Theory of Control: I. Overview. Types of Structural Control Active Control Systems. Types of Structural Control

Size: px
Start display at page:

Download "Theory of Control: I. Overview. Types of Structural Control Active Control Systems. Types of Structural Control"

Transcription

1 Thory of Cotrol: I Asia Pacific Summr School o Smart s Tchology Richard Christso Uivrsity of Cocticut Ovrviw Itroductio to structural cotrol Cotrol thory Basic fdback cotrol Optimal cotrol stat fdback cotrol Obsrvrs ad LQG cotrollrs Typs of Structural Cotrol Passiv Cotrol Systms Passiv Dvic Typs of Structural Cotrol Activ Cotrol Systms Excitatio Rspos Excitatio Rspos m Ssor m Ssor Passiv Dampr Bas Isolatio Tud ass Dampr 3 Activ Bracig Activ ass Dampr 4 Typs of Structural Cotrol Activ Cotrol Systms Typs of Structural Cotrol Hybrid Cotrol Systms Passiv Dvic Excitatio Rspos Excitatio Rspos Ssor fdforward fdback fdforward fdback Ssors Cotrollr Ssors Actuator Ssors Cotrollr Ssors Activ Bas Isolatio 5 6

2 Typs of Structural Cotrol Smiactiv Cotrol Systms Typs of Structural Cotrol Fuctioally Upgradd Passiv Systms Excitatio Rspos Excitatio Rspos Passiv Dvic fdforward fdback fdforward Passiv Dvic fdback Ssors Cotrollr Ssors Ssors Cotrollr Ssors 7 8 Typs of Structural Cotrol Our focus today Excitatio Rspos fdforward fdback Ssors Cotrollr Ssors Itroductio to Structural Cotrol Itroductio to thory bhid automatic cotrol systms closd loop cotrol Cotrol is usd primarily for: 1. Rduc ssitivity to variatios. Rduc ssitivity to disturbac 3. Ability to cotrol systm badwidth 4. Stabilizatio of a ustabl systm 5. Cotrol systm trasit rspos Sgway 9 Itroductio to Structural Cotrol Exampl: Fillig a bathtub with watr* Cotrollig th tmpratur of fluid i a tak Op loop cotrol I op loop cotrol th commad sigal alo is slctd to achiv th dsird rspos r( rfrc iput Cotrollr G( u( cotrol iput Plat H( Itroductio to Structural Cotrol Exampl: Fillig a bathtub with watr Op loop cotrol Op hot watr tap spcifid amout Op cold watr tap spcifid amout If you hav do this may tim bfor, you might kow rathr wll th cssary sttigs Howvr, a umbr of factors might affct th cotrol of th *tak from Liar Cotrol Systms, (Rohrs( Rohrs,, t al.)

3 Itroductio to Structural Cotrol Exampl: Fillig a bathtub with watr Closd loop cotrol I closd loop cotrol, fdback masurmts ar icludd to achiv th dsird rspos r( rfrc iput Cotrollr G( u( cotrol iput Plat H( Itroductio to Structural Cotrol Exampl: Fillig a bathtub with watr Closd loop cotrol I closd loop cotrol fdback masurmts ar icludd to achiv th dsird rspos Fl th watr at svral itrvals whil th tub is fillig If watr is ot at right tmpratur, adjust hot or cold watr faucts I this mar, th systm affcts th cotrol of th systm Itroductio to Structural Cotrol Closd loop cotrol Us of th stat of th is trmd fdback or masurmts (tmp. of ach fauct, rat of chag of tmp.) ca achiv bttr rsults Closd loop may b mor complx tha op loop, but ca provid bttr prformac Compromis btw stability ad prformac Itroductio to Structural Cotrol Closd loop cotrol Compromis btw stability ad prformac Cotrollig oly hot watr (cold prdtrmid lvl) by turig fully o or fully off; Our slow rspos tim with th dramatic rspos may caus oscillatios i tmpratur Commo causs of istability i automatic cotrol systms: (1) dlay; ad () high gai Itroductio to Structural Cotrol Tak th huma out of th closd loop cotrol Automatic closd loop cotrol Ssor to masur th rquird variabls Actuator to adjust cotrol valvs Cotrollr to itrprt ssors ad sd cotrol sigal (which would th b amplifid) to actuator Itroductio to Structural Cotrol odlig th systm is a crucial stp i th dsig of a cotrollr Th quality of th cotrollr is likd to th quality of th modl usd i th cotrol dsig Sic o systm ca b prfctly modld, car must b tak i dsigig th cotrollr Paramtr iaccuracis Umodld dyamics Noliaritis

4 Ovrviw Itroductio to structural cotrol Cotrol thory Basic fdback cotrol Optimal cotrol stat fdback cotrol Obsrvrs ad LQG cotrollrs Gral form of th closd loop cotrol systm r( rfrc iput Cotrollr G( u( cotrol iput Plat H( Fdback cotrol ca tak may forms Lt s bgi with a xampl xamiig th ffct of cotrol gais i th forward path: r( rfrc iput +- ( rror Cotrollr G( u( cotrol iput Plat H( Lt s bgi with a xampl xamiig th ffct of cotrol gais i th forward path: r( rfrc iput Clos loop systm H cl ( +- ( rror K u( cotrol iput H( Wh G( K, this is calld a proportioal cotrollr with uity gai fdback Wh G( K, this is calld a proportioal cotrollr with uity gai fdback r( ( +- K u( H( Th goal is to choos th cotrol gai (K) to stabiliz th systm ad improv rspos tim Usig th block diagram, w ca writ Y ( H( U( Y ( H( KE( [ ( Y( )] Y( H( K R s Y( KH( H cl ( R( + KH( Y( R( [ 1 KH( ] [ 1+ KH( ] Cosidr a simpl xampl of a dyamic systm I th Laplac domai, th trasfr fuctio of th plat is 1 H( s( s +τ ) Simpl modl of a lctric motor or hydraulic actuator with th commad/voltag as th iput ad th positio/disp disp.. as th Not that this systm is margially stabl bcaus o pol is at th origi

5 Th clos loop systm is: KH( K H cl ( 1+ KH( s + sτ + tao 1; K 1; um K; d [1 tao K]; sys tf(um,d); [y,t]stp(sys,; plot(t,y) [ ] K ovrshoot ucotrolld systm H( K10 K1 improvd rspos tim K0.1 Lt s look at th closd loop pols K H cl ( τ ± s + sτ + K has pols at p1, Not: Th systm is stabl wh Th systm is udrdampd wh τ 4K < τ 4K > τ τ 4K W ca us th pol placmt approach to assig K valus to achiv th spcific bhavior K1 K10 K0.1 K10 K1 K0.1 This systm ca quivaltly b cosidrd i stat spac Y( 1 H( U( s( s +τ ) Y ( ( s + τ U( y & ( + τy& ( u( y & ( τy& ( + u( This systm ca quivaltly b cosidrd i stat spac y & ( τy& ( + u( y& ( u( && τ & [ 1 0] + [ 0] u( & z( Az( Cz( + Du( 0 A 0 1 τ This systm ca quivaltly b cosidrd i stat spac 0 1 A 0 τ λ λ 1 dt( λi A) 0 λ 0 τ 0 λ + τ λ ( λ + τ ) ( 1)(0) λ + λτ Pols of th trasfr fuctio ar qual to th igvalus of th stat spac A matrix

6 Lt s look at th pols ad th stp rspos of a scod ordr diffrtial quatio y&& ( + ω y& ( + ω ω r( Th Laplac Trasform (zro IC) is Y( ω R( s + ω s + ω Cosidr th pols of th systm s ω ± ( ) ω 1 Assumig th systm is udrdampd ω ω s ω ± jω ral ω imagiary agitud: ( ω ) ( ω ) + ( ω ) ω ( ) ω + + ω ω ω Assumig th systm is udrdampd ω s siθ ω ω ± jω ral ω imagiary Agl: ω si( θ ) ω Cosidr th rspos of th systm ω Y( R( s + ωs + ω 1 To a stp iput R( s Th stp rspos ca b dtrmid as y 1 ω t () t si( ω t + Ψ) Ψ arcta Th pak rspos occurs at t ω π Th sttlig tim (dfid as tim rquird for rspos to rmai withi 5% of fial valu) is Th pak valu of y is th Ad th ovrshoot is π Not: ovrshoot is oly a fuctio of dampig tmax ) 1+ π t ω 0.05 ω t 3 t s 3 ω Not: icrasig w dcrass th ris tim

7 Lt s look at th pols ad th stp rspos Thory of Cotrol: II θ π ovrshoot sttlig tim t s 3 ω Asia Pacific Summr School o Smart s Tchology mag ω Richard Christso Uivrsity of Cocticut Optimal pols mov away from origi at dsird dampig Ovrviw Itroductio to structural cotrol Cotrol thory Basic fdback cotrol Optimal cotrol stat fdback cotrol Obsrvrs ad LQG cotrollrs Optimal Cotrol odr cotrol thory uss th approach that a optimal cotrollr ca b obtaid for a plat takig th form w( xcitatio u( cotrol Plat ( Az( + Ew( Cz( + Du( + Fv( Cotrollr G( v( Stat Fdback Cotrol Assum that all stats ar masurd ad a full stat fdback cotrol law taks th form u( Kz( Th closd loop dyamics ar giv by ( ( A BK ) z( Aclz( Th pols of this systm may b placd arbitrarily if th systm is cotrollabl Howvr, optimal placmt is possibl with a proprly chos cost fuctio Stat Fdback Cotrol Cosidr th Liar Quadratic Rgulator (LQR) W sk a stat fdback cotrollr (K) that miimizs th cost fuctio tf Whr Q is positiv smidfiat, R is positiv dfiit, ad subjct to T T J ( z Qz + u Ru) dt 0 z & Az + Bu z( 0) z 0

8 Stat Fdback Cotrol Th solutio to th LQR problm is giv by u( Kz( Whr th cotrol gai matrix K is giv by 1 T K R B P Whr P is th Riccati matrix which is govrd by th Riccati quatio T P & ( A P( + P( A + R P( BR 1 T B P, P( t ) 0 f Stat Fdback Cotrol As t f gos to ifiity, w s that P bcoms costat ad ca b dtrmid by solvig th algbraic Riccati quatio (ARE) T 1 T 0 A P( + P( A + R P( BR B P W ca us ATLAB to radily obtai this solutio Th matrics Q ad R provid th mchaisms to dsig a ffctiv cotrollr Stat Fdback Cotrol Lt s cosidr a xampl of a sdof buildig with activ bracig Activ Bracig Ssor w 1**pi; % rad/sc xsi 5/100; % dampig 5% 100; K *w^; C *xsi*w*; % Stat Spac Systm % dx Ac*x + Bc*u + Ec*w % y Cc*x + Dc*u + Fc*w Ac [0 1;-iv()*K -iv()*c]; Bc [0;1]; Ec [0;iv()*1]; Cc [y();-iv()*k -iv()*c]; Dc [1]; Fc [0]; Stat Fdback Cotrol Plot th ucotrolld systm s rspos du to Kob arthquak [w(] sys ss(ac,ec,cc,fc); t lispac(0,30,1000); load kob w itrp1(k(1,:),k(,:),; y lsim(sys,w,; figur(3); subplot(311);plot(t,:,1),'g'); subplot(31);plot(t,:,),'g'); subplot(313);plot(t,:,3),'g'); Stat Fdback Cotrol Plot th ucotrolld systm s rspos du to Kob arthquak [w(] Stat Fdback Cotrol Dsig a LQR cotrollr to wight displacmt ad vlocity qually sys ss(ac,ec,cc,fc); t lispac(0,30,1000); load kob w itrp1(k(1,:),k(,:),; y lsim(sys,w,; figur(3); subplot(311);plot(t,:,1),'g'); subplot(31);plot(t,:,),'g'); subplot(313);plot(t,:,3),'g'); Q diag([1 1]); R 1-; Klqr lqr(ac,bc,q,r,[]); sys ss(ac-bc*klqr,ec,cc-dc*klqr,fc); y lsim(sys,w,; figur(3); subplot(311);hold o;plot(t,:,1),'b'); subplot(31);hold o;plot(t,:,),'b'); subplot(313);hold o;plot(t,:,3),'b');

9 Stat Fdback Cotrol Dsig a LQR cotrollr to wight displacmt tf ad vlocity qually Q diag([1 1]); R 1-; Klqr lqr(ac,bc,q,r,[]); T T J ( z Qz + u Ru) dt 0 Stat Fdback Cotrol Lt s look at th pols Q displacmt wightig R dcrass tf T T J ( z Qz + u Ru) dt 0 Q vlocity wightig R dcrass sys ss(ac-bc*klqr,ec,cc-dc*klqr,fc); y lsim(sys,w,; figur(3); subplot(311);hold o;plot(t,:,1),'b'); subplot(31);hold o;plot(t,:,),'b'); subplot(313);hold o;plot(t,:,3),'b'); Stat Obsrvrs I practic, it is ot fasibl or practical to masur all of th stats of th systm Thus, fdback cotrol dsig oft rquirs that o stimat th stat variabls w( xcitatio u( cotrol Plat ( Az( + Ew( Cz( + Du( + Fv( Cotrollr G( v( Stat Obsrvrs A obsrvr is a dyamic systm with iputs u (cotrol ipu ad y (masurd rspos, ad that stimats th stat vctor (calld xha Obsrvr (liar, cotiuous tim) catgory: Op loop obsrvr Full ordr obsrvr Kalma (Bucy) filtr Op Loop Obsrvrs Th objctiv is: lim x( xˆ( 0 t Obsrvr (liar, cotiuous tim) catgory: Liar ivariat systm: x &( Ax( Cx( x( t ) x 0 0 Auxiliary dyamical systm: x & ˆ( Axˆ( Estimatio rror: ( x( xˆ( & ( Axˆ( ( Axˆ( ) A( t t0 If A is stabl, th ( approachs zro Drawbacks: Uboudd rror for ustabl stat matrix Fails i th prsc of modlig rrors ad disturbacs Stat Obsrvrs Full ordr obsrvr Lubrgr obsrvr Liar ivariat systm: 0 0 Auxiliary dyamical systm: x& ˆ( Axˆ( + L( Cxˆ( ) Estimatio rror: ( x( xˆ( & ( ( A LC) ( t t0 Obsrvr fdback If (A LC) is stabl, th ( approachs zro Drawbacks: Still fails i th prsc of modlig rrors ad disturbacs

10 Stat Obsrvrs Stochastic stat obsrvr, Kalma Bucy filtr Liar ivariat systm: x &( Ax( + w( Cx( + v( Procss ois with covariac Q( Disturbac with covariac R( Both ois trms ar assumd whit, Gaussia ad mutually idpdat Auxiliary dyamical systm: x& ˆ( Axˆ( + K( Cxˆ( ) T T Riccati quatio: P& ( AP( + P( A + Q( K( R( K ( T Kalma Gai: K( P( C ( R 1 ( Stat Obsrvrs Th Kalma filtr provids th bst stimat of th stats basd o currt availabl oisy iformatio Th solutio P( to th associatd diffrtial Riccati quatio (DRE) is also th covariac of stimatio rror If oly th stady stat bhavior is of itrst, th tim drivativ is limiatd i th DRE ad ad rsults i a algbraic Riccati quatio (ARE) LQG Cotrol Kalma filtr is oft kow as liar quadratic stimatio (LQE) Wh w combi optimal stat fdback with stimator dsig, w raliz a liar quadratic Gaussia (LQG) cotrollr ˆ( Azˆ( + L u( Kzˆ( ( y Czˆ ) LQG Cotrol Th closd loop systm is thus ˆ( Azˆ( + L ˆ( A zˆ( + B w( xcitatio u( cotrol u( Kzˆ( C zˆ( ˆ( u( Plat ( Az( + Ew( Cz( + Du( + Fv( Cotrollr Azˆ( + Kzˆ( Bu( v( + L( y Czˆ ) ( y Czˆ ) ( A LC BK ) zˆ( + L LQG Cotrol Th closd loop systm is thus ( Az( + BCzˆ( + Ew( Cz( + DCzˆ( ˆ( Azˆ( + B u( Kzˆ( C zˆ( ( A z & ˆ( BC [ C DC ] BC z( E + + w( A BDC zˆ( 0 z( zˆ( Stat Fdback Cotrol Dsig a LQG cotrollr Eww 0.1; Evv 4-5; Lgai lq(ac,ec,cc(3,:),eww,evv); Ak Ac-Bc*Klqr-Lgai*Cc(3,:); Bk Lgai; Ck -Klqr; Dk 0; Acl [Ac Bc*Ck;Bk*Cc(3,:) Ak+Bk*Dc(3,:)*Ck]; Bcl [Ec;zros(,1)]; Ccl [Cc Dc*Ck]; Dcl zros(3,1); sys ss(acl,bcl,ccl,dcl); y lsim(sys,w,;

11 Stat Fdback Cotrol Dsig a LQG cotrollr Stats (actual blu; stimatd gr) Rspos (lqr blu; lqg rd)

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Control systems

Control systems Last tim,.5 Cotrol sstms Cotrollabilit ad obsrvabilit (Chaptr ) Two approahs to stat fdbak dsig (Chaptr 8) Usig otrollabl aoial form B solvig matri quatios Toda, w otiu to work o fdbak dsig (Chaptr 8)

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes *

Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes * PROCESS SYSEMS EGIEERIG AD PROCESS SAEY Chis Joural of Chmical Egirig, (9) 038 047 (03) DOI: 0.06/S004-954(3)60570-4 Soft Ssor for Iputs ad Paramtrs Usig oliar Sigular Stat Obsrvr i Chmical Procsss * XU

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Availabl oli at www.scicdirct.com Ergy Procdia 4 (01 170 177 Ergy Procdia 00 (010) 000 000 Ergy Procdia www.lsvir.com/locat/procdia www.lsvir.com/locat/xxx GHGT-10 Exprimtal Studis of CO ad CH 4 Diffusio

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Full Order Observer Controller Design for Two Interacting Tank System Based on State Space Approach

Full Order Observer Controller Design for Two Interacting Tank System Based on State Space Approach Intrnational Journal of Application or Innovation in Enginring & Managmnt (IJAIEM) Wb Sit: www.ijaim.org Email: ditor@ijaim.org Volum 6, Issu 7, July 07 ISSN 39-4847 Full Ordr Obsrvr Controllr Dsign for

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Control systems (Lecture #11)

Control systems (Lecture #11) .5 Cotro sstms (Lctur #) Last tim, Cotroabiit ad obsrvabiit (Chaptr ) Two approachs to stat fdback dsig (Chaptr 8) Usig cotroab caoica form B sovig matri quatios Toda, w cotiu to work o fdback dsig (Chaptr

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C) Aswer: (A); (C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 0(A); (A); (C); 3(C). A two loop positio cotrol system is show below R(s) Y(s) + + s(s +) - - s The gai of the Tacho-geerator iflueces maily the

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010 Pag for-aftr Cotrol-Impact (ACI) Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Richard A. Hirichs Sptmbr 4, Cavat: This primtal dsig tool is a idalizd powr aalysis built upo svral simplifyig assumptios

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Chapter 13 Aggregate Supply

Chapter 13 Aggregate Supply Chaptr 13 Aggrgat Supply 0 1 Larning Objctivs thr modls of aggrgat supply in which output dpnds positivly on th pric lvl in th short run th short-run tradoff btwn inflation and unmploymnt known as th Phillips

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B. Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the s-plae 4 Mar Block Diagrams Assig

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance TECHNICAL NTE 30 Dsign Guidlins for Quartz Crystal scillators Introduction A CMS Pirc oscillator circuit is wll known and is widly usd for its xcllnt frquncy stability and th wid rang of frquncis ovr which

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

Introduction to Control Systems

Introduction to Control Systems Itroductio to Cotrol Sytem CLASSIFICATION OF MATHEMATICAL MODELS Icreaig Eae of Aalyi Static Icreaig Realim Dyamic Determiitic Stochatic Lumped Parameter Ditributed Parameter Liear Noliear Cotat Coefficiet

More information

Chapter 14 Aggregate Supply and the Short-run Tradeoff Between Inflation and Unemployment

Chapter 14 Aggregate Supply and the Short-run Tradeoff Between Inflation and Unemployment Chaptr 14 Aggrgat Supply and th Short-run Tradoff Btwn Inflation and Unmploymnt Modifid by Yun Wang Eco 3203 Intrmdiat Macroconomics Florida Intrnational Univrsity Summr 2017 2016 Worth Publishrs, all

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information