AAC 2010 Working Group 1 Laser plasma accelerators

Size: px
Start display at page:

Download "AAC 2010 Working Group 1 Laser plasma accelerators"

Transcription

1 AM PM I PM II AAC 2010 Working Group 1 Laser plasma accelerators Sessions at a glance (Joint in Parens): Tuesday Wednesday Thursday Friday Beam properties Malka, Kaluza, Li Ionization/injection McGuffey, Pak, Kotaki Laser guiding & structure Cros, Hooker, Gonsalves, Krishnan High power & app. s Mangles, Veisz, Karsch Laser/plasma shaping Hosokai, Schramm, Layer Laser & wake diagn./shape Kaganovich, Dong, Palastro Injection (2) Lu, Chen, Kalmykov, Shvets (Khudik) Radiation (4,5) Kneip, Grüner, Jaroszynski, Osterhoff, Martins/Silva Staging & exp. modeling (2) Bourgeois, Geddes, Ting, Wang, Cormier Michel Transport, staging, tech. (4) Weingartner, Nakamura, Sokollik, Pollock Capillaries, radiation, inject. Jaroszynski, Hidding Leads: Cameron Geddes (cgrgeddes@lbl.gov), Chris Clayton, Wei Lu, Alec Thomas Topic groups/summary outline Facilities & high power experiments Guiding and structure control Staging Radiation generation & beam control Beam properties & diagnostics Injection

2 AAC 2010 Working Group 1 Laser plasma accelerators 6/22/2010 WG1 High Power Laser Experiments 2

3 High Power Laser Plasma Experiments Ulrich Schramm FZD Status of the FZD lab combining 150 TW laser pulses with the sc electron linac ELBE ELBE SRF e linac (nc / ps 13 MHz) status (user facility) shielde d combin ed exp. areas upgrade (2011) Combining high power laser with electron linac (ELBE) Thomson scattering experiments Tilt phase fronts to increase Thomson scattering yield Calibration of Lanex and image plates SRF photo gun Ti:Sa L PW DPSSL 6/22/2010 WG1 High Power Laser Experiments 3

4 High Power Laser Plasma Experiments Stefan Karsch LMU, MPQ The CALA project and recent progress in laserdriven electron acceleration at MPQ CALA facility with synchronized laser and beam sources Capillary discharge development Optimized target stable monoenergetic beam X Wang UT Multi GeV electron acceleration using Texas Petawatt laser Simulations show TPW laser is ideal for multi GeV electron generation Inexpensive GeV e energy measurement using calorimeter FDH diagnostic for reconstruction of bubble at small angle streak camera 6/22/2010 WG1 High Power Laser Experiments 4

5 High Power Laser Plasma Experiments Laszlo Veisz MPQ Progress in laser wakefield acceleration with few cycle lasers Self injection Controlled injection Low dark current spectra Sharp density transition improved trapping Normalized RMS emittance measurement scales as 1/γ Generation of few fs pulses Electron 10Energy (MeV) Electron 10 Energy (MeV) Stuart Mangles IC Electron acceleration and x ray generation at IC Pulse compression Off axis electron injection controls betatron coma Energy density threshold for electron injection Power not most useful parameter for characterizing LWFA 6/22/2010 WG1 High Power Laser Experiments 5

6 AAC 2010 Working Group 1 Laser plasma accelerators

7 Guiding and structure control capillaries Simon Hooker Oxford Generation of electron beams in low density plasma channels Q vs timing Threshold iris/none Capillary Astra Gemini 500 MeV e beams more sensitive to caplaser delay at low n e 80 mbar required guiding 200mbar regardless Use of aperture to clean up spot reduced E thresh,trap ~2x Optical spectra show blueshift w/trapping, raman Nicolas Bourgeois Oxford Plasma channel diagnostic based on laser centroid oscillations Guiding w/ & w/o channel Relativistic shift in Raman Simulated propagation in channels & aperture effect Channel allows guiding at lower n e than self guide alone Spot size effect small Relativistic shift of Raman

8 Guiding and structure control capillaries Tony Gonsalves LBNL Plasma channel diagnostic based on laser centroid oscillations Time scan determines r m Offset scan channel form Spot transverse oscillation provides precise diagnostic of channel depth and shape Scan timing, offset Guide parabolic possible small 4th order Depth matches scalings Brigitte Cros LPGP CNRS Control of laser wakefield amplitude in capillary tubes Modes vs offset Guiding results Calculation need laser pointing < 5mr offset < 0.3R cap Lund Stabize via mechanical, inhibit unstble laser cycle, piezo mirror, DM Guiding at a ~ 0.26, 120mJ Wake amplitude from laser spectral modification, infer 1 7 GV/m

9 Guiding and structure control general Brian Layer UMD Acceleration of Electrons in Modulated Plasma Channels with Radially Polarized Laser Pulses Modulated laser (1) Modulate jet (2) Direct laser acceleration modulate channel to match w/radially polarized laser Channel type1: axicon focused laser modulated by ring grating modulates channel Channel type 2: uniform laser, cluster jet modulated by wires density Tomonao Hosokai Osaka Electron energy boosting with transient micro optics Prepulse vs Bfield Stabilized beam Guide fs few Generate 1d radial like pulse and fields using split pelicle Preplasma shaped by applied magnetic field Forms lens extends laser propagation Increases energy and stability Asymmetric slit jet for density tailoring

10 Guiding and structure control general Mahadevan Krishnan AASC Control of laser wakefield amplitude in capillary tubes Valve Open/close time Fast gas valve using flyer plate opening 70µs open, few hundred close Scalable to 10 s µs Cooling for rep rate, shaping

11 Guiding and structure control capillaries Antonio Ting NRL Plasma Density Tapering for LWFA of Electrons and Protons Beat phase vel. vs spot ratio Plasma density up taper compensates wake v < c Bucket jumping extends range Protons acceleration with: Down taper 20 GeV in 10 cm Near n crit wakes Beat wave w/ different spot size and quasi phase match 2MeV / period Cameron Geddes LBNL Laser Plasma Wakefield Acceleration w/high Order Laser Modes * E. Cormier Michel et al, submitted HOM Gaussian Small matched bunch radius limits chrage for low beams Decrease focusing fields by tailoring transverse laser mode in quasilinear regime Propagate to depletion in channel Increase matched radius & Qcan adjust wake phase for BL

12 Discussion Discharge capillaries 500 MeV beams from Astra Gemini capillary experiments Spot quality critical to injection threshold Guide allows propagation, injection at lower density Precise diagnostics of profile with laser centroid oscillation Glass capillaries guiding characteristics w/pointing, wake via GV/m New jets developed using flyer plate method for high speed pulses Direct acceleration guides formed by modulated beams, jets. Suitable laser via pelicle cut in beam Stage design Taper for electron or proton acceleration Proton acceleration via taper or beat wave Emittance matching controlled in quasilinear regime using laser mode for efficiency

13 AAC 2010 Working Group 1 Laser plasma accelerators

14 Thomas Sokillik LBNL Tape drive based Plasma Mirror Staging R vs I Need to minimize coupling distance between stages to maximze gradient in collider Plasma mirrors cm scale Tested tape mirror 80% R Profiled material roughness Bradley Pollock UCSD/ LLNL Laser Wakefield Acceleration in a Two Stage Gas Cell Trapping threshold 2 stage gas cell Calisto experiments 200TW, ~30% in central spot Accel to 700 MeV in cm jets, self trap threshold measured 2 stage cell (short ionization mix region) built, sims 1.5GeV low de

15 AAC 2010 Working Group 1 Laser plasma accelerators 6/22/2010 WG1 Radiation and Staging 15

16 Radiation from Laser Plasma Accelerators Stefan Kneip UM Laser Plasma Accelerator and Wiggler Florian Gruener LMU, MPQ Laser driven soft X ray Undulator Source x rays measured from betatron oscillations in a LWFA Beam is well collimated and stable Source size is ~µm Peak spectral brightness comparable to 3 rd Gen Synchrotrons Laser driven undulator source First application experiment Lab scale XFEL High stability of beams required 6/22/2010 WG1 Radiation and Staging 16

17 Radiation from Laser Plasma Accelerators Dino Jarozynski Strathclyde High brightness electron beams from a Laser Plasma Wakefield Accelerator No slides available Laser wakefield acceleration to inject into undulator Imaging spectrometer Measurements of electron beam emittance using pepperpot technique MeV betatron radiation Jens Osterhoff LBNL Controlled transport of ultra relativistic e beams from LPAs by mini quad magnets Beam transport using quadrupole magnets Decrease energy error from alignment Increase yield of undulator Increased pointing stability of electron beam 6/22/2010 WG1 Radiation and Staging 17

18 Radiation from Laser Plasma Accelerators Raphael Weingartner LMU Imaging laser wakefield accelerated electrons using magnetic quadrupole lenses Joanna Martins (Luis O Silva) IST Simulation of radiation from plasma based accelerators No slides available Beam transport using quadrupole magnets Excellent control over electron bunch while maintaining bunch length and emittance Control over steering Energy spread of < 2% rms measured with imaging spectrometer Post processing of particle trajectories from OSIRIS virtual detector photon flux via spectral integrals Injection, acceleration effect on spectrum Bright 2 MeV photon source with 12 GeV accelerator 6/22/2010 WG1 Radiation and Staging 18

19 Radiation from Laser Plasma Accelerators Bernhard Hidding Space Radiation Studies A Novel Killer Application for Laser Plasma Accelerators? Using LPAs to investigate effects of space radiation Comparably cost effective additional testing beam time May increase testing realismreliability/safety Proliferation aspects (replace radioactive sources) Exponential electron and proton spectrum 6/22/2010 WG1 Radiation and Staging 19

20 Radiation from Laser Plasma Accelerators DISCUSSION Radiation generation using plasma based acceleration very favorable E Beam properties potentially excellent small source size, reasonable emittance, ultrashort duration Two approaches 1. Generate low emittance bunches and inject into external undulator Low emittance may motivate controlled injection Conventional/engineering 2. Generate radiation from betatron oscillations in wake Ultra Compact Spontaneous Applications FEL radiation vs Synchrotron Beam transport and stability Coherence properties Physics X rays as a diagnostic of electron dynamics Radiation reaction force effects Ultrashort duration for pumpprobe experiments 6/22/2010 WG1 Radiation and Staging 20

21 AAC 2010 Working Group 1 Laser plasma accelerators 6/22/2010 WG1 High Power Laser Experiments 21

22 Charge is important Victor Malka (LOA) A few fs electron bunch produced with LPA image here Correlation! Kei Nakamura (LBNL) Electron Beam Charge Diagnostics for LPA s image here Two colliding laser beams allow for control of energy and phase space volume: > Beam loading Tunable: MeV Tunable: 1 to 10 s pc de/e down to 1 % Good beam quality CTR shows 1.5 fs RMS Peak current : 4kA Some controversy regarding: ICT, image plate, Lanex, activation > Cross calibration needed. Issues Energy Charge Q/mm 2 (saturation) Pulse length Good agreement so far! BPM s may be accurate

23 Wake structure (1 of 2) Malte Kaluza (IOQ Jena) Optical Diagnostics for LPA Hosing Faraday High resolution (< 3 μm) side scatter images Evidence of self focusing long wavelength hosing wavelength increases with decreasing plasma density > Pulse front tilt Asymmetric ponderomotive force Polarograms (Faraday rotation) see bubble displacement current + electrons Zhengyn Li (UT Austin) Frequency Domain Streak Camera:Imaging EVOLVING Wakes image here New twist on FDH Conventional X ray style CT projection static object, moving probe In frame of FDSC probe Static probe, moving object Tested with Kerr medium Ready for wakefield!

24 Electron Energy (MeV) Wake structure (2 of 2) Dmitri Kaganovich (NRL) Measurements of the Plasma Bubble Dynamics and e Trapping in a LWFA a off-axis electrons image here Plasma Density (10 19 cm -3 ) b on-axis electrons measurement threshold Peng Dong (UT Austin) Formation of optical bullets in LWFA bubbles image here Electron Charge (nc) Discovery through computation Explained off axis electrons Electro optic shock Conical 2 0 light Experimentally confirmed correlated with electrons > New diagnostic Ring angle, thickness correlated with experimental parameters New twist on FDH Trapping and modification of probe beam by plasma bubble AM reconstruction of pulse Potential for optical compressor Structure change with density, traping

25 Instability? John Palastro (U Md) FRS of Intense Pulses in Modulated Plasmas image here Acceleration time is limited by pulse length > Raman instability has time to grow How much? modulations reduce low mode growth but enhance high mode growth Conical 2 0 light A fortuitous effect for realistic leaky channels

26 AAC 2010 Working Group 1 Laser plasma accelerators 6/22/2010 WG1 High Power Laser Experiments 26

27 Ionization Injection (experiments) C. McGuffey et al. (U. of Michigan) Effects of ionization and laser/plasma interaction Monoenergetic beam 2010 Different mixed gases Increased charge Monoenergetic beam (a few hundreds MeV) High power (100TW) operation McGuffey, et al. Phys. Rev. Lett., (2010) A. Pak et al., (UCLA) Injection of Tunnel Ionized Electrons into LWFA A. Pak, et. al. Phys. Rev. Lett., (2010) Mixed gas (He +N) ~100MeV beam Reduced injection threshold on a0 Agreement between experiment and simulations Simple model on threshold

28 Ionization Injection (experiments) B. Pollock et al., (LLNL) 1.5GeV beam from Ionization injection at 120TW Energy record up to 1.5GeV Continuous spectral 1.3cm gas cell He+CO2 mixed gas Clayton et al., PRL submitted (UCLA) K. Nakamura et al., (LBNL) Stable injector using Ionization trapping image here 3e18/cc jet no injection without gas mix Mixed gas 12MeV stable de~6mev (FWHM) 25pC

29 Injection (experiments) H. Kotaki JAEA Stable electron bunch generation with a 3.2TW Ti:sapphire laser for injectors... Injection and propagation stabilized in Ar/N2 vs He 130 MeV beams at 3TW & also sub MeV beams Steer beam w/jet position Polarization dependent oscillation used to infer bunch length ~ 4 fs Colliding pulse injection Talk Victor Malka see beam properties section Poster, Plateau

30 Injection (theory and simulation) W. Lu et al. (UCLA) Self and controlled Injection of LWFA and PWFA 2 0 v p x0 0 1 p 2 General trapping condition for non evolving wakes Physical picture of injection (two step process) Simulation verification of the physical picture by utilizing nonevolving beam drivers discssions on the effects of driver shape, plasma channels W. Lu et al., PhD Dissertation (2006) M. Chen et al., (LBNL) Ionization induced electron injection in LWFA PIC & theoretical treatment Injection@low wake amplitude Short mixed gas controls charge, improves E Laser skew controls E Control of P perp w/low a 0

31 Injection (theory and simulation) S. Kalmykov et al., (U. of Nebraska, Lincoln) Electron self-injection into an evolving plasma bubble Evolving bubble helps electron injection laser evolution induced bubble expansion can shut off injection, may lead to monoenergetic beam Quasi static code Wake with test particles can give reasonable agreement with full PIC under certain conditions S. Kalmykov et al., PRL (2009) G. Shvets et al., (U. of Austin) Electron Self Inject. and Accel. into an Evolving Plasma "Bubble" 2 H d H Hmc / d 1 v v 0 x Expanding bubble changes the Hamitonian and trapping conditon Bubble expansion followed by stabilization for low E

32 Injection (theory and simulation) E. Cormier-Michel et al., (LBNL) Predictive design of colliding pulse injected LWFA Colliding pulse injection allows high quality beam Simulation scan to predict experimental results Optimum density for trapped charge Scaled parameters show scaling law

Multi-GeV electron acceleration using the Texas Petawatt laser

Multi-GeV electron acceleration using the Texas Petawatt laser Multi-GeV electron acceleration using the Texas Petawatt laser X. Wang, D. Du, S. Reed, R. Zgadzaj, P.Dong, N. Fazel, R. Korzekwa, Y.Y. Chang, W. Henderson M. Downer S.A. Yi, S. Kalmykov, E. D'Avignon

More information

Acceleration at the hundred GV/m scale using laser wakefields

Acceleration at the hundred GV/m scale using laser wakefields Acceleration at the hundred GV/m scale using laser wakefields C.G.R. Geddes LOASIS Program at LBNL cgrgeddes @ lbl.gov E. Esarey, A.J. Gonsalves, W. Isaacs, V.Leurant, B. Nagler, K. Nakamura, D. Panasenko,

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London Introduction to plasma wakefield acceleration Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London plasma as an accelerator ~ 1 m; ~ 40 MV/m ~ 50 µm; ~ 100 GV/m a plasma

More information

Producing bright, short-pulse kev radiation with laser-plasma accelerators. Stuart Mangles

Producing bright, short-pulse kev radiation with laser-plasma accelerators. Stuart Mangles Producing bright, short-pulse kev radiation with laser-plasma accelerators Stuart Mangles Authors S. P. D. Mangles 1, C. Bellei 1, R Bendoyro 3, M. Bloom 1, M. Burza 5, K. Cassou 6, V. Chvykov 2, B. Cros

More information

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, V.Malka Laboratoire d Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761

More information

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Jérôme FAURE Laboratoire d Optique Appliquée Ecole Polytechnique Palaiseau, France UMR 7639 FemtoElec

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator OUTLINE ALPHA-X Project Introduction on laser wakefield accelerator (LWFA) LWFA as a light source Electron

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

The Production of High Quality Electron Beams in the. Laser Wakefield Accelerator. Mark Wiggins

The Production of High Quality Electron Beams in the. Laser Wakefield Accelerator. Mark Wiggins The Production of High Quality Electron Beams in the Laser Wakefield Accelerator Mark Wiggins Contents ALPHA-X project Motivation: quality electron beams and light sources The ALPHA-X beam line: experimental

More information

arxiv: v1 [physics.acc-ph] 1 Jan 2014

arxiv: v1 [physics.acc-ph] 1 Jan 2014 The Roads to LPA Based Free Electron Laser Xiongwei Zhu Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 arxiv:1401.0263v1 [physics.acc-ph] 1 Jan 2014 January 3, 2014 Abstract

More information

Active plasma lenses at 10 GeV

Active plasma lenses at 10 GeV Active plasma lenses at 1 GeV Jeroen van Tilborg, Sam Barber, Anthony Gonsalves, Carl Schroeder, Sven Steinke, Kelly Swanson, Hai-En Tsai, Cameron Geddes, Joost Daniels, and Wim Leemans BELLA Center, LBNL

More information

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop Measuring very low emittances using betatron radiation Nathan Majernik October 19, 2017 FACET-II Science Workshop Plasma photocathode injection Trojan horse High and low ionization threshold gases Blowout

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

BEAM DIAGNOSTICS CHALLENGES

BEAM DIAGNOSTICS CHALLENGES International Beam Instrumentation Conference Barcelona September 13 th, 2016 BEAM DIAGNOSTICS CHALLENGES IN PLASMA WAKEFIELD ACCELERATION Seminar Jens Osterhoff FLASHFORWARD Project Leader Head, Research

More information

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators 3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators Asher Davidson, Ming Zheng,, Wei Lu,, Xinlu Xu,, Chang Joshi, Luis O. Silva, Joana Martins, Ricardo Fonseca

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

Beam-plasma Physics Working Group Summary

Beam-plasma Physics Working Group Summary Beam-plasma Physics Working Group Summary P. Muggli, Ian Blumenfeld Wednesday: 10:55, Matt Thompson, LLNL, "Prospect for ultra-high gradient Cherenkov wakefield accelerator experiments at SABER 11:25,

More information

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori E-doubling with emittance preservation and pump depletion Generation of Ultra-low Emittance Electrons Testing a new concept for a novel positron source Chan Joshi UCLA With help from Weiming An, Chris

More information

Speeding up simulations of relativistic systems using an optimal boosted frame

Speeding up simulations of relativistic systems using an optimal boosted frame Speeding up simulations of relativistic systems using an optimal boosted frame J.-L. Vay1,3, W. M. Fawley1, C. G. R. Geddes1, E. Cormier-Michel1, D. P. Grote2,3 1Lawrence Berkeley National Laboratory,

More information

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET N. Vafaei-Najafabadi 1, a), C.E. Clayton 1, K.A. Marsh 1, W. An 1, W. Lu 1,, W.B. Mori 1, C. Joshi 1, E. Adli

More information

Simulations and Performance

Simulations and Performance EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS Simulations and Performance Alban Mosnier (CEA) EAAC 2017, Sept. 19th This project has received funding from the European Union s research

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) in collaboration with Spencer Gessner (CERN) presented by Erik Adli (University of Oslo) FACET-II Science Workshop

More information

Enhancement of Betatron radiation from laser-driven Ar clustering gas

Enhancement of Betatron radiation from laser-driven Ar clustering gas Enhancement of Betatron radiation from laser-driven Ar clustering gas L. M. Chen 1, W. C. Yan 1, D. Z. Li 2, Z. D. Hu 1, L. Zhang 1, W. M. Wang 1, N. Hafz 3, J. Y. Mao 1, K. Huang 1, Y. Ma 1, J. R. Zhao

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

Speeding up simulations of relativistic systems using an optimal boosted frame

Speeding up simulations of relativistic systems using an optimal boosted frame Speeding up simulations of relativistic systems using an optimal boosted frame J.-L. Vay1,3, W.M. Fawley1, C. G. R. Geddes1, E. Cormier-Michel1, D. P. Grote2,3 1Lawrence Berkeley National Laboratory, CA

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN Alexey Petrenko on behalf of the AWAKE Collaboration Outline Motivation AWAKE at CERN AWAKE Experimental Layout: 1 st Phase AWAKE

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1) Relativistic Weibel Instability Notes from a tutorial at the UCLA Winter School, January 11, 2008 Tom Katsouleas USC Viterbi School of Engineering, LA, CA 90089-0271 Motivation: Weibel instability of relativistic

More information

Review of Laser Wakefield Accelerators. Victor Malka. Laboratoire d Optique Appliquée.

Review of Laser Wakefield Accelerators. Victor Malka. Laboratoire d Optique Appliquée. Review of Laser Wakefield Accelerators Victor Malka Laboratoire d Optique Appliquée ENSTA ParisTech Ecole Polytechnique CNRS PALAISEAU, France victor.malka@ensta.fr Laser Plasma Accelerators : Outline

More information

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity SL_COMB E. Chiadroni (Resp), D. Alesini, M. P. Anania (Art. 23), M. Bellaveglia, A. Biagioni (Art. 36), S. Bini (Tecn.), F. Ciocci (Ass.), M. Croia (Dott), A. Curcio (Dott), M. Daniele (Dott), D. Di Giovenale

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

Betatron radiation from a hybrid self-modulated wakefield and direct laser accelerator

Betatron radiation from a hybrid self-modulated wakefield and direct laser accelerator Betatron radiation from a hybrid self-modulated wakefield and direct laser accelerator 1, N. Lemos 2, J.L. Shaw 2, B.B. Pollock 1, G. Goyon 1, W. Schumaker 3, F. Fiuza 3, A. Saunders 4, K. A. Marsh 2,

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Accelerator Activities at PITZ

Accelerator Activities at PITZ Accelerator Activities at PITZ Plasma acceleration etc. Outline > Motivation / Accelerator Research & Development (ARD) > Plasma acceleration Basic Principles Activities SINBAD > ps-fs electron and photon

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC Electron Acceleration in a Plasma Wakefield Accelerator E200 Collaboration @ FACET, SLAC Chan Joshi UCLA Making Big Science Small : Moving Toward a TeV Accelerator Using Plasmas Work Supported by DOE Compact

More information

An Overview of the Activities of ICS Sources in China

An Overview of the Activities of ICS Sources in China An Overview of the Activities of ICS Sources in China Chuanxiang Tang *, Yingchao Du, Wenhui Huang * tang.xuh@tsinghua.edu.cn Department of Engineering physics, Tsinghua University, Beijing 100084, China

More information

First results from the plasma wakefield acceleration transverse studies at FACET

First results from the plasma wakefield acceleration transverse studies at FACET First results from the plasma wakefield acceleration transverse studies at FACET Erik Adli (University of Oslo, Norway and SLAC) For the FACET E200 collaboration : M.J. Hogan, S. Corde, R.J. England, J.

More information

S ynchrotron light sources have proven their usefulness for users especially in the biological and condensed

S ynchrotron light sources have proven their usefulness for users especially in the biological and condensed SUBJECT AREAS: LASER-PRODUCED PLASMA PLASMA-BASED ACCELERATORS X-RAYS ULTRAFAST PHOTONICS Received 19 November 2012 Accepted 9 May 2013 Published 29 May 2013 Correspondence and requests for materials should

More information

Status of the Transverse Diagnostics at FLASHForward

Status of the Transverse Diagnostics at FLASHForward Journal of Physics: Conference Series PAPER OPEN ACCESS Status of the Transverse Diagnostics at FLASHForward To cite this article: P Niknejadi et al 2018 J. Phys.: Conf. Ser. 1067 042010 View the article

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator

KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator Dino Jaroszynski University of Strathclyde dino@phys.strath.ac.uk Outline of talk Large and small accelerators + high

More information

Non-neutral fireball and possibilities for accelerating positrons with plasma

Non-neutral fireball and possibilities for accelerating positrons with plasma Instituto Superior Técnico GoLP/IPFN Non-neutral fireball and possibilities for accelerating positrons with plasma J.Vieira GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

arxiv:physics/ v1 [physics.plasm-ph] 16 Jan 2007

arxiv:physics/ v1 [physics.plasm-ph] 16 Jan 2007 The Effect of Laser Focusing Conditions on Propagation and Monoenergetic Electron Production in Laser Wakefield Accelerators arxiv:physics/0701186v1 [physics.plasm-ph] 16 Jan 2007 A. G. R. Thomas 1, Z.

More information

Accelerators in Society

Accelerators in Society Accelerators in Society? Wim Leemans Lawrence Berkeley National Laboratory Office of Office of Science Science 1 Flanders, Belgium and CERN Brussel, Belgium, November 30 th 2018 1 2 A Series of US Workshops

More information

Particle Driven Acceleration Experiments

Particle Driven Acceleration Experiments Particle Driven Acceleration Experiments Edda Gschwendtner CAS, Plasma Wake Acceleration 2014 2 Outline Introduction Motivation for Beam Driven Plasmas Wakefield Acceleration Experiments Electron and proton

More information

Beam manipulation with high energy laser in accelerator-based light sources

Beam manipulation with high energy laser in accelerator-based light sources Beam manipulation with high energy laser in accelerator-based light sources Ming-Chang Chou High Brightness Injector Group FEL winter school, Jan. 29 ~ Feb. 2, 2018 Outline I. Laser basic II. III. IV.

More information

Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien

Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien Working Group 8: Overview Relatively small group this year: 8 oral / 3 poster presentations For 2016

More information

External injection of electron bunches into plasma wakefields

External injection of electron bunches into plasma wakefields External injection of electron bunches into plasma wakefields Studies on emittance growth and bunch compression p x x Timon Mehrling, Julia Grebenyuk and Jens Osterhoff FLA, Plasma Acceleration Group (http://plasma.desy.de)

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

E-157: A Plasma Wakefield Acceleration Experiment

E-157: A Plasma Wakefield Acceleration Experiment SLAC-PUB-8656 October 2 E-157: A Plasma Wakefield Acceleration Experiment P. Muggli et al. Invited talk presented at the 2th International Linac Conference (Linac 2), 8/21/2 8/25/2, Monterey, CA, USA Stanford

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Synergistic Direct/Wakefield Acceleration In the Plasma Bubble Regime Using Tailored Laser Pulses. Gennady Shvets, The University of Texas at Austin

Synergistic Direct/Wakefield Acceleration In the Plasma Bubble Regime Using Tailored Laser Pulses. Gennady Shvets, The University of Texas at Austin Synergistic Direct/Wakefield Acceleration In the Plasma Bubble Regime Using Tailored Laser Pulses Gennady Shvets, The University of Texas at Austin John Adams Institute for Accelerator Science, Oxford,

More information

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator Proceedings of Particle Accelerator Society Meeting 29, JAEA, Tokai, Naka-gun, Ibaraki, Japan GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator K. Nakamura, A. J. Gonsalves,

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

Outlook for PWA Experiments

Outlook for PWA Experiments Outlook for PWA Experiments Ralph Assmann, Steffen Hillenbrand, Frank Zimmermann CERN, BE Department, ABP Group KET Meeting Dortmund 25 October 2010 themes community interest and potential first demonstration

More information

The. Laser Wakefield Accelerator (LWFA): towards a compact light source. Mark Wiggins

The. Laser Wakefield Accelerator (LWFA): towards a compact light source. Mark Wiggins The Laser Wakefield Accelerator (LWFA): towards a compact light source Mark Wiggins Contents ALPHA-X project What is a LWFA? Motivation: quality electron beams and light sources The ALPHA-X beam line:

More information

Results of the Energy Doubler Experiment at SLAC

Results of the Energy Doubler Experiment at SLAC Results of the Energy Doubler Experiment at SLAC Mark Hogan 22nd Particle Accelerator Conference 2007 June 27, 2007 Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745,

More information

Working group 1 - Laser-plasma acceleration Abstract Index

Working group 1 - Laser-plasma acceleration Abstract Index Working group 1 - Laser-plasma acceleration Abstract Index Bakeman 1 Mangles 26 Bourgeois 2 Martins 27 Cormier-Michel 3 Matlis 28 Cros 4 McGuffey 29 Dong 5 Mikhailichenko 30 Froula 6 Nakamura 31 Geddes

More information

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000 The ORION Facility at SLAC Bob Siemann AAC Workshop, June 15, 2000 1. Introduction 2. The ORION Workshop 3. What s Next? 4. Concluding Remarks http://www-project.slac.stanford.edu/orion/ Introduction Advanced

More information

Generation of a large amount of energetic electrons in complex-structure bubble

Generation of a large amount of energetic electrons in complex-structure bubble Generation of a large amount of energetic electrons in complex-structure bubble To cite this article: Jiancai Xu et al 2010 New J. Phys. 12 023037 View the article online for updates and enhancements.

More information

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar SINBAD Ralph W. Aßmann Leading Scientist, DESY LAOLA Collaboration Meeting, Wismar 28.05.2013 Reminder: Helmholtz Roadmap > The latest Helmholtz-roadmap for research infrastructure was published in 2011.

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Enhancement of laser wakefield acceleration generated electron beam energies on Gemini by employing f/40 focussing

Enhancement of laser wakefield acceleration generated electron beam energies on Gemini by employing f/40 focussing Enhancement of laser wakefield acceleration generated electron beam energies on Gemini by employing f/ focussing Contact: k.poder@imperial.ac.uk K. Poder, J. C. Wood, N. Lopes, S. Alatabi, J. M. Cole,

More information

Experimental study of nonlinear laser-beam Thomson scattering

Experimental study of nonlinear laser-beam Thomson scattering Experimental study of nonlinear laser-beam Thomson scattering T. Kumita, Y. Kamiya, T. Hirose Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan I.

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Uni Hamburg tim.plath@desy.de 05.11.2013 Supported by BMBF under contract 05K10GU2 & FS FLASH 301 Motivation short pulses

More information

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration OUTLINE Basic E-157 Acelleration, Focusing Plasma Source Diagnostics:

More information

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira GoLP/IPFN Instituto Superior Técnico Plasma Wakefield Acceleration of Jorge Vieira! Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://epp.ist.utl.pt[/jorgevieira]

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

Jitter measurement by electro-optical sampling

Jitter measurement by electro-optical sampling Jitter measurement by electro-optical sampling VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

THE BERKELEY LAB LASER ACCELERATOR (BELLA): A 10 GEV LASER PLASMA ACCELERATOR*

THE BERKELEY LAB LASER ACCELERATOR (BELLA): A 10 GEV LASER PLASMA ACCELERATOR* THE BERKELEY LAB LASER ACCELERATOR (BELLA): A 10 GEV LASER PLASMA ACCELERATOR* W. P. Leemans, #, R. Duarte, E. Esarey, D. S. Fournier, C. G. R. Geddes, D. Lockhart, C. B. Schroeder, C. Tóth, J.-L. Vay,

More information

Eric R. Colby* SLAC National Accelerator Laboratory

Eric R. Colby* SLAC National Accelerator Laboratory Eric R. Colby* SLAC National Accelerator Laboratory *ecolby@slac.stanford.edu Work supported by DOE contracts DE AC03 76SF00515 and DE FG03 97ER41043 III. Overview of the Technology Likely Performance

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Simulation of monoenergetic electron generation via laser wakefield accelerators for 5 25 TW lasers a

Simulation of monoenergetic electron generation via laser wakefield accelerators for 5 25 TW lasers a PHYSICS OF PLASMAS 13, 056708 2006 Simulation of monoenergetic electron generation via laser wakefield accelerators for 5 25 TW lasers a F. S. Tsung, b W. Lu, M. Tzoufras, W. B. Mori, and C. Joshi University

More information

Thomson Scattering from Nonlinear Electron Plasma Waves

Thomson Scattering from Nonlinear Electron Plasma Waves Thomson Scattering from Nonlinear Electron Plasma Waves A. DAVIES, 1 J. KATZ, 1 S. BUCHT, 1 D. HABERBERGER, 1 J. BROMAGE, 1 J. D. ZUEGEL, 1 J. D. SADLER, 2 P. A. NORREYS, 3 R. BINGHAM, 4 R. TRINES, 5 L.O.

More information

CP472, Advanced Accelerator Concepts: Eighth Workshop, edited by W. Lawson, C. Bellamy, and D. Brosius (c) The American Institute of Physics

CP472, Advanced Accelerator Concepts: Eighth Workshop, edited by W. Lawson, C. Bellamy, and D. Brosius (c) The American Institute of Physics Acceleration of Electrons in a Self-Modulated Laser Wakefield S.-Y. Chen, M. Krishnan, A. Maksimchuk and D. Umstadter Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 89 Abstract.

More information

Vertical Polarization Option for LCLS-II. Abstract

Vertical Polarization Option for LCLS-II. Abstract SLAC National Accelerator Lab LCLS-II TN-5-8 March 5 Vertical Polarization Option for LCLS-II G. Marcus, T. Raubenheimer SLAC, Menlo Park, CA 95 G. Penn LBNL, Berkeley, CA 97 Abstract Vertically polarized

More information

Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble. Significance

Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble. Significance Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble Wenchao Yan a, Liming Chen a,1, Dazhang Li b, Lu Zhang a, Nasr A. M. Hafz c, James Dunn d, Yong Ma a,

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

Inverse Compton Scattering Sources from Soft X-rays to γ-rays

Inverse Compton Scattering Sources from Soft X-rays to γ-rays Inverse Compton Scattering Sources from Soft X-rays to γ-rays J.B. Rosenzweig UCLA Department of Physics and Astronomy 21 Ottobre, 2004 Introduction Inverse Compton scattering provides a path to 4th generation

More information