Physics 2210 Fall smartphysics 05 (continued) Newton s Universal Gravitation 06 Friction Forces 09/21/2015

Size: px
Start display at page:

Download "Physics 2210 Fall smartphysics 05 (continued) Newton s Universal Gravitation 06 Friction Forces 09/21/2015"

Transcription

1 Physics 2210 Fall 2015 smartphysics 05 (continued) Newton s Universal Gravitation 06 Friction Forces 09/21/2015

2 Exam 1 Statistics Average: / 30 Std. Dev.: 6.85 Median: 22

3 Reminder about Interactive Examples Some homework problems are designated Interactive Examples. By clicking the Help button below the answer box, OR the IE Outline tab, you can get a step-by-step tutorial (including multiple-choice conceptual questions) for the problem.

4 Example 5.4: orbit of Earth (3/3) Earth has mass m = kg, and orbits the Sun (mass M = kg) in approximately a circular orbit, at a distance of r = km. Find the orbital period of the Earth in days. Universal Gravitational Constant G = Nm 2 kg 2 Magnitude of the force F G = GGG r 2 F G r M a c m T 2 = 4π2 GG r3 Note the period does not depend on the mass of the planet, just the mass of the Sun and the distance to the planet. (%i1) G: 6.67e-11; (%o1) 6.67E-11 (%i2) M: 1.99e30; (%o2) 1.99E+30 (%i3) /* convert r to meters by multiplying 1=1000m/km */ r: 1.50e8*1000; (%o3) 1.5E+11 (%i4) T2: 4*(%pi)^2/G/M*r^3, numer; (%o4) E+15 (%i5) /* this is the square of the period */ T: sqrt(t2); (%o5) E+7 (%i6) /* convert to days by muitplying 1=1day/24h and then by 1=1h/3600s */ T/24/3600; (%o6)

5 Unit 06

6 Unit 06

7 Video excerpt from Pulling with a (approx.) constant force Resulting Motion???

8 Digitized every 15 frames (30 f/s) using tpsdig2 Length units: pixels

9 Video Analysis Process and Tools Convert video (Cornell videos are in.mov format) using Any Video Converter Free Digitize landmarks from frames using tpsdig2 Linked from Edit/view tps files using notepad++ Cut and paste to Excel (data text-to-columns) Insert chart (xy plot) + trend line

10 Data Analysis t (s) x (pix) x = vv + x 0 v = 4.84t v 2s = 34.4 pix/s Good Fit to Constant Velocity Even Better Fit to A Small Constant Acceleration x = 1 2 at2 + v 0 t + x 0

11 Simple Model of kinetic friction Kinetic friction force occurs when one surface slides against another force acts parallel to the surface to reduce the relative speed. Once relative motion stops kinetic friction force stops acting (static friction may take over) Kinetic Friction force is proportional to: Pressure from normal force between surfaces (pressure is force per unit area perpendicular to the surfaces) Area of contact Area x pressure = normal force Result (magnitude): f k = μ k N Coefficient of Kinetic Friction (no units: ratio of force magnitudes)

12 Same surface characteristics -> same μ k, + same normal force -> same f k From

13 Run 1: Digitized Landmarks from From

14 Run 2: Digitized Landmarks from From

15 t (s) x (pix) ½ at 2 Same Acceleration! Run 1 1 st run had higher initial speed v 0 t (s) x (pix) Run 2

16 Poll A block slides on a table pulled by a string attached to a hanging weight. In case 1 the block slides without friction and in case 2 there is kinetic friction between the sliding block and the table. In which case is the tension in the string the biggest? A. Same B. Case 1 C. Case 2

17 A block with mass m 1 = 8.8 kg is on an incline with an angle θ = 39 with respect to the horizontal. (a) When there is no friction, what is the magnitude of the acceleration of the block? Example 6.1 (1/2) (%i1) /* For this full problem we take +x to be down the ramp and +y to be perpendicularly away from the ramp So in the y-direction we have */ Fy: N - m*g*cos(theta); (%o1) N - g m cos(theta) (%i2) /* and so N = m*g*cos(theta) since ax=fx/m = 0 NOw in the x direction we have (without friction) only the x-component of the gravitational force (weight) */ Fx: m*g*sin(theta); (%o2) (%i3) ax: Fx/m; (%o3) (%i4) deg39: 39*%pi/180, numer; g m sin(theta) g sin(theta) (%o4) (%i5) ax, m=8.8, g=9.81, theta=deg39; (%o5) Answer (a) 6.17 m/s^2

18 m 1 = 8.8 kg, incline with an angle θ = 39 Coefficient of kinetic friction μ k = 0.37 (b) When there is kinetic friction, what is the magnitude of the acceleration of the block? Example 6.1 (2/2) (%i6) /* with friction, we need to know the normal force */ soln2: solve(fy/m=0, N); (%o6) (%i7) N2: rhs(soln2[1]); (%o7) [N = g m cos(theta)] g m cos(theta) (%i8) /* kinetic friction force magnitude (in -x direction) */ Ffk: mu_k*n2; (%o8) (%i9) Fx: m*g*sin(theta)-ffk; (%o9) (%i13) ax: Fx/m; g m mu_k cos(theta) g m sin(theta) - g m mu_k cos(theta) g m sin(theta) - g m mu_k cos(theta) (%o13) (%i14) ax: expand(ax); (%o14) m g sin(theta) - g mu_k cos(theta) (%i15) ax, g=9.81, theta=deg39, mu_k=0.37; (%o15) Answer: (b) with kinetic friction the acceleration is 3.35 m/s^2

19 Video excerpt from

20 Simple Model of static friction Static friction force develop in response to other forces: and the friction develops as much force as required to PREVENT the two surfaces involved from sliding against one another There is however a limit to the magnitude of the friction force that can be developed The Maximum Static Friction Force is proportional to: Pressure from normal force between surfaces (pressure is force per unit area perpendicular to the surfaces) Area of contact Area x pressure = normal force Result (magnitude): f s μ s N Coefficient Static Friction (no units: ratio of force magnitudes) Once relative motion/sliding starts static friction force stops acting (kinetic friction takes over).

21 Poll Which of the following diagrams best describes the static friction force acting on the box?

22 Mass m 1 = 8.8 kg is on an incline with θ = 39 to the horizontal. the coefficients of static friction is μ s = To keep the mass from accelerating, a spring is attached. What is the minimum spring constant of the spring to keep the block from sliding if it extends x = 0.12 m from its unstretched length. Example 6.2 (1/2) (%i19) /* with the spring in the minimum spring constant case, the friction force still points in the -x direction, and the spring force Fs also points in the -x direction */ Fs: k*dl; (%o19) Dl k (%i21) /* static friction force maxed out... in this case */ Ffs_max: mu_s*n2; (%o21) g m mu_s cos(theta) (%i22) Fx: m*g*sin(theta) - Ffs_max - Fs; (%o22) g m sin(theta) - g m mu_s cos(theta) - Dl k (%i26) /* now we set the acceleration in the x direction: ax = Fx/m to zero and solve for the spring constant */ soln3: solve(fx/m=0, k); g m sin(theta) - g m mu_s cos(theta) (%o26) [k = ] Dl... continued

23 m 1 = 8.8 kg, θ = 39 to the horizontal, μ s = To keep the mass from accelerating, a spring is attached. What is the minimum spring constant of the spring to keep the block from sliding if it extends x = 0.12 m from its unstretched length. Example 6.2 (1/2) (%i27) k_min: rhs(soln3[1]); g m sin(theta) - g m mu_s cos(theta) (%o27) Dl (%i29) k_min, g=9.81, m=8.8, g=9.81, mu_s=0.407, theta=deg39, Dl=0.12; (%o29) Answer : minimum spring constant is 225 N/m

24 Video excerpt from Static friction force increases with (increasing) applied force until the maximum static friction force is exceeded. After that kinetic friction takes over

25 Mass m 1 = 8.8 kg is on an incline with θ = 39 to the horizontal. the staic coefficients of friction is μ s = A second mass m 2 = 15.8 kg is attached to the first block by a cord. m 2 is made of a different material and has a greater coefficient of static friction. What minimum value for the coefficient of static friction is needed between the new block and the plane to keep the system from accelerating? Example 6.3 (1/3) (%i1) /* for part (d) we first note that the normal forces in each case is given by m*g*cos(theta) */ deg39: 39*%pi/180, numer; (%o1) (%i2) /* Forces in the x direction on block 1, friction force is maxed out */ N1: m1*g*cos(theta); (%o2) g m1 cos(theta) (%i3) Ffs1: mu_s1*n1; (%o3) g m1 mu_s1 cos(theta) (%i4) Fx1: m1*g*sin(theta) - Ffs1 - T; (%o4) - T + g m1 sin(theta) - g m1 mu_s1 cos(theta) (%i5) /* we set ax1=fx1/m1=0 to solve for the tension force T */ soln4: solve(fx1/m1=0, T); (%o5) [T = g m1 sin(theta) - g m1 mu_s1 cos(theta)]... continued

26 m 1 = 8.8 kg, θ = 39 μ s = A second mass m 2 = 15.8 kg is attached to the first block by a cord. m 2 is made of a different material and has a greater coefficient of static friction. What minimum value for the coefficient of static friction is needed between the new block and the plane to keep the system from accelerating? Example 6.3 (2/3) (%i6) T: rhs(soln4[1]); (%o6) g m1 sin(theta) - g m1 mu_s1 cos(theta) (%i7) /* note T is now in terms of known quantities, now we look at forces on block 2 */ N2: m2*g*cos(theta); (%o7) g m2 cos(theta) (%i8) Ffs2: mu_s2*n2; (%o8) g m2 mu_s2 cos(theta) (%i9) Fx2: T + m2*g*sin(theta) - Ffs2; (%o9) g m2 sin(theta) + g m1 sin(theta) - g m2 mu_s2 cos(theta) - g m1 mu_s1 cos(theta) (%i10) /* set ax2-fx2/m2 to zero and solve for mu_s2 */ soln5: solve(fx2/m2=0, mu_s2); (m2 + m1) sin(theta) - m1 mu_s1 cos(theta) (%o10) [mu_s2 = ] m2 cos(theta)... continued

27 m 1 = 8.8 kg, θ = 39 μ s = A second mass m 2 = 15.8 kg is attached to the first block by a cord. m 2 is made of a different material and has a greater coefficient of static friction. What minimum value for the coefficient of static friction is needed between the new block and the plane to keep the system from accelerating? (%i11) mu_s2: rhs(soln5[1]); (m2 + m1) sin(theta) - m1 mu_s1 cos(theta) (%o11) m2 cos(theta) (%i12) mu_s2, m2=15.8, m1=8.8, theta=deg39, mu_s1=0.407; (%o12) Answer: Minimum coefficient of static friction on m2 is 1.03 Example 6.3 (3/3)

Physics 2210 Fall smartphysics 04 (Continued) Newton s Laws of Motion 05 Forces and Free-body Diagrams 09/11/2015

Physics 2210 Fall smartphysics 04 (Continued) Newton s Laws of Motion 05 Forces and Free-body Diagrams 09/11/2015 Physics 2210 Fall 2015 smartphysics 04 (Continued) Newton s Laws of Motion 05 Forces and Free-body Diagrams 09/11/2015 Supplemental Instruction Schedule Tuesdays 8:30-9:20 am..jwb 308 Wednesdays 3:00-3:50

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Physics 2210 Fall smartphysics 09 Work and Potential Energy, Part II 10 Center-of-Mass 10/05/2015

Physics 2210 Fall smartphysics 09 Work and Potential Energy, Part II 10 Center-of-Mass 10/05/2015 Physics 2210 Fall 2015 smartphysics 09 Work and Potential Energy, Part II 10 Center-of-Mass 10/05/2015 Exam 2: smartphysics units 4-9 Midterm Exam 2: Day: Fri Oct. 09, 2015 Time: regular class time Section

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

Physics 2210 Fall smartphysics 09 Work and Potential Energy, Part II 10/02/2015

Physics 2210 Fall smartphysics 09 Work and Potential Energy, Part II 10/02/2015 Physics 10 Fall 015 smartphysics 09 Work and Potential Energy, Part II 10/0/015 r i Top View O In the limit N the blue path becomes the black path Frictionless, horizontal surface Spring of force constant

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

PHY321 Homework Set 2

PHY321 Homework Set 2 PHY321 Homework Set 2 1. [5 pts] Consider the forces from the previous homework set, F A ( r )and F B ( r ), acting on a particle. The force components depend on position r of the particle according to

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

Chapter 4. Forces and Newton s Laws of Motion

Chapter 4. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion Exam 1 Scores Mean score was ~ 9.5 What is that in a grade 4.0, 3.5,? < 5 : 1.5 or lower 5 : 2.0 6, 7 : 2.5 8,9,10,11: 3.0 12,13 : 3.5 >13 : 4.0 Solutions are

More information

Physics 2210 Fall Review for Midterm Exam 2 10/07/2015

Physics 2210 Fall Review for Midterm Exam 2 10/07/2015 Physics 2210 Fall 2015 Review for Midterm Exam 2 10/07/2015 Problem 1 (1/3) A spring of force constant k = 800 N/m and a relaxed length L 0 = 1.10 m has its upper end fixed/attached to a pivot in the ceiling.

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Physics 2210 Fall smartphysics 07 Kinetic Energy and Work (continued) 09/25/2015

Physics 2210 Fall smartphysics 07 Kinetic Energy and Work (continued) 09/25/2015 Physics 2210 Fall 2015 smartphysics 07 Kinetic Energy and Work (continued) 09/25/2015 Exam regrade form can be downloaded and printed from the course web page. If you think there is a mistake in grading

More information

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C.

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C. Name: Date: 1. When a 12-newton horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of static friction acting on the box is 3. The graph given shows the weight

More information

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two Course Name : Physics I Course # PHY 107 Lecture-5 : Newton s laws - Part Two Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is

More information

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7. Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Physics 2210 Fall smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015

Physics 2210 Fall smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015 Physics 2210 Fall 2015 smartphysics 10 Center-of-Mass 11 Conservation of Momentum 10/21/2015 Collective Motion and Center-of-Mass Take a group of particles, each with mass m i, position r i and velocity

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces -- All of these are derived from the electroweak force: normal or support forces friction tension

More information

Sara Rwentambo. PHYS 1007 AB

Sara Rwentambo. PHYS 1007 AB Topics: Free body diagrams (FBDs) Static friction and kinetic friction Tension and acceleration of a system Tension in dynamic equilibrium (bonus question) Opener: Find Your Free Body Diagram Group Activity!

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Physics 2210 Fall smartphysics 16 Rotational Dynamics 11/13/2015

Physics 2210 Fall smartphysics 16 Rotational Dynamics 11/13/2015 Physics 10 Fall 015 smartphysics 16 Rotational Dynamics 11/13/015 A rotor consists of a thin rod of length l=60 cm, mass m=10.0 kg, with two spheres attached to the ends. Each sphere has radius R=10 cm,

More information

The exam has 20 questions (questions 2-21) and you have 1 hour and 15 minutes to complete the exam.

The exam has 20 questions (questions 2-21) and you have 1 hour and 15 minutes to complete the exam. Exam 1 Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on your scatron. Also fill in your section

More information

Physics 104S12 Guide Lines for Exam 2 phy104s12. Class Exam

Physics 104S12 Guide Lines for Exam 2 phy104s12. Class Exam Physics 104S12 Guide Lines for Exam 2 phy104s12 When: March 7 th 11 11:50 PM Class Exam Where: Normal Classroom Chapters: 4 and 5 Format: 25 multiple choice questions Bring: Green Scantron Sheet, Calculator,

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Physics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma

Physics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma Physics 2514 Lecture 12 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 21, 2011 1 / 13 Goal Goals for today s lecture:

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A, B, & C Final Exam Formulæ & Constants Spring 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Show all work in answering the following questions. Partial credit may be given for problems involving calculations.

Show all work in answering the following questions. Partial credit may be given for problems involving calculations. Physics 3210, Spring 2017 Exam #1 Name: Signature: UID: Please read the following before continuing: Show all work in answering the following questions. Partial credit may be given for problems involving

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2 " = Fd sin# IMA = d in eff = RMA F in IMA = W out

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2  = Fd sin# IMA = d in eff = RMA F in IMA = W out Name: Physics Chapter 7 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: a c = v2 F = ma F = Gm 1m 2 r r 2 " = Fd sin#

More information

Name Student ID Phys121 Win2011

Name Student ID Phys121 Win2011 (1) (3 pts) The airplane in the figure below is travelling at a constant speed and at a fixed altitude with its engines providing forward thrust. Which of the free-body diagrams below best represents the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 3: Newton's Laws of Motion, Motion: Force, Mass, and Acceleration, Vectors in Physics Solutions Problem

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Physics 2514 Lecture 13

Physics 2514 Lecture 13 Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement 1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement r = ( 3ˆ i + ˆ j )m. Find (a) the work done by the force on the particle and (b) the angle between F and r. 2- The force acting

More information

# x = v f + v & % ( t x = v

# x = v f + v & % ( t x = v Name: Physics Chapter 4 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: F = ma µ = F fric a = v f " v i t # x = v f

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Spring-Loop-the-Loop Problem Set 8 A small block of mass m is pushed against a spring with spring constant k and held in place

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Determine the resultant for each group of vectors below: b) c)

Determine the resultant for each group of vectors below: b) c) Determine the resultant for each group of vectors below: a) b) c) 8 8 2 5-3 3 7-3 2-8 -8 a) 11 8 3 4 Magnitude 11.7 Direction: 70 degrees North of East -3 7 b) 8-3 2-8 1 Magnitude: 1 Direction: West c)

More information

Kinematics 1D Kinematics 2D Dynamics Work and Energy

Kinematics 1D Kinematics 2D Dynamics Work and Energy Kinematics 1D Kinematics 2D Dynamics Work and Energy Kinematics 1 Dimension Kinematics 1 Dimension All about motion problems Frame of Reference orientation of an object s motion Used to anchor coordinate

More information

Two Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while

Two Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2 - Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2 v = v i + at a dv dt = d2 x dt 2 A sphere = 4πr 2 x = x i + v i t + 1 2 at2 x = r cos(θ) V sphere = 4 3 πr3 v 2 = v 2 i + 2a x F = ma R = v2 sin(2θ) g y = r sin(θ) r = x 2 + y 2 tan(θ) = y x a c = v2 r

More information

Physics 201 MWF9:10 Fall 2009 (Ford) Name (printed) Name (signature as on ID) Lab Section Number Exam 2 Chapts. 6-8 in Young&Geller

Physics 201 MWF9:10 Fall 2009 (Ford) Name (printed) Name (signature as on ID) Lab Section Number Exam 2 Chapts. 6-8 in Young&Geller Physics 201 MWF9:10 Fall 2009 (Ford) Name (printed) Name (signature as on ID) Lab Section Number Exam 2 Chapts. 6-8 in Young&Geller Multiple Choice questions. Circle the correct answer. No work needs to

More information

Chapter 6: Work, Energy and Power Tuesday February 10 th

Chapter 6: Work, Energy and Power Tuesday February 10 th Chapter 6: Work, Energy and Power Tuesday February 10 th Finish Newton s laws and circular motion Energy Work (definition) Examples of work Work and Kinetic Energy Conservative and non-conservative forces

More information

Physics 53 Summer Exam I. Solutions

Physics 53 Summer Exam I. Solutions Exam I Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols for the quantities given, and standard constants such as g. In numerical questions

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Physics 2210 Fall smartphysics 08 Conservative Force and Potential Energy 09 Work and Potential Energy, Part II 09/30/2015

Physics 2210 Fall smartphysics 08 Conservative Force and Potential Energy 09 Work and Potential Energy, Part II 09/30/2015 Physics 10 Fall 015 smartphysics 08 Conservative Force and Potential Energy 09 Work and Potential Energy, Part II 09/30/015 Conservative forces Definition: Forces whose work done an object is (always)

More information

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp

Physics 211 Week 5. Work and Kinetic Energy: Block on Ramp Physics 211 Week 5 Work and Kinetic Energy: Block on Ramp A block starts with a speed of 15 m/s at the bottom of a ramp that is inclined at an angle of 30 o with the horizontal. The coefficient of kinetic

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

P F = ma Newton's Laws Hmk

P F = ma Newton's Laws Hmk Dyn Page 1 P11-3.2 - F = ma Newton's Laws Hmk What is the force required to accelerate a 12 kg object at 5 m/s squared? What is the force required to accelerate a 17 kg object at 3 m/s squared? What is

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

Universal gravitation

Universal gravitation Universal gravitation Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman February 22, 2017 W. Freeman Universal gravitation February 22, 2017 1 / 14 Announcements Extra homework help

More information

Physics 201, Review 2

Physics 201, Review 2 Physics 201, Review 2 Important Notes: v This review does not replace your own preparation efforts v The review is not meant to be complete. v Exercises used in this review do not form a test problem pool.

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing

More information

P. O. D. Station 2. You already have the real time. You found that with your stop watch.

P. O. D. Station 2. You already have the real time. You found that with your stop watch. P. O. D. Station 2 In Station 2 you have to find the real time (t real ), the real acceleration (a real )and the real force (Force real ). Then you have to find the ideal force, the ideal acceleration,

More information

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly acclerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

PHYSICS 1 Forces & Newton s Laws

PHYSICS 1 Forces & Newton s Laws Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 2014-2015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Conservation of Energy Lab Packet

Conservation of Energy Lab Packet Conservation of Energy Lab Packet Unit # 3 Main Topic: Pendulum Duration: 10 days NAME: Contents/Page Number Day 2 (2/1/16): The Pendulum Lab Day 1 (2/2/16): The Physics of Pendulum Day 3 (2/3/16): The

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper

More information

Introduction to Newton s Laws Newton s First Law. Oct 21 8:32 AM

Introduction to Newton s Laws Newton s First Law. Oct 21 8:32 AM Introduction to Newton s Laws Newton s First Law. Isaac Newton Arguably the greatest scientific genius ever. Came up with 3 Laws of Motion to explain the observations and analyses of Galileo and Johannes

More information

Quizbank/Calculus Physics I/T2study

Quizbank/Calculus Physics I/T2study Quizbank/Calculus Physics I/T2study From Wikiversity CalcPhys1T2_Study If you are reading this as a Wikiversity page, proper pagebreaks should result if printed using your browser's print option. On Chrome,

More information

AP Physics C. Multiple Choice. Dynamics

AP Physics C. Multiple Choice. Dynamics Slide 1 / 36 P Physics C Multiple Choice ynamics Slide 2 / 36 1 ball moves horizontally with an initial velocity v1, as shown above. It is then struck by a tennis racket. fter leaving the racket, the ball

More information