Lecture 2: Basic plasma equations, self-focusing, direct laser acceleration

Size: px
Start display at page:

Download "Lecture 2: Basic plasma equations, self-focusing, direct laser acceleration"

Transcription

1 Lectue : Basic plasma equations, self-focusing, diect lase acceleation Pukhov, Meye-te-Vehn, PRL 76, 3975 (1996) plasma box (ne/nc=0.6) Lase pulse W/cm B ~ mcωp/e ~ 108 Gauss Relat ivistic elect j~e on be n cc ~ ka 0 A/ am of 1- cm 0 Me V ele cton s 1

2 Lase Inteaction with Dense Matte Plasma appoximation: Lase field at a > 1 so lage that atoms ionize within less than lase cycle Fee classical electons (no bound states, no Diac equation) Non-neutal plasma ( nelecton nion, usually fixed ion backgound)

3 Single electon plasma (ncit = 101cm-3) In plasma, lase inteaction geneates additional E-fields (due to sepaation of electons fom ions) B-fields (due to lase-diven electon cuents) They ae quasi-stationay and of same ode as lase fields: EL V/m a0 BL 108 Gauss a0 Plasma is govened by collective oscillatoy electon motion. 3

4 The Vitual Lase Plasma Laboatoy Thee-dimensional electomagnetic fully-elativistic Paticle-Cell-Code A. Pukhov, J. Plas. Phys. 61, 45 (1999) Fields Paticles ( 1 E 4π ot B = + j c t c dp q = qe + p B dt mγ 1 B ot E = c t p γ = 1+ mc div E = 4πρ div B = 0 ) 109 paticles in 108 gid cells ae teated on 51 Pocessos of paallel compute 4

5 Theoetical desciption of plasma dynamics Distibution function: Kinetic (Vlasov) equation ( t +v f (, p, t ) p = γ mv, γ = 1 + ( p / mc) e E + (v / c ) B ( ) ): f (, p, t ) 0 (collisions?) p Fluid desciption: Appoximate equations fo density, momentum, ect. functions: N (, t ) = f (, p, t ) d 3 p P (, t ) = p f (, p, t ) d 3 p 5

6 Poblem: Light waves in plasma Stating fom Maxwell equations E 4π =+ B == = J c t c B = E = = c t B 0 E A, B 4π e( N 0 Ne ) E A c t A 0 φ and assuming that only electons with density Ne contibute to the plasma cuent J = en e P / γ m with electon momentum P = γ mu and γ = 1 + ( P / mc), while immobile ions with unifom density Ni =N0/Z fom a neutalizing backgound. using nomalized quantities and plasma fequency ea eφ P Ne 4π e N 0 a (, t ) =, ϕ (, t ) =, p(, t ) =, n(, t ) =, ωp =, mc mc mc N0 m deive 1 =a c t ϕ + c t ω p np, c γ = ϕ (ω p / c )(n 1) 6

7 Poblem: Deive cold plasma electon fluid equation In this appoximation, electons ae descibed as cold fluid elements which have elativistic momentum P = γ mu and satisfy the equation of motion dp(, t ) / dt = e E + (u / c) B whee pessue tems popotional to plasma tempeatue have been neglected. Using again the potentials A and φ and eplacing the total time deivative by by patial deivatives, find A u + u= P+(, t ) e φ ( A) t c t c and show that this leads to the equation of motion of a cold electon fluid 1 ( p a ) =u c t ( p a) (ϕ γ ), witten again in nomalized quantities (see pevious poblem). Hee, make use of elations = γ+= = 1 p p / γ and u ( p) c γ (u )p. 7

8 Basic solution of 1 c t ( p a ) = u (p a) (ϕ γ) Solution fo electon fluid initially at est, befoe hit by lase pulse, p a and ϕ= γ implying balance between the electostatic foce pondeomotive foce =γ + 1 =p ϕ and the a / γ + 1 =a This foce is equivalent to the dimensional foce density ω p F = N 0 mc γ = γω E 8π It descibes how plasma electons ae pushed in font of a lase pulse and the adial pessue equilibium in lase plasma channels, in which light pessue expels electons building up adial electic fields. 8

9 Popagation of lase light in plasma ω p c na γ Fo low lase intensities ( a = 1 ), the p = a solution implies The wave equation fo lase popagation in plasma 1 =a c t γ 1 and n 1. ω p a, c then leads to the plasma dispesion elation ω = ω p + c k Fo inceasing light intensity, the plasma fequency is modified ω p,el 4π e N e (, t ) n = ωp = γ m γ (, t ) by changes of electon density and elativistic γ facto, giving ise to effects of elativistic non-linea optics. 9

10 Relativistic Non-Linea Optics Induced tanspaency: ω = ωp + ck ωp= 4πe ne /(m<γ>) γ =(1- v/c)-1/ nr = (1 - ωp/ ω)1/ Self-focussing: vph= c/nr Pofile steepening: vg = cnr 10

11 Poblem: Deive phase and goup velocity of lase wave in plasma Stating fom the plasma dispesion elation ω = ω p + c k, show that the phase velocity of lase light in plasma is v phase = ω / k = c / nr and the goup velocity vgoup = d ω / dk = cnr, whee nr is the plasma index of efaction nr = 1 ω p / ω. 11

12 3D-PIC simulation of lase beam selffocussing in plasma Pukhov, Meye-te-Vehn, PRL 76, 3975 (1996) plasma box (ne/nc=0.6) Lase pulse W/cm 1

13 Poblem: Deive envelope equation Conside ciculaly polaized light beam a = Re { (ey iez )a0 (, z, t ) exp(ikz iωt )} Confim that the squaed amplitude depends only on the slowly vaying envelope function a0(,z,t), but not on the apidly oscillating phase function a = a0 (, z, t ), a0 / t = ω a0 a0 / z = ka0 Deive unde these conditions the envelope equation fo popagation in vacuum (use comoving coodinate ζ=z-ct, neglect second deivatives): 1 =a c t 0 + ik ζ a0 (,=ζ ) 0 13

14 Poblem: Veify Gaussian focus solution Show that the Gaussian envelope ansatz a0 (, z ) = exp( P ( z ) + Q( z )( / 0 ) ) inseted into the envelope equation 1 + ik a0 (, z ) = 0 z leads to a0 (, z ) = whee e /[ 0 (1+ z / LR )] 1 + z / LR exp i actan z +i LR 0 z / LR 1 + z / LR LR = k0 / is the Rayleigh length giving the length of the focal egion. 14

15 Relativistic self-focusing Fo inceasing light intensity, non-linea effects in light popagation fist show up In the elativistic facto 1/ γ = 1/ 1 + a ; 1 a giving 1 = a c t ω p c na γ and leads to the envelope equation (using + ik z a0 ( =, z ) ω p 1 c a a, ω = ω p + c k!) ω p a0 a0 c While is defocusing the beam (diffaction), the tem (ω p / c )(a0 / )a0 a0 is focusing the beam. Beyond the theshold powe Pcit Po (ω / ω p ) = 17.4 GW (ncit / ne ) the beam undegoes elativistic self-focusing. 15

16 D vesus 3D elativistic self-focusing Relativistic self-focusing develops diffeently in D and 3D geomety. Scaling with beam adius R : diffaction elativistic non-lineaity : 1/ R (ω p / c )(a0 / ) : P / R (fo D: P : Ra0 ) (ω p / c )(a0 / ) : P / R (fo 3D: P : π R a0 ) D leads to a finite beam adius (R~1/P), while 3D leads to beam collapse (R->0). Fo a Gaussian beam with adius 0: powe: beam adius evolution (Shvets, piv.comm.): citical powe: P = π R I 0 / = P0 (ω /16c ) a0 R dr ( z ) 4 1 ωp = 3 1 a0 R dz k R 3 c Pcit Po (ω / ω p ) = 17.4 GW (ncit / ne ) 16

17 3D-PIC simulation of lase beam selffocussing in plasma Pukhov, Meye-te-Vehn, PRL 76, 3975 (1996) plasma box (ne/nc=0.6) Lase pulse W/cm B ~ mcωp/e ~ 108 Gauss Relat ivistic elect j~e on be n cc ~ ka 0 A/ am of 1- cm 0 Me V ele cton s 17

18 Relativistic self-focussing of lase channels ωp= 4π e ne / mγ eff ω p γ ne nr = 1 ω p ωl adius elativistic electons Relativistic mass incease (γ ) and electon density depletion (ne ) inceases index of efaction in the channel egion, leading to selffocussing B-field lase 18

19 Relativistic Lase Plasma Channel Pukhov, Meye-te-Vehn, PRL 76, 3975 (1996) B IL jx Intensity 80 fs ne ne/<γ> B-field Intensity 330 fs Ion density 19

20 Plasma channels and electon beams obseved C. Gahn et al. PRL 83, 477 (1999) lase gas jet W/cm plasma cm-3 electon spectum obseved channel 0

21 Scaling of Electon Specta Pukhov, Sheng, MtV, Phys. Plasm. 6, 847 (1999) Teff =1.8 (Iλ/13.7GW)1/ electons 1

22 Diect Lase Acceleation vesus Wakefield Acceleation DLA electon B LWFA lase Non-linea plasma wave E plasma channel acceleation by tansvese lase field Fee Electon Lase (FEL) physics Pukhov, MtV, Sheng, Phys. Plas. 6, 847 (1999) acceleation by longitudinal wakefield Tajima, Dawson, PRL43, 67 (1979)

23 Lase pulse excites plasma wave of length λp= c/ωp 0. λp eez/ωpmc 0. wakefield beaks afte few oscillations -0. eez/ωpmc γ lase pulse length 40 eex/ω mc 0 γ What dives electons to γ ~ 40 in zone behind wavebeaking? px/mc -0 a eex/ω0mc px/mc p /mc zoom zoom z Lase amplitude a0 = 3 λ Tansvese momentum p /mc >> Z / λ Z /80 λ 80 3

24 Channel fields and diect lase acceleation ee = (1 f )mω p R / ebϕ = f mω p R / d R mγ = ee ebϕ = mω p R / dt B E space chage n = e(1-f)n0 j = efn0c Radial electon oscillations Ω = ω p / γ ωl electon momenta ωl (ωp/c) 4

25 How do the electons gain enegy? x103 Long pulses (> λp) Γ dt p = e E + e c v B Diect Lase Acceleation (long pulses) 0 dt p/ = e E p = e E p + e E p -x103 Gain due to tansvese (lase) field: 0 Γ 103 Shot pulses (< λp) 0 Γ = e E p dt Lase Wakefield Acceleation (shot pulses) Γ Gain due to longitudinal (plasma) field: 104 Γ = e E p dt 0 Γ 4 105

26 Selected papes: J. Meye-te-Vehn, A. Pukhov, Z.M. Sheng, in Atoms, Solids, and Plasmas In Supe-Intense Lase Fields (eds. D.Batani, C.J.Joachain, S. Matelucci, A.N.Cheste), Kluwe, Dodecht, 001. A. Pukhov, J. Meye-te-Vehn, Phys. Rev. Lett. 76, 3975 (1996). C. Gahn, et al. Phys.Rev.Lett. 83, 477 (1999). A. Pukhov, Z.M. Sheng, Meye-te-Vehn, Phys. Plasmas 6, 847 (1999) 6

27 Poblem: Deive envelope equation Conside ciculaly polaized light beam a = Re { (ey iez )a0 (, z, t ) exp(ikz iωt )} Confim that the squaed amplitude depends only on the slowly vaying envelope function a0(,z,t), but not on the apidly oscillating phase function a = a0 (, z, t ), a0 / t = ω a0 a0 / z = ka0 Deive unde these conditions the envelope equation fo popagation in vacuum (use comoving coodinate ζ=z-ct, neglect second deivatives): 1 =a c t 0 + ik ζ a0 (,=ζ ) 0 7

28 Poblem: Veify Gaussian focus solution Show that the Gaussian envelope ansatz a0 (, z ) = exp( P ( z ) + Q( z )( / 0 ) ) inseted into the envelope equation 1 + ik a0 (, z ) = 0 z leads to a0 (, z ) = e /[ 0 (1+ z / LR )] 1 + z / LR exp i actan z +i LR 0 z / LR 1 + z / LR Whee LR = k0 / is the Rayleigh length giving the length of the focal egion. 8

29 Poblem: Deive channel fields B E space chage n = e(1-f)n0 j = efn0c Conside an idealized lase plasma channel with unifom chage density N = e(1-f)n0c, i.e. only a faction f of electons is left in the channel afte Expulsion by the lase pondeomotive pessue, and this est is moving With velocity c in lase diection foming the cuent j = efn0c. Show that the quasi-stationay channel fields ae ee = (1 f )mω p R /, ebϕ = f mω p R / and that elctons tapped in the channel l pefom tansvese oscillations at the betaton fequency, independent of f, Ω = ω p / γ 9

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

1) Consider an object of a parabolic shape with rotational symmetry z

1) Consider an object of a parabolic shape with rotational symmetry z Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Mechanics (Stömningsläa), 01-06-01, kl 9.00-15.00 jälpmedel: Students may use any book including the tetbook Lectues on Fluid Dynamics.

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

The evolution of the phase space density of particle beams in external fields

The evolution of the phase space density of particle beams in external fields The evolution of the phase space density of paticle beams in extenal fields E.G.Bessonov Lebedev Phys. Inst. RAS, Moscow, Russia, COOL 09 Wokshop on Beam Cooling and Related Topics August 31 Septembe 4,

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

ELECTRON ENERGY DISTRIBUTIONS AND NON-COLLISIONAL HEATING IN MAGNETICALLY ENHANCED INDUCTIVELY COUPLED PLASMAS*

ELECTRON ENERGY DISTRIBUTIONS AND NON-COLLISIONAL HEATING IN MAGNETICALLY ENHANCED INDUCTIVELY COUPLED PLASMAS* ELECTRON ENERGY DISTRIUTIONS AND NON-COLLISIONAL HEATING IN MAGNETICALLY ENHANCED INDUCTIVELY COUPLED PLASMAS* Ronald L. Kinde and Mak J. Kushne Depatment of Electical and Compute Engineeing Ubana, IL

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I Module 9: Electomagnetic Waves-I Lectue 9: Electomagnetic Waves-I What is light, paticle o wave? Much of ou daily expeience with light, paticulaly the fact that light ays move in staight lines tells us

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field.

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field. Fom Last Time Electomagnetic waves Chages, cuent and foces: Coulomb s law. Acceleating chages poduce an electomagnetic wave The idea of the electic field. Today Electic fields, magnetic fields, and thei

More information

Micro-bunching: Longitudinal Bunch Profile Measurements at TTF

Micro-bunching: Longitudinal Bunch Profile Measurements at TTF Shot Pulses in Rings Mico-bunching: Longitudinal Bunch Pofile Measuements at TTF ) The time vaying fields in a tansvese mode cavity kick the font of a bunch up, and the back of the bunch don. ) A betaton

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

V G. In this class, we will look at a possible hypothesis for way the time dependence is t

V G. In this class, we will look at a possible hypothesis for way the time dependence is t ECE65R : Reliability Physics of anoelectonic Devices Lectue : CI Time Exponents Date : Dec. 4, 6 Classnote : Saakshi Gangwal Review : Lutfe A Siddiqui. Review We have spent seveal weeks discussing discussing

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

ELECTROMAGNETISM (CP2)

ELECTROMAGNETISM (CP2) Revision Lectue on ELECTROMAGNETISM (CP) Electostatics Magnetostatics Induction EM Waves based on pevious yeas Pelims questions State Coulomb s Law. Show how E field may be defined. What is meant by E

More information

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70 SAMPL PAPR I Time Allowed : 3 hous Maximum Maks : 70 Note : Attempt All questions. Maks allotted to each question ae indicated against it. 1. The magnetic field lines fom closed cuves. Why? 1 2. What is

More information

Phys101 Lectures 30, 31. Wave Motion

Phys101 Lectures 30, 31. Wave Motion Phys0 Lectues 30, 3 Wave Motion Key points: Types of Waves: Tansvese and Longitudinal Mathematical Repesentation of a Taveling Wave The Pinciple of Supeposition Standing Waves; Resonance Ref: -7,8,9,0,,6,,3,6.

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Review Notes on Maxwell's Equations

Review Notes on Maxwell's Equations ELEC344 Micowave Engineeing, Sping 2002 Handout #1 Kevin Chen Review Notes on Maxwell's Equations Review of Vecto Poducts and the Opeato The del, gad o nabla opeato is a vecto, and can be pat of a scala

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas C:\Dallas\0_Couses\0_OpSci_330\0 Lectue Notes\04 HfkPopagation.doc: Page of 9 Lectue 04: HFK Popagation Physical Optics II (Optical Sciences 330) (Updated: Fiday, Apil 9, 005, 8:05 PM) W.J. Dallas The

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase? Electostatics 1. Show does the foce between two point chages change if the dielectic constant of the medium in which they ae kept incease? 2. A chaged od P attacts od R whee as P epels anothe chaged od

More information

Modeling of Noble Gas Injection into Tokamak Plasmas

Modeling of Noble Gas Injection into Tokamak Plasmas IT/P3-7 Modeling of Noble Gas Injection into Tokamak Plasmas D.Kh. Moozov ), E.I. Yuchenko ), V.E. Lukash ), E.O. aonova ), V.A Rozhansky ), I.Yu. Senichenkov ), I.Yu. Veselova ) and R. Schneide 3) ) Nuclea

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

High Brightness Electron Beams Introduction to the physics of high-quality electron beams

High Brightness Electron Beams Introduction to the physics of high-quality electron beams High Bightness Electon Beams Intoduction to the physics of high-quality electon beams Mikhail Kasilnikov Photo Injecto Test facility, Zeuthen (PITZ) The plan fo this moning Mikhail Kasilnikov, PITZ physics

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

Chapter 2 Classical propagation

Chapter 2 Classical propagation Chapte Classical popagation Model: Light: electomagnetic wave Atom and molecule: classical dipole oscillato n. / / t c nz i z t z k i e e c i n k e t z Two popagation paametes: n. Popagation of light in

More information

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST Magnetic Fluctuation-Induced Paticle Tanspot and Zonal Flow Geneation in MST D.L. Bowe Weixing Ding, B.H. Deng Univesity of Califonia, Los Angeles, USA D. Caig, G. Fiksel, V. Minov, S.C. Page, J. Saff

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering Paticle Physics Lectue 9: Quantum Chomodynamics (QCD)!Colou chage and symmety!gluons!qcd Feynman Rules!! scatteing!jets! 1 Fom Monday: Summay Weak Neutal Cuent Caied by the massive Z-boson: acts on all

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet Advanced Subsidiay GCE (H57) Advanced GCE (H557) Physics B (Advancing Physics) Data, Fomulae and Relationships Booklet The infomation in this booklet is fo the use of candidates following the Advanced

More information

Plasma heating in reversed field pinches at the fundamental ion cyclotron frequency

Plasma heating in reversed field pinches at the fundamental ion cyclotron frequency PHYSICS OF PLASMAS VOLUME 9, NUMBER 4 APRIL 2002 Plasma heating in evesed field pinches at the fundamental ion cycloton fequency V. A. Svidzinski and S. C. Page Univesity of Wisconsin-Madison, Madison,

More information

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential Bose-instein condensates in fast otation Jean Dalibad Laboatoie Kastle Bossel cole nomale supéieue, Pais xp: Baptiste Battelie, Vincent Betin, Zoan Hadibabic, Sabine Stock Th: Amandine Aftalion, Xavie

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information

Search for a Critical Electron Temperature Gradient in DIII-D L-mode Discharges

Search for a Critical Electron Temperature Gradient in DIII-D L-mode Discharges Seach fo a Citical Electon Tempeatue Gadient in DIII-D L-mode Dischages.C. Deoo, S. Ciant 1, T.C. Luce, A. Manini, C.C. Petty, F. Ryte, M.E. Austin 3, D.R. ake, K.W. Gentle 3, C.M. Geenfield,.E. Kinsey

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

EXAM NMR (8N090) November , am

EXAM NMR (8N090) November , am EXA NR (8N9) Novembe 5 9, 9. 1. am Remaks: 1. The exam consists of 8 questions, each with 3 pats.. Each question yields the same amount of points. 3. You ae allowed to use the fomula sheet which has been

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria Quantum Mechanics and Geneal Relativity: Ceation Ceativity Youssef Al-Youssef, Rama Khoulandi Univesity of Aleppo, Aleppo, Syia Abstact This aticle is concened with a new concept of quantum mechanics theoy

More information

The Apparent Mystery of the Electron:

The Apparent Mystery of the Electron: The Appaent Mystey of the Electon: Thee is no mystey! The electon can be physically undestood! Since the middle of the 9s physicists have been stuggling to undestand the electon. om expeiments it was concluded

More information

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Study Rev. Adv. on -D Mate. shock Sci. wave 33 (13) pessue 111-118 model in mico scale lase shock peening 111 STUDY ON -D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Y.J. Fan 1, J.Z. Zhou,

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases APPENDIX Fo the lectues of Claude Cohen-Tannoudji on Atom-Atom Inteactions in Ultacold Quantum Gases Pupose of this Appendix Demonstate the othonomalization elation(ϕ ϕ = δ k k δ δ )k - The wave function

More information

Introduction to Accelerator Physics

Introduction to Accelerator Physics Intoduction to Acceleato Physics Pat 3 Pedo Casto / Acceleato Physics Goup (MPY) Intoduction to Acceleato Physics DSY, 5th July 017 acceleating devices vacuum chambe injecto acceleating device staight

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

The physics of induction stoves

The physics of induction stoves The physics of uction stoves This is an aticle fom my home page: www.olewitthansen.dk Contents 1. What is an uction stove...1. Including self-uctance...4 3. The contibution fom the magnetic moments...6

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Time: Apil, 006, -3:30pm MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Electical Engineeing and Compute Science 6.097 UG Fundamentals of Photonics 6.974 G Quantum Electonics Sping 006 Qui II Poblems

More information