NON-STATIONARY MECHANICAL VIBRATION MODELING AND ANALYSIS

Size: px
Start display at page:

Download "NON-STATIONARY MECHANICAL VIBRATION MODELING AND ANALYSIS"

Transcription

1 NON-STATIONARY MECHANICAL VIBRATION MODELING AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS A.G. Poulimenos and S.D. Fassois DEPARTMENT OF MECHANICAL &AERONAUTICAL ENGINEERING GR PATRAS, GREECE sms 13 th IFAC Symposium on System Identification (SYSID 2003) Rotterdam, The Netherlands, August 2003 Research supported by the VolkswagenStiftung.

2 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 1 TALK OUTLINE 1. Introduction & Aims of the Work 2. The Problem 3. Functional Series TARMA Modeling 4. Non-Stationary Random Vibration Modeling and Analysis 5. Concluding Remarks

3 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 2 1. INTRODUCTION &AIMS OF THE WORK The General Problem Modeling and analysis of non-stationary mechanical vibration. Non-stationary random vibration is characterized by time-varying statistics. requires time-frequency methods for its analysis. Problem Characteristics Problem Significance Time (sec) Non-stationary random vibration is commonly encountered in: Mechanical systems Automotive & aircraft systems Rotating machinery Seismic & structural systems etc.

4 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 3 Literature Survey Non-stationary random vibration modeling and analysis may be based upon: Wigner-Ville distributions and their extensions (Oehlmann et al., 1997; Lee et al, 2001; Xu et al., 2002) Locally stationary modeling (Gersh and Brotherton, 1982; Owen et al., 2001) Wavelet-based methods (Ghanem and Romeo, 2000; Luo et el., 2002) Adaptive filtering (Cooper and Worden, 2000) FS-TAR/TARMA approaches (parametric) (Conforto and D Alessio, 1999; Petsounis and Fassois, 2000) Why Parametric Modeling? Offers a number of advantages over non-parametric methods: Physical significance and correspondence to underlying physical system Representation parsimony Improved accuracy and resolution

5 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 4 Why Functional Series TARMA Modeling? PARAMETRIC METHODS Parameter Evolution Statistical Evolution Accuracy Parsimony LOCALLY STATIONARY unstructured abrupt limited low ADAPTIVE unstructured slow limited low STOCHASTIC EVOLUTION stochastic slow & faster high medium FS-TARMA deterministic slow & fast high high Aims of the Work 1. Demonstration of the applicability of the FS-TARMA approach for modeling and predicting non-stationary mechanical vibration. 2. Assessment of the achievable accuracy and effectiveness of the FS-TARMA approach for recovering the underlying time-varying structural dynamics. 3. Comparison of the FS-TARMA approach with alternative approaches (STFT, RARMA RML)

6 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 5 2. THE PROBLEM 2.67 m Exciter DC motor conditioner DAQ PC Random excitation via electromechanical shaker. Vertical accelerations measured via piezoelectric accelerometers. Beam: 2670 (L) 50 (W) 70 (H) cm weight: 13.2 kgr Data acquisition (DAQ) [Siglab 20-42]. Band-pass filtering (focus on Hz frequency range). Cylindrical mass: 52.5 (R) 75.0 (H) cm weight: 5.4 kgr

7 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 6 Non-Stationary Vibration THE EXPERIMENT: In a single experiment the mass slides on the beam being pulled by a DC motor at a constant speed (u 3cm/sec) THE PROBLEM: Modeling, analysis and prediction of the non-stationary vibration Recovery of the underlying time-varying structural dynamics u constant velocity DC motor Exciter Acceleration m/sec 2 ( 0.7) Output Signal [Point (3)] Time (sec)

8 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 7 The Underlying Structural Dynamics The underlying structural dynamics corresponding to various mass positions are estimated via separate stationary experiments and subsequent analysis. d cm fixed position Exciter Acceleration m/sec 2 ( 0.7) Output Signal [Point (3)] Time (sec)

9 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 8 Model-based modal parameters 90 + : ARMA estimates Background: STFT Frequency (Hz) f 3 f 2 f Damping Ratio ζ 3 ζ ζ Time (sec)

10 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 9 3. FUNCTIONAL SERIES TARMA MODELING A FS-TARMA(na, nc) [pa,pc] model is of the form: x[t]+ n a i=1 a i [t] x[t i] =w[t]+ t : discrete time index x[t] : the non-stationary signal modeled w[t] : innovations sequence N (0,σw[t]) 2 n c i=1 c i [t] w[t i], t t 0 n a,n c : orders of the AR/MA polynomials a i [t],c i [t] : AR/MA time-varying parameters The time-varying model parameters (a i [t], c i [t], σ 2 w[t]) are expanded on functional spaces: a i [t] Δ = p a j=1 a i,j G ba (j)[t], c i [t] Δ = p c j=1 c i,j G bc (j)[t], σ 2 w[t] Δ = p s a i,j, c i,j, s j : AR, MA, σw[t] 2 coefficients of projection G r [t] : functional space basis functions b a (j), b c (j), b s (j) : AR, MA, σw[t] 2 basis function indices p a, p c, p s : AR, MA, σw[t] 2 functional space dimensionalities j=1 s j G bs (j)[t]

11 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 10 The Inverse Function Representation A FS-TARMA model may expressed in the inverse function form : A[B,t] {( }} ){ n a 1+ a i [t] B i x[t] = i=1 C[B,t] ({}} ){ n c 1+ c i [t] B i w[t] i=1 A[B,t] x[t] =C[B,t] w[t] I[B,t] =1+ C 1 [B,t] A[B,t] x[t] =w[t] }{{} I[B,t] i i [t] B i i=1 B : Backshift operator (B x[t] =x[t 1]) A[B,t]/ C[B,t]/ I[B,t] : AR/ MA/ Inverse function polynomial operators : B i B j = B i+j, B i g[t] =g[t i] B i ( skew multiplication)

12 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 11 Why we use FS-TARMA models? FS-TARMA models feature smooth, deterministic, parameter evolution. reflects a corresponding evolution in the underlying structural dynamics. FS-TARMA Model Estimation For given model orders (n a, n c ) and basis function indices (b a (j), b c (j), b s (j)), the determination of a FS-TARMA model consists of the estimation of the projection coefficient vector: Approach: θ Δ =[a T. c T. s T ] T A. Initial estimation via: The Two Stage Least Squares (2SLS) method or The Polynomial Algebraic (P A) method B. Final estimation via: The Prediction Error (PE) method

13 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 12 The Two-Stage Least Squares method (2SLS) STEP 1. Residual Series Estimation: The model residuals are evaluated via a truncated-order inverse function (estimated via linear regression): I[B,t,i] x[t] =e[t, i] STEP 2. AR/MA Projection Coefficient Estimation: The AR/MA coefficients are estimated using e[t, î] and linear regression: x[t]+ n a p a i=1 j=1 a i,j G ba (j) x[t i] = n c p c i=1 j=1 c i,j G bc (j) e[t i, î]+e[t, θ] STEP 3. Residual Variance Projection Coefficient Estimation: The residual variance is projected on the selected functional subspace.

14 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 13 The Polynomial Algebraic method (P A) STEP 1. Inverse Function Estimation: A truncated inverse function is estimated via linear regression: I[B,t,i] x[t] =e[t, i] STEP 2. Initial AR/MA Projection Coefficient Estimation: Based upon the obtained inverse function via deconvolution: A[B,t,a] =C[B,t,c] I[B,t,î] STEP 3. Signal Filtering: An auxilliary signal x[t] satisfying the FS-TAR part of the model is obtained as: C[B,t,ĉ] z[t] =A[B,t,a] x[t] A[B,t,â] x[t] =z[t]

15 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 14 STEP 4. Final AR/MA Projection Coefficient Estimation: The final AR coefficients are estimated using the obtained signal x[t] and liner regression: A[B,t,a] x[t] =w[t] The final MA coefficients are computed, based upon the new AR estimates (deconvolution): A[B,t,a] =C[B,t,c] I[B,t,î] STEP 5. Residual Variance Projection Coefficient Estimation: The residual variance is projected on the selected functional subspace.

16 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS NON-STATIONARY RANDOM VIBRATION MODELING AND ANALYSIS FS-TARMA Modeling AR/MA orders obtained from preliminary stationary ARMA analysis. Functional space selection based upon a backward regression technique Functional Space Optimizaton (backward regression) RSS/SSS (%) Initial functional spaces: Type: continuous Dimension: p a = p c = Rejected Basis Functions

17 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 16 TARMA(6,6) [18,3] with Chebyshev II polynomial functional spaces F AR = {G 1 [t]..., G 20 [t]} except for G 4 [t] and G 19 [t] F MA = {G 1 [t],g 2 [t],g 7 [t]} RARMA modeling Recursive Maximum Likelihood (RML) method Common AR/MA orders with the FS-TARMA models Three consecutive passes (forward-backward-forward), Optimized forgetting factor (λ =0.992)

18 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 17 Model based Prediction Acceleration FS TARMA signal prediction RSS/SSS(%) Residual Series FS TARMA RARMA Residual Variance FS TARMA RARMA Time (sec)

19 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 18 Model-based time-dependent Power Spectral Density

20 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS 19 Model-based time-dependent natural frequencies --: FS-TARMA estimates : RARMA estimates : ARMA estimates Background: Stationary vibration P.S.D Frequency (Hz) Time (sec)

21 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS f 3 FS TARMA RARMA ARMA 80 Frequency (Hz) f f Time (sec)

22 NON-STATIONARY MECHANICAL VIBRATION AND ANALYSIS VIA FUNCTIONAL SERIES TARMA MODELS CONCLUDING REMARKS 1. The applicability of the FS-TARMA approach for modeling and predicting non-stationary mechanical vibration was demonstrated. 2. The effectiveness of the FS-TARMA approach for accurately recovering the underlying time-varying structural dynamics was demonstrated. 3. The FS-TARMA approach was shown to outperform alternative non-stationary analysis approaches by providing: Increased accuracy and resolution Smooth evolution of the underlying structural dynamics Increased prediction ability (RSS decreased by 42% compared to the RARMA-RML approach)

A. Poulimenos, M. Spiridonakos, and S. Fassois

A. Poulimenos, M. Spiridonakos, and S. Fassois PARAMETRIC TIME-DOMAIN METHODS FOR NON-STATIONARY RANDOM VIBRATION IDENTIFICATION AND ANALYSIS: AN OVERVIEW AND COMPARISON A. Poulimenos, M. Spiridonakos, and S. Fassois DEPARTMENT OF MECHANICAL & AERONAUTICAL

More information

Multi Channel Output Only Identification of an Extendable Arm Structure Under Random Excitation: A comparison of parametric methods

Multi Channel Output Only Identification of an Extendable Arm Structure Under Random Excitation: A comparison of parametric methods Multi Channel Output Only Identification of an Extendable Arm Structure Under Random Excitation: A comparison of parametric methods Minas Spiridonakos and Spilios Fassois Stochastic Mechanical Systems

More information

Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study

Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study Andriana S. GEORGANTOPOULOU & Spilios D. FASSOIS Stochastic Mechanical Systems & Automation

More information

Non-stationary functional series modeling and analysis of hardware reliability series: a comparative study using rail vehicle interfailure times

Non-stationary functional series modeling and analysis of hardware reliability series: a comparative study using rail vehicle interfailure times Reliability Engineering and System Safety 68 (2000) 169 183 www.elsevier.com/locate/ress Non-stationary functional series modeling and analysis of hardware reliability series: a comparative study using

More information

Parametric Output Error Based Identification and Fault Detection in Structures Under Earthquake Excitation

Parametric Output Error Based Identification and Fault Detection in Structures Under Earthquake Excitation Parametric Output Error Based Identification and Fault Detection in Structures Under Earthquake Excitation J.S. Sakellariou and S.D. Fassois Department of Mechanical & Aeronautical Engr. GR 265 Patras,

More information

Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study

Stationary or Non-Stationary Random Excitation for Vibration-Based Structural Damage Detection? An exploratory study 6th International Symposium on NDT in Aerospace, 12-14th November 2014, Madrid, Spain - www.ndt.net/app.aerondt2014 More Info at Open Access Database www.ndt.net/?id=16938 Stationary or Non-Stationary

More information

Non-Stationary Random Vibration Parametric Modeling and its Application to Structural Health Monitoring

Non-Stationary Random Vibration Parametric Modeling and its Application to Structural Health Monitoring Non-Stationary Random Vibration Parametric Modeling and its Application to Structural Health Monitoring Luis David Avendaño-Valencia and Spilios D. Fassois Stochastic Mechanical Systems and Automation

More information

742. Time-varying systems identification using continuous wavelet analysis of free decay response signals

742. Time-varying systems identification using continuous wavelet analysis of free decay response signals 74. Time-varying systems identification using continuous wavelet analysis of free decay response signals X. Xu, Z. Y. Shi, S. L. Long State Key Laboratory of Mechanics and Control of Mechanical Structures

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi Lecture 13-29 May, 2013 Courtesy of Prof. S. Fassois & Dr. F. Kopsaftopoulos, SMSA Group, University of Patras Statistical methods for SHM courtesy of Prof. S. Fassois & Dr. F. Kopsaftopoulos,

More information

T.-C.J. Aravanis, J.S. Sakellariou and S.D. Fassois

T.-C.J. Aravanis, J.S. Sakellariou and S.D. Fassois Vibration based fault detection under variable non-measurable, operating conditions via a stochastic Functional Model method and application to railway vehicle suspensions T.-C.J. Aravanis, J.S. Sakellariou

More information

Output Only Parametric Identification of a Scale Cable Stayed Bridge Structure: a comparison of vector AR and stochastic subspace methods

Output Only Parametric Identification of a Scale Cable Stayed Bridge Structure: a comparison of vector AR and stochastic subspace methods Output Only Parametric Identification of a Scale Cable Stayed Bridge Structure: a comparison of vector AR and stochastic subspace methods Fotis P. Kopsaftopoulos, Panagiotis G. Apostolellis and Spilios

More information

Parametric time-domain methods for non-stationary random vibration modelling and analysis A critical survey and comparison $

Parametric time-domain methods for non-stationary random vibration modelling and analysis A critical survey and comparison $ Mechanical Systems and Signal Processing 20 (2006) 763 816 Invited Survey Mechanical Systems and Signal Processing Parametric time-domain methods for non-stationary random vibration modelling and analysis

More information

OUTPUT-ONLY STATISTICAL TIME SERIES METHODS FOR STRUCTURAL HEALTH MONITORING: A COMPARATIVE STUDY

OUTPUT-ONLY STATISTICAL TIME SERIES METHODS FOR STRUCTURAL HEALTH MONITORING: A COMPARATIVE STUDY 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17198 OUTPUT-ONLY STATISTICAL TIME SERIES METHODS FOR STRUCTURAL

More information

the Functional Model Based Method

the Functional Model Based Method Multi-Site Damage Localization via the Functional Model Based Method Christos S. Sakaris, John S. Sakellariou and Spilios D. Fassois Stochastic Mechanical Systems & Automation (SMSA) Laboratory Department

More information

Vibration Based Health Monitoring for a Thin Aluminum Plate: Experimental Assessment of Several Statistical Time Series Methods

Vibration Based Health Monitoring for a Thin Aluminum Plate: Experimental Assessment of Several Statistical Time Series Methods Vibration Based Health Monitoring for a Thin Aluminum Plate: Experimental Assessment of Several Statistical Time Series Methods Fotis P. Kopsaftopoulos and Spilios D. Fassois Stochastic Mechanical Systems

More information

NONLINEAR INTEGRAL MINIMUM VARIANCE-LIKE CONTROL WITH APPLICATION TO AN AIRCRAFT SYSTEM

NONLINEAR INTEGRAL MINIMUM VARIANCE-LIKE CONTROL WITH APPLICATION TO AN AIRCRAFT SYSTEM NONLINEAR INTEGRAL MINIMUM VARIANCE-LIKE CONTROL WITH APPLICATION TO AN AIRCRAFT SYSTEM D.G. Dimogianopoulos, J.D. Hios and S.D. Fassois DEPARTMENT OF MECHANICAL & AERONAUTICAL ENGINEERING GR-26500 PATRAS,

More information

Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies

Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies Dimitrios G. Dimogianopoulos, John D. Hios and Spilios D. Fassois Stochastic Mechanical Systems

More information

Identification of Time-Variant Systems Using Wavelet Analysis of Force and Acceleration Response Signals

Identification of Time-Variant Systems Using Wavelet Analysis of Force and Acceleration Response Signals LOGO IOMAC'11 4th International Operational Modal Analysis Conference Identification of Time-Variant Systems Using Wavelet Analysis of Force and Acceleration Response Signals X. Xu 1,, W. J. Staszewski

More information

Vector-dependent Functionally Pooled ARX Models for the Identification of Systems Under Multiple Operating Conditions

Vector-dependent Functionally Pooled ARX Models for the Identification of Systems Under Multiple Operating Conditions Preprints of the 16th IFAC Symposium on System Identification The International Federation of Automatic Control Vector-dependent Functionally Pooled ARX Models for the Identification of Systems Under Multiple

More information

Non-Stationary Time-dependent ARMA Random Vibration Modeling, Analysis & SHM with Wind Turbine Applications

Non-Stationary Time-dependent ARMA Random Vibration Modeling, Analysis & SHM with Wind Turbine Applications Non-Stationary Time-dependent ARMA Random Vibration Modeling, Analysis & SHM with Wind Turbine Applications Luis David Avendaño-Valencia Department of Mechanical Engineering and Aeronautics University

More information

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential

More information

Identification Techniques for Operational Modal Analysis An Overview and Practical Experiences

Identification Techniques for Operational Modal Analysis An Overview and Practical Experiences Identification Techniques for Operational Modal Analysis An Overview and Practical Experiences Henrik Herlufsen, Svend Gade, Nis Møller Brüel & Kjær Sound and Vibration Measurements A/S, Skodsborgvej 307,

More information

THE EXTENSION OF DISCRETE-TIME FLUTTER MARGIN

THE EXTENSION OF DISCRETE-TIME FLUTTER MARGIN 8 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES THE ETENSION OF DISCRETE-TIME FLUTTER MARGIN Hiroshi Torii Meijo University htorii@meijo-u.ac.jp Keywords: aeroelasticity, flutter prediction, flutter

More information

3 JAA Special Publication JAA-SP-6-8E efficiency of damping estimation. It is pointed out, however, that damping is not always an appropriate index to

3 JAA Special Publication JAA-SP-6-8E efficiency of damping estimation. It is pointed out, however, that damping is not always an appropriate index to First International Symposium on Flutter and its Application, 6 3 ETENSION OF DISCRETE-TIME FLUTTER PREDICTION METHOD TO A HIGHER-MODE SYSTEM Hiroshi Torii + Meijo University, Nagoya, Japan Conventionally

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d)

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Chapter 7 Vibration Measurement and Applications

Chapter 7 Vibration Measurement and Applications Chapter 7 Vibration Measurement and Applications Dr. Tan Wei Hong School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) Pauh Putra Campus ENT 346 Vibration Mechanics Chapter Outline 7.1

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

model random coefficient approach, time-dependent ARMA models, linear parameter varying ARMA models, wind turbines.

model random coefficient approach, time-dependent ARMA models, linear parameter varying ARMA models, wind turbines. Damage/Fault Diagnosis in an Operating Wind Turbine Under Uncertainty via a Vibration Response Gaussian Mixture Random Coefficient Model Based Framework Luis David Avendaño-Valencia and Spilios D. Fassois,.

More information

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Seung Keun Park and Hae Sung Lee ABSTRACT This paper presents a system identification (SI) scheme

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström PREDICTIO ERROR METHODS Torsten Söderström Department of Systems and Control, Information Technology, Uppsala University, Uppsala, Sweden Keywords: prediction error method, optimal prediction, identifiability,

More information

Time-Varying Parameters

Time-Varying Parameters Kalman Filter and state-space models: time-varying parameter models; models with unobservable variables; basic tool: Kalman filter; implementation is task-specific. y t = x t β t + e t (1) β t = µ + Fβ

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

SINGLE DEGREE OF FREEDOM SYSTEM IDENTIFICATION USING LEAST SQUARES, SUBSPACE AND ERA-OKID IDENTIFICATION ALGORITHMS

SINGLE DEGREE OF FREEDOM SYSTEM IDENTIFICATION USING LEAST SQUARES, SUBSPACE AND ERA-OKID IDENTIFICATION ALGORITHMS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 278 SINGLE DEGREE OF FREEDOM SYSTEM IDENTIFICATION USING LEAST SQUARES, SUBSPACE AND ERA-OKID IDENTIFICATION

More information

System Parameter Identification for Uncertain Two Degree of Freedom Vibration System

System Parameter Identification for Uncertain Two Degree of Freedom Vibration System System Parameter Identification for Uncertain Two Degree of Freedom Vibration System Hojong Lee and Yong Suk Kang Department of Mechanical Engineering, Virginia Tech 318 Randolph Hall, Blacksburg, VA,

More information

Time series methods for fault detection and identification in vibrating structures

Time series methods for fault detection and identification in vibrating structures Time series methods for fault detection and identification in vibrating structures By Spilios D. Fassois and John S. Sakellariou Stochastic Mechanical Systems (SMS) Group Department of Mechanical & Aeronautical

More information

Identification of Stochastic Systems Under Multiple Operating Conditions: The Vector Dependent FP ARX Parametrization

Identification of Stochastic Systems Under Multiple Operating Conditions: The Vector Dependent FP ARX Parametrization Identification of Stochastic Systems Under Multiple Operating Conditions: The Vector Dependent FP ARX Parametrization Fotis P Kopsaftopoulos and Spilios D Fassois Abstract The problem of identifying stochastic

More information

Time Series Outlier Detection

Time Series Outlier Detection Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, 2016 1 / 42 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Regression on Principal components

More information

Scalar and Vector Time Series Methods for Vibration Based Damage Diagnosis in a Scale Aircraft Skeleton Structure

Scalar and Vector Time Series Methods for Vibration Based Damage Diagnosis in a Scale Aircraft Skeleton Structure Scalar and Vector Time Series Methods for Vibration Based Damage Diagnosis in a Scale Aircraft Skeleton Structure Fotis P. Kopsaftopoulos and Spilios D. Fassois Stochastic Mechanical Systems & Automation

More information

Basis Function Selection Criterion for Modal Monitoring of Non Stationary Systems ABSTRACT RÉSUMÉ

Basis Function Selection Criterion for Modal Monitoring of Non Stationary Systems ABSTRACT RÉSUMÉ Basis Function Selection Criterion for Modal Monitoring of Non Stationary Systems Li W. 1, Vu V. H. 1, Liu Z. 1, Thomas M. 1 and Hazel B. 2 Zhaoheng.Liu@etsmtl.ca, Marc.Thomas@etsmtl.ca 1 Dynamo laboratory,

More information

Stationary Graph Processes: Nonparametric Spectral Estimation

Stationary Graph Processes: Nonparametric Spectral Estimation Stationary Graph Processes: Nonparametric Spectral Estimation Santiago Segarra, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro Dept. of Signal Theory and Communications King Juan Carlos University

More information

Expressions for the covariance matrix of covariance data

Expressions for the covariance matrix of covariance data Expressions for the covariance matrix of covariance data Torsten Söderström Division of Systems and Control, Department of Information Technology, Uppsala University, P O Box 337, SE-7505 Uppsala, Sweden

More information

Moving Average (MA) representations

Moving Average (MA) representations Moving Average (MA) representations The moving average representation of order M has the following form v[k] = MX c n e[k n]+e[k] (16) n=1 whose transfer function operator form is MX v[k] =H(q 1 )e[k],

More information

Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device

Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device A. Krishnamoorthy Professor, Department of Civil Engineering Manipal

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

ARMA (and ARIMA) models are often expressed in backshift notation.

ARMA (and ARIMA) models are often expressed in backshift notation. Backshift Notation ARMA (and ARIMA) models are often expressed in backshift notation. B is the backshift operator (also called the lag operator ). It operates on time series, and means back up by one time

More information

Aalborg Universitet. Publication date: Document Version Early version, also known as pre-print. Link to publication from Aalborg University

Aalborg Universitet. Publication date: Document Version Early version, also known as pre-print. Link to publication from Aalborg University Aalborg Universitet Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.; Fassois, S. D. Publication date: 1996

More information

Simple Identification of Nonlinear Modal Parameters Using Wavelet Transform

Simple Identification of Nonlinear Modal Parameters Using Wavelet Transform Proceedings of the 9 th ISSM achen, 7 th -9 th October 4 1 Simple Identification of Nonlinear Modal Parameters Using Wavelet Transform Tegoeh Tjahjowidodo, Farid l-bender, Hendrik Van Brussel Mechanical

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Investigation of traffic-induced floor vibrations in a building

Investigation of traffic-induced floor vibrations in a building Investigation of traffic-induced floor vibrations in a building Bo Li, Tuo Zou, Piotr Omenzetter Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand. 2009

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture - 20 Response Spectrum Method of Analysis In the last few lecture, we discussed

More information

Eliminating the Influence of Harmonic Components in Operational Modal Analysis

Eliminating the Influence of Harmonic Components in Operational Modal Analysis Eliminating the Influence of Harmonic Components in Operational Modal Analysis Niels-Jørgen Jacobsen Brüel & Kjær Sound & Vibration Measurement A/S Skodsborgvej 307, DK-2850 Nærum, Denmark Palle Andersen

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

Parametric Method Based PSD Estimation using Gaussian Window

Parametric Method Based PSD Estimation using Gaussian Window International Journal of Engineering Trends and Technology (IJETT) Volume 29 Number 1 - November 215 Parametric Method Based PSD Estimation using Gaussian Window Pragati Sheel 1, Dr. Rajesh Mehra 2, Preeti

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Multiresolution Models of Time Series

Multiresolution Models of Time Series Multiresolution Models of Time Series Andrea Tamoni (Bocconi University ) 2011 Tamoni Multiresolution Models of Time Series 1/ 16 General Framework Time-scale decomposition General Framework Begin with

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations Movement assessment of a cable-stayed bridge tower based on integrated and accelerometer observations *Mosbeh R. Kaloop 1), Mohamed A. Sayed 2) and Dookie Kim 3) 1), 2), 3) Department of Civil and Environmental

More information

System Identification and Model Updating of the Four Seasons Building

System Identification and Model Updating of the Four Seasons Building System Identification and Model Updating of the Four Seasons Building Eunjong Yu, Ying Lei, Derek Skolnik, John W. Wallace OVERVIEW Building Description Testing & Data Acquisition System Identification

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Statistical Methods for Forecasting

Statistical Methods for Forecasting Statistical Methods for Forecasting BOVAS ABRAHAM University of Waterloo JOHANNES LEDOLTER University of Iowa John Wiley & Sons New York Chichester Brisbane Toronto Singapore Contents 1 INTRODUCTION AND

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Measurement and Prediction of the Dynamic Behaviour of Laminated Glass

Measurement and Prediction of the Dynamic Behaviour of Laminated Glass Paper 173 Measurement and Prediction of the Dynamic Behaviour of Laminated Glass Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures Technology, B.H.V.

More information

Prognosis of gear health using stochastic dynamical models with online parameter estimation

Prognosis of gear health using stochastic dynamical models with online parameter estimation Prognosis of gear health using stochastic dynamical models with online parameter estimation Matej Gašperin 1, Pavle Boškoski 1, and Dani Juričič 1 1 Jožef Stefan Institute, Ljubljana, Slovenia matej.gasperin@ijs.si

More information

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving Journal of Physics: Conference Series PAPER OPEN ACCESS Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving To cite this article: Y Zhang et al 15 J. Phys.: Conf. Ser. 66 116 Recent

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Introduction to time-frequency analysis. From linear to energy-based representations

Introduction to time-frequency analysis. From linear to energy-based representations Introduction to time-frequency analysis. From linear to energy-based representations Rosario Ceravolo Politecnico di Torino Dep. Structural Engineering UNIVERSITA DI TRENTO Course on «Identification and

More information

Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results

Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results Ales KUYUMCUOGLU Arceli A. S., Research & Development Center, Istanbul, Turey Prof.

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Milling gate vibrations analysis via Hilbert-Huang transform

Milling gate vibrations analysis via Hilbert-Huang transform Milling gate vibrations analysis via Hilbert-Huang transform Grzegorz Litak 1,*, Marek Iwaniec 1, and Joanna Iwaniec 2 1 AGH University of Science and Technology, Faculty of Mechanical Engineering and

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

MODAL IDENTIFICATION OF STRUCTURES USING ARMAV MODEL FOR AMBIENT VIBRATION MEASUREMENT

MODAL IDENTIFICATION OF STRUCTURES USING ARMAV MODEL FOR AMBIENT VIBRATION MEASUREMENT MODAL IDENTIFICATION OF STRUCTURES USING MODEL FOR AMBIENT VIBRATION MEASUREMENT 72 C S HUANG SUMMARY A procedure is presented for evaluating the dynamic characteristics of structures from ambient vibration

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

CONTENTS NOTATIONAL CONVENTIONS GLOSSARY OF KEY SYMBOLS 1 INTRODUCTION 1

CONTENTS NOTATIONAL CONVENTIONS GLOSSARY OF KEY SYMBOLS 1 INTRODUCTION 1 DIGITAL SPECTRAL ANALYSIS WITH APPLICATIONS S.LAWRENCE MARPLE, JR. SUMMARY This new book provides a broad perspective of spectral estimation techniques and their implementation. It concerned with spectral

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

The Identification of ARIMA Models

The Identification of ARIMA Models APPENDIX 4 The Identification of ARIMA Models As we have established in a previous lecture, there is a one-to-one correspondence between the parameters of an ARMA(p, q) model, including the variance of

More information

Non-Stationary Time Series, Cointegration, and Spurious Regression

Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Course Outline: Non-Stationary Time Series, Cointegration and Spurious Regression 1 Regression with Non-Stationarity

More information

Jerk derivative feedforward control for motion systems

Jerk derivative feedforward control for motion systems Jerk derivative feedforward control for motion systems Matthijs Boerlage Rob Tousain Maarten Steinbuch Abstract This work discusses reference trajectory relevant model based feedforward design. For motion

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Non-stationary Ambient Response Data Analysis for Modal Identification Using Improved Random Decrement Technique

Non-stationary Ambient Response Data Analysis for Modal Identification Using Improved Random Decrement Technique 9th International Conference on Advances in Experimental Mechanics Non-stationary Ambient Response Data Analysis for Modal Identification Using Improved Random Decrement Technique Chang-Sheng Lin and Tse-Chuan

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

EXPERIMENTAL AND THEORETICAL SYSTEM IDENTIFICATION OF FLEXIBLE STRUCTURES WITH PIEZOELECTRIC ACTUATORS

EXPERIMENTAL AND THEORETICAL SYSTEM IDENTIFICATION OF FLEXIBLE STRUCTURES WITH PIEZOELECTRIC ACTUATORS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL AND THEORETICAL SYSTEM IDENTIFICATION OF FLEXIBLE STRUCTURES WITH PIEZOELECTRIC ACTUATORS Aghil Yousefi-Koma*, David Zimcik* and Andrei

More information

Structural VAR Models and Applications

Structural VAR Models and Applications Structural VAR Models and Applications Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 SVAR: Objectives Whereas the VAR model is able to capture efficiently the interactions between the different

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations.

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations. Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 41: Applied Time Series Ioa State University Copyright 1 W. Q. Meeker. Segment 1 ARMA Notation, Conventions,

More information

MASS, STIFFNESS AND DAMPING IDENTIFICATION OF A TWO-STORY BUILDING MODEL

MASS, STIFFNESS AND DAMPING IDENTIFICATION OF A TWO-STORY BUILDING MODEL COMPDYN 2 3 rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25-28 May 2 MASS,

More information

Operational Modal Analysis of Rotating Machinery

Operational Modal Analysis of Rotating Machinery Operational Modal Analysis of Rotating Machinery S. Gres 2, P. Andersen 1, and L. Damkilde 2 1 Structural Vibration Solutions A/S, NOVI Science Park, Niels Jernes Vej 10, Aalborg, DK 9220, 2 Department

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

Non-parametric estimate of the system function of a time-varying system

Non-parametric estimate of the system function of a time-varying system Non-parametric estimate of the system function of a time-varying system John Lataire a, Rik Pintelon a, Ebrahim Louarroudi a a Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene Abstract The task of

More information

Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan

Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan Lin, P.S., Lee, C.T. Bulletin of the Seismology Society of America (2008) Presenter: Yang Pei-Xin Adviser: Lee

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Plate mode identification using modal analysis based on microphone array measurements

Plate mode identification using modal analysis based on microphone array measurements Plate mode identification using modal analysis based on microphone array measurements A.L. van Velsen, E.M.T. Moers, I. Lopez Arteaga, H. Nijmeijer Department mechanical engineering, Eindhoven University

More information

Estimating Missing Observations in Economic Time Series

Estimating Missing Observations in Economic Time Series Estimating Missing Observations in Economic Time Series A. C. Harvey London School of Economics, Houghton Street, London, WC2A 2AE, UK R. G. Pierse Department of Applied Economics, Cambridge University,

More information