKF for Data Assimilation Field History Match Using EnKF with Covariance Localization

More information

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich Arizona State University Co-workers: Istvan Szunyogh, Brian Hunt, Ed Ott, Eugenia Kalnay, Jim Yorke, and many others http://www.weatherchaos.umd.edu

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

Towards a probabilistic hydrological forecasting and data assimilation system. Henrik Madsen DHI, Denmark

Towards a probabilistic hydrological forecasting and data assimilation system. Henrik Madsen DHI, Denmark Towards a probabilistic hydrological forecasting and data assimilation system Henrik Madsen DHI, Denmark Outline Hydrological forecasting Data assimilation framework Data assimilation experiments Concluding

More information

AN OVERVIEW OF ENSEMBLE STREAMFLOW PREDICTION STUDIES IN KOREA

AN OVERVIEW OF ENSEMBLE STREAMFLOW PREDICTION STUDIES IN KOREA AN OVERVIEW OF ENSEMBLE STREAMFLOW PREDICTION STUDIES IN KOREA DAE-IL JEONG, YOUNG-OH KIM School of Civil, Urban & Geosystems Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul,

More information

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Hybrid variational-ensemble data assimilation Daryl T. Kleist Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Weather and Chaos Group Meeting 07 March 20 Variational Data Assimilation J Var J 2 2 T

More information

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace Marc Bocquet CEREA, joint lab École des Ponts ParisTech and EdF R&D, Université Paris-Est, France Institut Pierre-Simon

More information

Assimilation Techniques (4): 4dVar April 2001

Assimilation Techniques (4): 4dVar April 2001 Assimilation echniques (4): 4dVar April By Mike Fisher European Centre for Medium-Range Weather Forecasts. able of contents. Introduction. Comparison between the ECMWF 3dVar and 4dVar systems 3. he current

More information

An Ensemble based Reliable Storm Surge Forecasting for Gulf of Mexico

An Ensemble based Reliable Storm Surge Forecasting for Gulf of Mexico An Ensemble based Reliable Storm Surge Forecasting for Gulf of Mexico Umer Altaf Delft University of Technology, Delft ICES, University of Texas at Austin, USA KAUST, Saudi Arabia JONSMOD 2012, Ifremer,

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

An Iterative EnKF for Strongly Nonlinear Systems

An Iterative EnKF for Strongly Nonlinear Systems 1988 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 An Iterative EnKF for Strongly Nonlinear Systems PAVEL SAKOV Nansen Environmental and Remote Sensing Center, Bergen, Norway DEAN S. OLIVER Uni Centre

More information

Advancing Data AssimilaJon Science for OperaJonal Hydrology: Methodology, ComputaJon, and Algorithms

Advancing Data AssimilaJon Science for OperaJonal Hydrology: Methodology, ComputaJon, and Algorithms 2014 CAHMDA & HEPEX- DAFOH Workshop September 8-12, 2014 The University of Texas at AusJn Advancing Data AssimilaJon Science for OperaJonal Hydrology: Methodology, ComputaJon, and Algorithms Milija Zupanski

More information

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Project eam: Mark Buehner Cecilien Charette Bin He Peter Houtekamer Herschel Mitchell WWRP/HORPEX Workshop on 4D-VAR and Ensemble

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

What should an Outer Loop for ensemble data assimilation look like?

What should an Outer Loop for ensemble data assimilation look like? What should an Outer Loop for ensemble data assimilation look like? Crai Bishop, Daniel Hodyss Naval Research Laboratory, Monterey, California Chris Snyder National Center for Atmospheric Research, Boulder,

More information

Extending a Metric Developed in Meteorology to Hydrology

Extending a Metric Developed in Meteorology to Hydrology Extending a Metric Developed in Meteorology to Hydrology D.M. Sedorovich Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 680, USA dms5@psu.edu

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION J5.4 4D ENSEMBLE KALMAN FILTERING FOR ASSIMILATION OF ASYNCHRONOUS OBSERVATIONS T. Sauer George Mason University, Fairfax, VA 22030 B.R. Hunt, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh,

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF

An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF Blueprints for Next-Generation Data Assimilation Systems Workshop 8-10 March 2016 Mark Buehner Data Assimilation and Satellite

More information

Strategy for Using CPC Precipitation and Temperature Forecasts to Create Ensemble Forcing for NWS Ensemble Streamflow Prediction (ESP)

Strategy for Using CPC Precipitation and Temperature Forecasts to Create Ensemble Forcing for NWS Ensemble Streamflow Prediction (ESP) Strategy for Using CPC Precipitation and Temperature Forecasts to Create Ensemble Forcing for NWS Ensemble Streamflow Prediction (ESP) John Schaake (Acknowlements: D.J. Seo, Limin Wu, Julie Demargne, Rob

More information

Conditional weather resampling for ensemble streamflow forecasting

Conditional weather resampling for ensemble streamflow forecasting Conditional weather resampling for ensemble streamflow forecasting Joost Beckers, Albrecht Weerts (Deltares Delft) Edwin Welles (Deltares USA) Ann McManamon (BPA) HEPEX 10 th anniversary workshop Washington

More information

Surface Hydrology Research Group Università degli Studi di Cagliari

Surface Hydrology Research Group Università degli Studi di Cagliari Surface Hydrology Research Group Università degli Studi di Cagliari Evaluation of Input Uncertainty in Nested Flood Forecasts: Coupling a Multifractal Precipitation Downscaling Model and a Fully-Distributed

More information

D. Lohmann, Pablo Grunman, and Kenneth Mitchell (2004), Land data assimilation at NOAA/NCEP/EMC, in Proceedings of the 2 nd international CAHMDA

D. Lohmann, Pablo Grunman, and Kenneth Mitchell (2004), Land data assimilation at NOAA/NCEP/EMC, in Proceedings of the 2 nd international CAHMDA D. Lohmann, Pablo Grunman, and Kenneth Mitchell (2004), Land data assimilation at NOAA/NCEP/EMC, in Proceedings of the 2 nd international CAHMDA workshop on: The Terrestrial Water Cycle: Modelling and

More information

Global climate predictions: forecast drift and bias adjustment issues

Global climate predictions: forecast drift and bias adjustment issues www.bsc.es Ispra, 23 May 2017 Global climate predictions: forecast drift and bias adjustment issues Francisco J. Doblas-Reyes BSC Earth Sciences Department and ICREA Many of the ideas in this presentation

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

2014 PROGRAM. 06 Sept (Sat.) Training Course on DART 07 Sept (Sun.) Training Course on OpenDA Onsite Registration

2014 PROGRAM. 06 Sept (Sat.) Training Course on DART 07 Sept (Sun.) Training Course on OpenDA Onsite Registration The 6 th International Workshop on Catchment Hydrological Modeling and Data Assimilation (CAHMDA-VI) The 3 rd International Workshop on Data Assimilation for Operational Hydrology and Water Management

More information

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Matthew Wespetal Advisor: Dr. Eugenia Kalnay UMD, AOSC Department March

More information

Radiance Data Assimilation with an EnKF

Radiance Data Assimilation with an EnKF Radiance Data Assimilation with an EnKF Zhiquan Liu, Craig Schwartz, Xiangyu Huang (NCAR/MMM) Yongsheng Chen (York University) 4/7/2010 4th EnKF Workshop 1 Outline Radiance Assimilation Methodology Apply

More information

Some Applications of WRF/DART

Some Applications of WRF/DART Some Applications of WRF/DART Chris Snyder, National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division (MMM), and Institue for Mathematics Applied to Geoscience (IMAGe) WRF/DART

More information

Review of Covariance Localization in Ensemble Filters

Review of Covariance Localization in Ensemble Filters NOAA Earth System Research Laboratory Review of Covariance Localization in Ensemble Filters Tom Hamill NOAA Earth System Research Lab, Boulder, CO tom.hamill@noaa.gov Canonical ensemble Kalman filter update

More information

A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation

A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation Alexandru Cioaca Computational Science Laboratory (CSL) Department of Computer

More information

STEPS-BE: an ensemble radar rainfall nowcasting system for urban hydrology in Belgium

STEPS-BE: an ensemble radar rainfall nowcasting system for urban hydrology in Belgium STEPS-BE: an ensemble radar rainfall nowcasting system for urban hydrology in Belgium Loris Foresti 1,2, Maarten Reyniers 2, Lesley De Cruz 2, Alan Seed 3 and Laurent Delobbe 2 with contributions from

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

The challenge of bounded, non-gaussian, nonlinear and multi-scale variables. Craig H. Bishop University of Melbourne, Parkville, Victoria, Australia

The challenge of bounded, non-gaussian, nonlinear and multi-scale variables. Craig H. Bishop University of Melbourne, Parkville, Victoria, Australia The challenge o bounded, non-gaussian, nonlinear and multi-scale variables Craig H. Bishop University o Melbourne, Parkville, Victoria, Australia Some Motivation Major source o model error in weather and

More information

Coupled Ocean-Atmosphere Assimilation

Coupled Ocean-Atmosphere Assimilation Coupled Ocean-Atmosphere Assimilation Shu-Chih Yang 1, Eugenia Kalnay 2, Joaquim Ballabrera 3, Malaquias Peña 4 1:Department of Atmospheric Sciences, National Central University 2: Department of Atmospheric

More information

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Regional Drought Early Warning System January 3, 2017

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Regional Drought Early Warning System January 3, 2017 1/3/2017 NIDIS Drought and Water Assessment NIDIS Intermountain West Regional Drought Early Warning System January 3, 2017 Precipitation The images above use daily precipitation statistics from NWS COOP,

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Cross-validation methods for quality control, cloud screening, etc.

Cross-validation methods for quality control, cloud screening, etc. Cross-validation methods for quality control, cloud screening, etc. Olaf Stiller, Deutscher Wetterdienst Are observations consistent Sensitivity functions with the other observations? given the background

More information

Bayesian Inverse problem, Data assimilation and Localization

Bayesian Inverse problem, Data assimilation and Localization Bayesian Inverse problem, Data assimilation and Localization Xin T Tong National University of Singapore ICIP, Singapore 2018 X.Tong Localization 1 / 37 Content What is Bayesian inverse problem? What is

More information