Contents. Chapter 1. Complex Numbers 3 1. Basic properties 3 2. The Argand Plane 6 3. Powers of z Loci and Regions in C 13

Size: px
Start display at page:

Download "Contents. Chapter 1. Complex Numbers 3 1. Basic properties 3 2. The Argand Plane 6 3. Powers of z Loci and Regions in C 13"

Transcription

1 Contents Chapter. Complex Numbers 3. Basic properties 3. The Argand Plane 6 3. Powers of z 4. Loci and Regions in C 3 Chapter. Complex Functions 7. Continuity of complex functions 7. The Complex Derivative 3. Harmonic Functions 4 Chapter 3. Transcendental Functions 9. The Exponential Function 9. Trigonometric and Hyperbolic Functions 3 3. The Complex Logarithm Complex Exponents 36 Chapter 4. The Complex Integral 39. Complex Path Integration 39. Cauchy s Theorem The Fundamental Theorem of Calculus The Cauchy Integral Formula 5 5. Applications of the Cauchy Formula 54 Chapter 5. Complex Power Series 57. Convergence of Complex Series 57. Uniform Convergence 6 3. Taylor Series 6 4. Laurent series 64 i

2 ii CONTENTS Chapter 6. Residue Theory and Applications 69. Complex Residues 69. Isolated Singularities 7 3. Applying Residues to Real Integration 76

3 CHAPTER Complex Numbers. Basic properties x + solved by x ±i; say i i (cf. x x ± ) Definition.. Complex number z a+ib st a, b R say z C. If w c+id C, then define z + w (a + c) + i(b + d) (z + w w + z) z w (a + ib)(c + id) (ac bd) + i(ad + bc) (Check: zw wz) Write a Re(z) real part of z b Im(z) imaginary part of z Note: if e R, then e + z (e + a) + ib w e c e, d w ie c, d e ) ie + z a + i(b + e) e z ea + ieb ie z eb + iea a + i a + ib ib Powers of i: i i 3 i i i i 4 i i 3 (i i) ( ) i 5 ii 4 i

4 . COMPLEX NUMBERS Example: Solution: Find Im [(3 + 4i)( i)] (3 + 4i)( i) 3. 4.(i i) + 4.i 3.i i(4 6) i Im[(3 + 4i)( )i] Definition.. Given z a + ib C, define the conjugate of z: z a ib z + z (a + ib) + (a ib) (a + a) + i(b b) a + i a Re(z) ( Re( z)) z z (a + ib) (a ib) (a + ib) a + ib (a a) + i(b + b) + ib ib iim(z) iim( z) z z (a + ib)(a ib) (a a b( b)) + i(a ( b) + ba) a + b + i( ab + ab) a + b + i a + b. Division of Complex Nos: z a + ib, w c + id z w z (a + ib)(c id) (ac + bd) + i(bc ad) w w w (c + id)(c id) c + d ( ) ( ) ac + bd bc ad + i c + d c + d

5 Special Case: Conjugation: (iii) (iv) ( z) z z a, b w w (i) (ii) ( ) w Corollary: e R, e z ē z e z. BASIC PROPERTIES 3 z + w z + w z w z w ( ) ( ) c d i c + d c + d } ( ) ( c d + i c + d c + d ( c c + ( d) i c + i( d) w Exercise! ) d c + ( d) ) z w z + ( w) z + ( w) z w (using the above, with e ) ( z w ) z ( ) z w w z w Example: Write [ +i i 3+4i 3 4i] in the form a + ib. Solution: (i) (ii) (iii) + i 3 + 4i i 3 4i ( + i)(3 4i) (3 + 4i)(3 4i) (i)(3 + 4i) (3 4i)(3 + 4i) + i 3 + 4i i 3 4i (6 + 4) + i(3 8) i5 ( ) 5 5 i i i i i 5 ( i 6 5 )

6 4. COMPLEX NUMBERS (iv) Therefore [ + i 3 + 4i i ] 3 4i ( i ) ( i ) 5 5 (8 + i) (8 + i) 5 ( 8 + i(8 + 8) ) i The Argand Plane z x + iy (x, y) R, x Re(z) y Im(z) Definition.. Modulus (or length) of z : z x + y z z Properties: () zw (zw)(zw) (z z)(w w) ( z z ) ( w w ) z w

7 . THE ARGAND PLANE 5 () Example: Solution: z w z ( w z w z w z Compute (3 + 4i)( + i) 3 4i ) ( ) w w w z w z w 3 + 4i (3 + 4i)(3 4i) i + (3 + 4i)( + i) 3 4i 3 4i i + i 3 4i 5 5 Note: z z z z z x + iy (x, y ) w x + iy (x, y ) z + w (x + x, y + y )

8 6. COMPLEX NUMBERS Triangle Inequality (i) z + w z + w (ii) z w z w Proof of (ii) z w (z w)(z w) z z z w w z + w w (w z (z w)) z Re(z w) + w ζ α + iβ z Re(z w) + w Re(ζ) ζ z z w + w ( z w ) ( z w z w ) z w z w Induction: z + z + z 3 z + z + z 3 z + z + z 3 z + + z n z + z + + z n Polar Representation of z z (x, y) (r, θ) r z tan ( y x + y, θ x) if x > tan ( y x) + π if x <

9 . THE ARGAND PLANE 7 Principal Argument Arg(z) θ + kπ ( π, π] (for a suitable integer k). Now x r cos θ y r sin θ ] z r(cos θ + i sin θ) : rcis(θ) z r cos θ + ir sin θ, w r cos θ + ir sin θ z w r r (cos θ cos θ sin θ sin θ ) + ir r (cos θ sin θ + sin θ cos θ ) But cos θ cos θ sin θ sin θ cos(θ + θ ) cos θ sin θ + sin θ cos θ sin(θ + θ ) z w r r (cos(θ + θ ) + i sin(θ + θ )) r r cis(θ + θ ) Example: Write ( + i)( + 3i) in polar form. (Answer : rcis(θ) cis( π ))

10 8. COMPLEX NUMBERS z r cos θ + ir sin θ ( ) r cos θ r sin θ + r cos θ cos θ ( ) sin θ i r r ( i r sin θ r sin θ + r cos θ ) r (cos θ i sin θ) cos( θ) + i sin( θ) r r cis( θ) Example: Express ( + i)( i 3) 3cis(π/8) as rcisθ r r r 3 3 θ π 4 θ tan ( 3) θ 3 π/8 π 3 ( + i)( i 3) 3cis(π/8) r r r 3 cis(θ + θ θ 3 ) 3 cis( 3π 4 )

11 3. POWERS OF z 9 3. Powers of z Summary: z r (cos θ + i sin θ ) w r (cos θ + i sin θ ) z w r r (cos(θ + θ ) + i sin(θ + θ )) z w r (cos(θ θ ) + i sin(θ θ )) r Induction: (r ) z n r n (cos(nθ) + i sin(nθ)) ( ) n w n (cos(nθ) i sin(nθ)) w rn De Moivre: (cos θ + i sin θ) n cos(nθ) + i sin(nθ) Fractional Powers: z r(cos θ + i sin θ) w ρ(cos φ + i sin φ) ρ m (cos(mφ) + i sin(mφ)) r(cos(θ) + i sin(θ)) } Suppose w m z Note w is not unique! ρ m r r m But cos(mφ) cos(θ) sin(mφ) sin(θ) ] φ θ m + πk m k, ±, ±, All distinct values of φ are covered if k,,, m m distinct values of w. ( ( Write (w )z m r m cos θ + ) ( πk m m + i sin θ + )) πk m m k,, m Example: Find ( i) /3 z i r θ π 4

12 . COMPLEX NUMBERS ( i) /3 ( /6 cos ( π + ) ( πk 3 + i sin π + )) πk 3 k,, ( /6 cos ( ( π ) i sin π )) (k ) ( /6 cos ( ) ( 7π + i sin 7π )) (k ) ( /6 cos ( ) ( 5π + i sin 5π )) (k ) What about ( i) /3? w ( i) + i r, θ π w /3 ( /6 cos ( π + πk 4 3 Note ( π ) cos 6 ( π cos ) ( π sin ) ( + i) )) ) + i sin ( π + πk 3 ( π ) ( π ) ( π ) cos sin cos ( i) /3 4/3 ( + 3) i( 3 )) (k ) 4/3 (( 3) i( + 3)) (k ) /3 ( + i) (k )

13 4. LOCI AND REGIONS IN C 4. Loci and Regions in C Example: () Sketch {z C z z > Re(z)} Ω x + y x (x ) + y () z 3 + i < (3) Im(z) Re(z ) z x + ixy y Re(z ) x y y x y y + y x (y + ) x ( ) Im(z) Re(z ) (y + ) x 4

14 . COMPLEX NUMBERS (4) Σ {z C Re(z) 3 } (5) Ω Σ {z C z > Re(z) 3 }

15 4. LOCI AND REGIONS IN C 3 Some important terms: Definition 4.. () A neighbourhood of z C is a set D r (z ) {z z z < r} () A neighbourhood of z is punctured or deleted when we write D r (ẑ ) { < z z < r} for some r >. (3) A set S is open if every z S has a nbd D r (z ) S for some r >. (4) z C is a boundary point (write z S or z Bd(S)) for S if for all r > D r (z ) S, and D r (z ) S (where S denotes the complement of S in C). (5) z C is an interior (resp exterior ) point of S if there exists r > such that D r (z ) S (resp. D r (z ) S). (6) S is connected if any two pts z, z S can be joined by a continuous path inside S. (7) Ω C is a domain if open and connected. (8) Ω C is a simply connected domain if every loop (i.e. every path from z Ω to itself) inside Ω can be shrunk down to z without going outside Ω. (cf. Examples 4,5)

16 4. COMPLEX NUMBERS (9) Ω is multiply connected if some path(s) cannot be shrunk (i.e., if Ω has one or more holes or punctures; cf. Ex.,) () z C is an accumulation point of S if for every r >, D r (z ) S ( every boundary point of S is an accumulation point) () S is a region if S Ω Σ (Σ Ω cf. Ex.,5), and a closed region if S Ω Ω for some domain Ω. () S is bounded if there exists R > st S D R ()

17 CHAPTER Complex Functions. Continuity of complex functions f(z) w C Dom(f) C, Range(f) C z x + i y w u + i v Example: f(z) z + iz } f(z) u(x, y) + i v(x, y) w z + iz x + y + i(x + iy) x + y y + ix u(x, y) x + y y v(x, y) x ] Conversely z x + i y z + z x z x i y z z i y Example: Consider (u, v) : R R with ] x (z + z) y i (z z) u(x, y) xy v(x, y) x + y. Find f : C C such that f(z) u(x, y) + i v(x, y). Solution: xy i 4 (z + z)(z z) i 4 (z z ) 5

18 6. COMPLEX FUNCTIONS { (z + z) i (x + y ) i } 4 (z z) i { z + z + z (z z + z ) } i { z + z + z (z z + z ) } 4 i { z + 6 z z } 4 f(z) u + iv i z + 3i z i (3 z z ) Definition.. Let f : C C be a complex function, and L C. We say lim z z f(z) L if for every ε > there is a δ > such that < z z < δ f(z) L < ε. Example: f(z) sin( z ) z + i Re(z) Show lim z f(z) Proof Note θ < sin(θ) 6 θ sin(θ) θ θ3 3! + θ5 5! θ7 7! + sin(θ) θ < + θ 6 sin z θ 3! + θ4 5! θ6 7! + z < z 6 Now f(z) sin z z sin z z + Re(z) ( inequality) + z ( Re(z) z ) < z 6 + z 7 6 z z z < 6 6 ε f(z) < ε for any ε > choose δ 7 7 ε Example: f(z) z + i Arg(z). Show lim f(z) does not exist z

19 Remark lim f(z) exists if and only if z z Recall Arg(z) ( π, π]. CONTINUITY OF COMPLEX FUNCTIONS 7 lim (x,y) (x,y ) lim arctan(y (x,y) (,) x ) u(x, y) exists and lim (x,y) (x,y ) π if (x, y) 3rd Quadrant (x <, y < ) π if (x, y) nd Quadrant lim Arg(z) does not exist. z Theorem: If lim f(z) L and lim g(z) L, then z z z z (i) lim (f + g)(z) L + L z z (ii) lim f(z)g(z) L L z z (x <, y > ) f(z) (iii) lim z z g(z) L if L. L Definition.. f(z) is continuous at z if all three conditions hold : (a) f(z ) is defined (b) lim z z f(z) exists (c) f(z ) lim z z f(z) Examples v(x, y) exists. () f(z) z + i Arg(z) continuous at z for all z C \ {Im(z), Re(z) } sin z () g(z) + i Re(z). z Note g() not defined, but if we consider g(z) z ĝ(z) z then ĝ cts at

20 8. COMPLEX FUNCTIONS Theorem () If f(z) cts at z and g(z) cts at z, then (a) (f ± g)(z) cts at z (b) f(z)g(z) cts at z (c) f(z)/g (z) cts at z if g(z ) () If f(z) cts at z and g(z) cts at f(z ) w, then the composition g f(z) g(f(z)) is cts at z. (3) f(z) u(x, y) + i v(x, y) ; f(z) cts at z if and only if u(x, y) cts at (x, y ) and v(x, y) cts at (x, y ). (4) If f cts at z for all z R (a region in C), then f(z) also cts on R. If R closed and bounded, then M R such that f(z) M for all z R, and z R st f(z ) M. Example f(z) z + i Arg(z). Find M st f(z) M on R {z C z 3 } f(z) z + (Arg(z)) 3 z 3 + ; π 6 Arg (z) π 6 Claim: M ( + 3). The Complex Derivative Definition.. Given f(z) a complex function, we define the derivative at z C by f f(z + z) f(z ) (z ) lim z z

21 . THE COMPLEX DERIVATIVE 9 Note: z x + i y Special Case: y y y f(z) u(x, y) + iv(x, y). f (z ) lim x lim x lim x x [u(x + x, y ) + i v(x + x, y ) u(x, y ) i v(x, y )] x [u(x + x, y ) u(x, y ) + i(v(x + x, y ) v(x, y ))] x [u(x + x, y ) u(x, y )] + i lim x x [v(x + x, y ) v(x, y )] u x (x, y ) + i v x (x, y ) Similarly: (x x, x ) f (z ) lim y i y [u(x, y + y) u(x, y ) + i(v(x, y + y) v(x, y ))] i u y + v y (x, y ) Conclusion: if f (z ) exists, then u (x x, y ) v (x } y, y ) u (x y, y ) v (x Cauchy-Riemann Equations x, y ) Remark: If u x v y, u y v x at z C, and u x, u y, v x, v y, u, v are all cts on D r(z ) for some r >, then f (z ) exists. Example: () f(z) z + i Arg(z) u(x, y) x + y v(x, y) arctan( y x )

22 . COMPLEX FUNCTIONS u x x x + y u y y x + y v x v y u x v y x + y v x u y x + y y x + y x x + y f (z ) exists for all z {z C z, Arg(z) π} but nowhere else. () f(z) c (constant C) f (z ) for allz C (exercise) f(z) z n f (z ) lim z z [(z + z) n z n ] lim z [ z n + z ( ) ( ) ] n n z n z + + z ( z) n + ( z) n z n n nz n f (z ) exists for all z C. Properties of the Derivative: Suppose f (z ) and g (z ) exist. Theorem () (f ± g) (z ) f (z ) ± g (z ) () (f g) (z ) f (z )g(z ) + f(z )g (z ) Product Rule (3) ( f g ) (z ) f (z )g(z ) f(z )g (z ) (g(z )) (g(z ) ) Quotient Rule

23 (4) (fog) (z ) f (g(z ))g (z ) Chain Rule.. THE COMPLEX DERIVATIVE Pf: -4 Same as for functions of a real variable. Definition.. f(z) is analytic at z C if f (z) exists for all z D r (z ), some r >. Example: () f(z) z + iarg(z) f (z ) exists for z, Arg(z ) π only nowhere analytic. () f(z) z n (n ).f (z ) nz n for all z C. Example: analytic for all z C (Such f are said to be entire functions.) if f(z) is analytic for all z Ω C, we denote the derivative function df dz, such that df dz (z ) f (z ) for all z Ω. () f(z) c constant df dz () f(z) z n df dz nzn (3) f(z) a + a z + + a n z n + a n z n df dz a + a z + + (n )a n z n + na n z n (4) f(z) z n df dz nz n n z n+

24 . COMPLEX FUNCTIONS Remark (5) Product, Quotient, Chain Rules for d dz (cf. previous Theorem) () If f(z) analytic on Ω, then f(z) continuous on Ω (Proof easy). () If f(z) analytic on Ω, then df dz analytic on Ω (Proof discussed later). L Hôpital s Rule: If f, g analytic at z C, f(z ) g(z ), then ( ) f(z) df lim z z g(z) lim z z dz /dg f (z ) dz g (z ) Pf: f(z) lim z z g(z) lim z z f(z) f(z ) z z g(z) g(z ) z z Now df dz, dg dz continuous near z lim Example: lim z i z 7 + z + i z 4 lim z z 3i 4 f(z + z) f(z ) lim z z z z df lim z dg dz g (z ) Theorem: If f, g analytic at z C, then g(z + z) g(z ) z dz f (z ) () f ± g analytic at z () fg, f/g (g(z ) ), f g all analytic at z. Example: f(z) z 3 + z g(z) z + f, g are entire functions f g (z) z3 + z z + ie z ± i. f (z ) g (z ) is analytic for all z C st z +, Definition.3. If f(z) not analytic at z C, but for all r > there exists ξ D r (ẑ ) such that f analytic at ξ then we say z is a singularity of f. (Ex. f(z) z3 +z z + has singularities at z ± i.) 3. Harmonic Functions Consider f(z) u(x, y) + i v(x, y) analytic. Then u x v y ; u y v x

25 3. HARMONIC FUNCTIONS 3 Since df dz f (z) also analytic, it follows that u & v are twice differentiable, hence (Theorem in R : If on Ω R.) u x v x y & u y v y x. ( ) v x y, v y x, v x, v y all continuous fns on Ω R, then v x y v y x ( ) u + u. x y Write +, then f analytic on Ω u, v satisfy Laplace s eqn : x y u, v, on Ω. Definition 3.. ϕ(x, y) : R R is harmonic on Ω R if ϕ on Ω. When we say that ϕ is harmonic, it will also be assumed that all the second partial derivatives of ϕ are continuous on Ω. (Hence f u + i v analytic u, v harmonic) Example: ϕ(x, y) x 3 3y x ϕ. ϕ x 6x ϕ y 6x Theorem: If ϕ(x, y) harmonic on a simply connected domain Ω R, there exists an analytic fn f(z) on Ω C such that ϕ(x, y) Re(f). Also there exists analytic g(z) on Ω C such that ϕ(x, y) Im(g). Proof: We have to use a Lemma which we ll prove later: Lemma: If Ω simply connected, and F (z) analytic on Ω, then there exists f(z) analytic on Ω such that ( Idea: f(z) z z df dz F (z). F (ξ)dξ, well defined if all paths from z to z inside Ω are continuously equivalent, i.e.,ω is simply connected). Now consider F (z) ϕ x i ϕ : µ + iν y

26 4. COMPLEX FUNCTIONS F analytic since the partial derivatives satisfy µ x ν y & µ y ν x and are all continuous, there exists such that f(z) ϑ(x, y) + i λ(x, y) analytic ϕ x i ϕ y df dz ϑ x + i λ x ϑ x i ϑ y ϕ x ϑ x, ϕ y ϑ y ϕ(x, y) ϑ(x, y) + c ie ϕ Re(f) c. Alternatively: Consider G(z) ϕ y + i ϕ x ν + iµ ( G analytic, since ν x µ ) y, ν y µ x have g(z) u(x, y) + i v(x, y) analytic such that ϕ y + i ϕ x dg dz u x + i v x v y + i v x ϕ(x, y) v(x, y) + c Im(g) + c Example: ϕ(x, y) x 3 3y x. Find f(z)st ϕ Re(f) ± c f(z) ϑ(x, y) + i λ(x, y) st ϑ x λ y ϕ x 3x 3y ϑ y λ x ϕ y 6xy

27 3. HARMONIC FUNCTIONS 5 ϑ ϕ λ 3(x y )dy 6 xy dx 3x y y 3 + C(x) 3x y + D(y) C(x) c, D(y) y 3 + c λ(x, y) 3x y y 3 + c f(z) x 3 3y x + i(3x y y 3 ) + ic ie., f(z) (x + iy) 3 z 3 + ic Definition 3.. Given ϕ st ϕ, say ψ is the harmonic conjugate of ϕ if ϕ(x, y) + iψ(x, y) : f(z) analytic Example: ϕ x 3 3y x ψ 3x y 3 (+c). Remark: If ϕ harmonic Re(f) for some analytic f(z), then ϕ Im(if). Example: ϕ(x, y) x x + y, ϕ x x(x 3y ) ϕ (x + y ) 3 y ϕ on R \{(, )} F ϕ x i ϕ y y x (x + y ) + i xy (x i y) (z) (x + y ) (x + y ) (zz) z d dz ( z ) ϕ(x, y) Re( z ) Im( i z ) ψ(x, y) y x + y Im( z ) Re( i z )

28

29 CHAPTER 3 Transcendental Functions. The Exponential Function Definition.. e z e x+iy e x (cos y + i sin y) e iy : cos y + i sin y for all y R Properties: (i) e x e Re(z) e z, y Im(z) Arg(e z ) ± πk k,,, (ii) e, e iπ (iii) u(x, y) e x cos(y), v(x, y) e x sin(y) u x ex cos(y) v y u e x sin(y) v y x e z analytic on C (i.e. e z entire). d (Exercise: show dz [ez ] e z (iv) e z+w e Re(z+w)+iIm(z+w) and e Re(z+w) (cos(im(z + w)) + i sin(im(z + w))) d dz [ef(z) ] f (z)e f(z).) e z e w e Re(z) e Re(w) (cos(im(z))) + i sin(im(z)))(cos(im(w)) + i sin Im(w)) e Re(z+w) {cos(im(z)) cos(im(w)) sin(im(z)) sin(im(w)) +i(sin(im(w)) cos(im(z)) + cos(im(w)) sin(im(x)))} e Re(z+w) (cos(im(z) + Im(w)) + i sin(im(z) + Im(w))) e z+w ( (e z ) m e mz ) (v) e z w e z /e w (Proof similar) 7

30 8 3. TRANSCENDENTAL FUNCTIONS Special Case: z e w e w x : (e iy ) m e imy cos(my) + i sin(my) (cf. De Moivre) Example: (a) f( + i) (b) f ( + i) f(z) e (z z )π. Find (c) {z C f(z) } (a) z + i i z + 3i z z (b) (c) ( ( f( + i) e ( + 3i )π e π π ) ( )) 3π cos + i sin ie π/ ( f (z) e (z z )π d z ) π dz z ( πe π(z z ) + ) π ( + z ) f(z) z ) f ( + i) πie ( π/ + ( + i) ( ) πie π/ + ( i) 4 πie π/ (4 i) 4 f(z) e (z z )π e Re(z z )π e π(x e π x x x +y x x +y ) ( ) x x (x + y ) or x. x +y

31 . TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 9. Trigonometric and Hyperbolic Functions Recall e iy cos y + i sin(y) e iy cos( y) + i sin( y) cos(y) i sin(y) cos(y) ( e iy + e iy) sin(y) ( e iy e iy) i ( e iy e iy) i Definition.. cos(z) ( e iz + e iz) sin(z) i ( e iz e iz) Properties: () e iz, e iz entire sin(z) and cos(z) entire. () d dz sin(z) d [ ( e iz e iz)] dz i ( ie iz + ie iz) ( e iz + e iz) i cos(z) d cos(z) dz sin(z) (Exercise) (3) sin (z) + cos (z) (Exercise) (4) sin(z ± w) [ e i(z±w) e i(z±w)] i [ e iz e ±iw e iz e ±iw] i [( sin(z) cos(w)±cos(z) sin(w) 4i e iz e iz) ( e iw + e iw) ± ( e iz + e iz) ( e iw e iw)] [ 4i e i(z+w) + e i(z w) e i(z w) e i(z+w) ± e i(z+w) ± e i(z w) ± e i(z w) ± e i(z+w)] [ i e i(z+w) e i(z+w)] [ or i e i(z w) e i(z w)] sin(z ± w). (5) Similarly, cos(z ± w) cos(z) cos(w) ± sin(z) sin(w).

32 3 3. TRANSCENDENTAL FUNCTIONS Example: Where does fail to be analytic? cos(iz) Note: f(z) cos(iz) is entire analytic if f(z). f(z) But cos(iz) [ e z + e z] [ e x (cos y i sin y) + e x (cos y + i sin y) ] cos(y) ( e x + e x) + i sin(y) ( e x e x) cos(y) ; e x e x, i.e. y π ± πk ; x Now define tan(z) sin(z) cos(z), sec(z) cos(z), etc Recall Hyperbolic sine and cosine: sinh(x) ex e x ; cosh(x) ex + e x Now define sinh(z) ez e z ; cosh(z) ez +e z Properties: () sinh(z), cosh(z) entire. () d sinh(z) cosh(z); d cosh(z) sinh(z) dz dz (3) sinh(iz) eiz e iz i sin(z) cosh(iz) eiz + e iz cos(z) (4) cosh (z) sinh (z) (cosh(z) + sinh(z))(cosh(z) sinh(z)) e z e z Example: Note: Now define tanh(z) sinh(z) cosh(z) ; sech(z) cosh(z) ; etc. Give the domain of C in which sech(z) is analytic. cosh(z) is entire sech(z) fails to be analytic when cosh(z), i.e., e z + e z e x (cos y + i sin y) + e x (cos y i sin y)

33 i.e., cos y(e x + e x ) and sin y(e x e x ) 3. THE COMPLEX LOGARITHM 3 i.e., y π ± πk and x. sech(z) analytic on Ω C \ { + i ( π ± πk) k,,, } 3. The Complex Logarithm Recall e z e x (cos(y) + i sin(y)) e z e x Arg(e z ) y Im(z) ± πk e log z z e Re(log(z)) z Re(log(z)) ln z Arg(e log(z) ) Arg(z) Im(log(z)) ± πk log(z) ln z + iarg(z) ± πki ; k,,, Definition 3.. Log(z) ln z + iarg(z) Example: z ( + 3i); z ; Arg(z ) π 3 Log(z ) ln() + πi πi 3 3 Log(z) ln() + iarg(z) πi 3 } Log(z ) Log(z ) πi In general, log(z z ) ln z z + iarg (z z ) ± πki ln z + ln z + iarg(z ) + iarg(z ) ± πki log(z z ) log(z ) + log(z ) ± πki log(z n ) n log(z) ± πki. Example: Solve (e z ) e z Now e z e z + e z iff e z i.e. z ln ( ) ± πki

34 3 3. TRANSCENDENTAL FUNCTIONS Note log(e z ) ln e z + iarg (e z ) ± πki log e Re(z) + iim(z) ± πki Re(z) + iim(z) ± πki z ± πki Log(e z ) z if Im(z) ( π, π] Consider Log(z) ln z + iarg(z) u + iv u x (x + y ) / (x + y ) x x / x + y u y (x + y ) / (x + y ) y y / x + y arctan( y ) x x π v Arg(z) x, y > π x, y < cts on C\{y, x } v x + ( ) y y x y x + y ; v y + ( y u x v y x and u y v x on C\{y, x } x ) x x x + y Now d dz Log(z) u log(z) x x + i v x x x + y i y x + y z z z z d (cf. log x ) Log(z) analytic on Ω C\{y ; x } dx x Definition 3.. : The analytic function f(z) Log(z) on the domain Ω C\{Im(z) ; Re(z) } is called the Principal Branch of log(z).

35 Remark: 3. THE COMPLEX LOGARITHM 33 f(z) log z + iarg(z) + πik, for any fixed k ±, ±, defines a secondary (or non Principal) branch of the complex logarithm on Ω. (Note: Ω simply connected). The half-line {Im(z) ; Re(z) } ( is ) called a branch cut ( ) for log(z). Example: Consider φ(x, y) arctan where π < arctan π Find (a) The harmonic conjugate ψ(x, y) (b) The domain Ω on which φ + iψ is analytic. (a) F (x, y) φ x i φ y x y ; φ x ( + φ y F (x, y) y + ix x + y i z z z ( + x y x y i z df dz ) y x y y x + y ) x y x x + y x (y + ix i z) f(z) i log(z) Arg(z) + C + i log z ( ψ log(x + y ) ( ) ) (b) But φ(x, y) Re(f) arctan arg(i z) π arg(z) x y where π < arctan ( ) x π π < π y arg(z) π π arg(z) < 3π Define f(z) π arg(z) + i log z arg(z) + i log z where π arg(z) < 3π f φ + iψ has an analytic branch on Ω C\{Re(z) ; Im(z) }

36 34 3. TRANSCENDENTAL FUNCTIONS Example: Find the maximum domain Ω C on which f(z) Log ( ) z z is analytic. Note: Log ( ) ( z z log z z + iarg z ) z Clearly z,, Arg ( ) z z ±π arg(z ) arg(z) ± π But arg(z ) arg(z) ± π z (, ) Log ( ) z z analytic on C\[, ] Ω 4. Complex Exponents Recall x R x c e c log(x) for any c R Define z z c e c log(z) for any c C Example: () z i, c 3 c log(z) (log i + iarg(i) ± πik) 3 πi 6 ± πki 3 k,, πi 6 ; 5πi 6 ; 9πi 6 3πi πi

37 () 4. COMPLEX EXPONENTS 35 e π 6 i 3 + i (k ) i 3 e 5π 6 i 3 + i (k ) e π i i (k ) z + i, c i c log(z) i(log + i + iarg( + i) ± πik) i(log + i π 4 ± πki) π 4 ± πk + i log ( + i) i ±8k e ( 4 )π e i log ±8k e ( 4 )π ( cos(log ) + i sin(log Now f(z) z c e clog(z) f(z) is analytic on the same domain Ω C\{Im(z) ; Re(z) } as Log(z) (note e z is entire) we may define the Principal Branch of z c as e clog(z) on Ω. Moreover d dz zc d dz eclog(z) e clog(z) d dz (clog(z)) c z eclog(z) c z zc cz c ) Example: analytic? Using the principal branch of f(z) z cosh(z), find f ( ) πi. Where is f(z) d dz zcosh(z) cosh(z)z cosh(z) d dz cosh(z) cosh(z) z cosh(z) + sinh(z)z cosh(z) Log(z) ( ) πi Now cosh ( ) πi sinh ( ) πi f eπi/ + e πi/ eπi/ e πi/ i ( ) πi + ilog ( ) πi

38 36 3. TRANSCENDENTAL FUNCTIONS Note cosh(z) is entire z cosh(z) e cosh(z) log(z) is analytic on Ω {Im(z) ; Re(z) }. (Exercise: Do the same for f(z) z tanh(z) )

39 CHAPTER 4 The Complex Integral. Complex Path Integration Definition.. : A smooth path between two points z and z in C corresponds to a map γ : [, ] C, γ(t) x(t) + iy(t), such that (i) γ() z ; γ() z (ii) x(t) and y(t) are differentiable functions for all t (, ) (iii) For each z γ([, ]), there is at most one t [, ] such that γ(t) z. Remark: γ may also be represented in implicit form as a graph y f(x) or x g(y) in R. Examples: () z 3, z + i, γ(t) (3 + t) + it ; implicit form: y x 3 between 3 and + i () z i, z, γ(t) e i( t) π ; implicit form: y x between i and. (3) z, z + i, γ(t) t + it ; implicit form: y x between and + i 37

40 38 4. THE COMPLEX INTEGRAL Definition.. : (i) Complex line element z x + i y Infinitesimal line element dz dx + idy Hence if γ(t) x(t) + iy(t) smooth path in C, can define path element dz dx dy dt + i dt. Now dt dt (ii) for any complex function f(z) u(x, y) + iv(x, y), define the Path integral z f(z)dz : z z x x (u(x, y) + iv(x, y))(dx + idy) udx y y (ux vy )dt + i { x vdy + i vdx + x (vx + uy )dt y y } udy Example: z i, z i, find i i. dz along the unit semicircular arc lying in Re(z) z Method (): f u + iv (x iy) x y ixy (x y ) + ixy (x y ) + 4x y x y (x + y ) + i xy (x + y )

41 . COMPLEX PATH INTEGRATION 39 i i f(z)dz x + y, Re(z) x x y i i xy (x + y ) dy x y (x + y ) dy f(z)dx 3 i udx xy (x + y ) dy i { vdy + i y y dy ( y )dy 3 Method (): x(t) cos(( t) π) ; y(t) sin(( t) π) ( ux (t) vy (t) [cos ( t) π ) ( sin ( t) π )] [ ( + cos ( t) π ) ( sin ( t) π ( π sin )] π cos vdx + x y (x + y ) dy } udy µdµ (µ y ) ) ( t) π ( ( t) π ) ux dt vy dt µ dµ (µ cos(( t) π )) µ dµ (µ cos(( t) π )) Exercise: Show vx + uy dt 3 Define ux vy dt dz dx + idy x + iy dt (x ) + (y ) dt Given γ : [, ] C a smooth path st γ() z, γ() z z z dz (x ) + (y ) dt L(γ) path length

42 4 4. THE COMPLEX INTEGRAL Now consider f(z) st f γ : [, ] C, and f γ(t) M γ, i.e., M γ is an upper bound for f on the image of γ, then z f(z)dz z z z f(z) dz f γ(t) (x ) + (y ) dt M γ (x ) + (y ) dt M γ L(γ) Example: Consider I + i without evaluating I precisely. i e i Log( z) dz along y x. Show that I (.)e π/ y x x t y t (x ) + (y ) + t π/4 π/4 L(γ) π/4 + t dt sec 3 θdθ t tan(θ) + t sec(θ) dt sec (θ)dθ π/4 sec θdθ ln(sec θ + tan θ)] π 4 ln( + ) tan θ sec θdθ tan θ sec θ] π/4 π/4 sec θ + tan θ sec θdθ sec 3 θdθ

43 . CAUCHY S THEOREM 4 π/4 sec 3 θ d θ (ln( + ) + ) L(γ) Now f(z) e i Log( z) f(z) e i log z Arg( z) e Arg( z) e Arg(z) e π/ M γ L(γ) e π/ { ln( + ) + }.5e π/. Cauchy s Theorem Definition.. A simple closed contour is a loop γ (γ() γ() z ) such that γ([, ]) forms the boundary of a simply connected bounded domain Ω C

44 4 4. THE COMPLEX INTEGRAL We say γ has positive orientation with respect to Ω if interior of Ω always left of γ(t) as t moves from to. For positively oriented γ, we define the contour integral f(z) dz, and recall γ Green s theorem: If P (x, y), Q(x, y), P x, P y, Q x, Q are all cts fns on Ω Ω, where y Ω γ is a positively oriented simple closed contour, then ( Q P dx + Q dy x P ) dx dy. y γ Now f(z) u + iv analytic u x v y ; u y v x γ f(z) dz and we have proved γ, Ω u dx v dy + i Ω ( v x + u ) y γ v dx + u dy dx dy + i Ω ( u x v ) y dx dy Cauchy s theorem: Let C be a closed simple contour, and let f(z) be a complex function which is analytic on some domain containing C. Then C Example: f(z) dz. () f(z) Log(z), analytic on Ω C \ {Im(z) ; Re(z) }

45 C { z C z i. CAUCHY S THEOREM 43 } C Log(z) dz () f(z) tanh(z) sinh(z) cosh(z) analytic on Ω C \ {z i ( π ± πk), k,,, } tanh(z) dz z i (3) f(z) z analytic on C \ {} cannot apply Cauchy theorem to z z(t) e iπt z dz z. But z dz z πie iπt e πit dt πi dt πi Exercise: Show z dz for all integer n. zn

46 44 4. THE COMPLEX INTEGRAL Deformation of Contours: Let C, C be closed simple contours such that C j Ω j, j,, C Ω Divide Ω \ Ω into two simply connected domains with boundary Γ, Γ as follows Γ Now consider f(z) analytic on Ω \ Ω f(z) dz f(z) dz by Cauchy s theorem. Note Γ Γ Γ C ( C ) f(z) dz Γ Γ f(z) dz C ( C ) f(z) dz C C f(z) dz C f(z) dz C f(z) dz. More generally, consider C, C as follows:

47 . CAUCHY S THEOREM 45 Then C 3 such that C f(z) dz C f(z) dz C f(z) dz C 3 C 3 C f(z) dz f(z) dz f(z) dz Theorem (deformation of contours) If C, C are closed simple contours such that C can be continuously deformed into C without passing through a singularity of some analytic function f(z), then C f(z) dz f(z) dz. Example: f(z) z ; C { z } ; C { z i } ; C 3 { z } C

48 46 4. THE COMPLEX INTEGRAL C f(z) dz πi ; C f dz C 3 f dz 3. The Fundamental Theorem of Calculus Principal of Path Independence: If γ, γ : [, ] C are two paths such that γ j () z, γ j () z, j, and the region Ω bounded by γ γ is simply connected, then any function f(z), analytic on a domain containing Ω, satisfies f(z) dz γ γ f(z) dz, z ie z f(z) dz does not depend on γ st γ() z, γ() z (Proof: f(z) dz γ γ γ f(z) dz γ f(z) dz.) Now suppose f(z) df on some simply connected domain Ω C, then for any dz γ : [, ] Ω stγ() z, γ() z Ω we have the Fundamental Theorem of Calculus: Example: z z f(z) dz z z d F (z) dz dz df dz dz dt dt d(f γ) dt dt F (γ()) F (γ()) F (z ) F (z ).

49 3. THE FUNDAMENTAL THEOREM OF CALCULUS 47 () f(z) z d Log(z) on C \ {Im(z), Re(z) } dz +i i z dz Log( + i) Log( i) log + i π 4 ( log i 3π 4 iπ ) () f(z) Solution: (a) (a) +i i (b) z+3 (z )(z + 3). Compute f(z) dz f(z) dz (z )(z + 3) A (z ) + B (z + 3) (A + B)z + 3A B, ie +i i f(z) dz 4 +i i A + B 3A B ] z dz 4 4 Log(z ) ] +i i A 4 B 4 +i i z + 3 dz 4 Log(z + 3) ] +i {log + i + i Arg( + i) log + i i Arg ( + i) 4 log 5 + i i Arg(5 + i) + log 3 + i + i Arg (3 + i)} { ( ) ( )} 5 ( + i)(3 + i) log + i Arg 4 9 ( + i)(5 + i) { ( ) ( )} 5 4 log + i Arg i5 58 ( ) 5 4 log + i 9 4 arctan( 5 4 ) i

50 48 4. THE COMPLEX INTEGRAL (b) Now z+3 z+3 f(z) dz 4 z w z + 3 z+3 z dz 4 z+3 z + 3 dz dz by Cauchy s theorem, while z+3 z + 3 dz w w dw πi z+3 dz (z )(z + 3) πi 4 πi 4. The Cauchy Integral Formula Theorem: Let f(z) be analytic on a domain Ω C. Let C be a closed simple contour in Ω, and z o Ω lying in the interior of C, then f(z ) f(z)dz πi z z. Proof: of contours For r sufficiently small, let z z r lie in the interior of C, then deformation C C f(z)dz f(z)dz, z z z z r z z since f(z) z z analytic in the region between z z r and C. dz dz Similarly πi. z z z z z z r

51 4. THE CAUCHY INTEGRAL FORMULA 49 Now consider z z r f(z) dz πif(z ) z z z z r f(z) f(z ) dz. z z Note that f(z) cts at z ε >, δ > such that z z < δ f(z) f(z ) < ε. choose r < δ so that f(z) f(z ) f(z) f(z z z sup ) z z r < ε. r r z z r Hence M γ L(γ) inequality, cf. p. 35 z z r f(z) f(z ) dz M dz z z z z r < ε πr πε r Now C f(z)dz πif(z ) z z z z r z z r f(z) f(z )dz z z ( ) f(z) f(z ) dz < πε. ( ) z z But (*) does not depend on r >, for any ε >, choose r < δ, and conclude ( ) f(z) C z z dz πif(z ). Example: () z+3 g(z) z + 3z z + z 3 z + 3z g(z)dz (z )(z + 3) dz 4 z+3 z πif( 3) where f(z) z + 3z πi ( ) πi. z + 3z dz z 4 z+3 z + 3z dz z + 3

52 5 4. THE COMPLEX INTEGRAL () z 4 g(z) z + 3z z + z 3 g(z)dz g(z)dz Γ Γ g(z)dz + g(z)dz Γ Γ g(z)dz + g(z)dz C C z + 3z dz z + 3z dz 4 C z 4 C z + 3 πi {f() f( 3)} πi. f(w) w z dw Rewrite Cauchy Formula: f(z) πi C differentiating under sign, e.g., when df Moreover df dz πi C d n n! f(z) dzn πi f(w) d dz C ( w z f(w) dw (w z) n+ cts on C, dz ) dw πi C f(w) (w z) dw

53 Example: () z 4. THE CAUCHY INTEGRAL FORMULA 5 z + (z ) 4 (z + ) g(z)dz z (z ) πi 4 3! g () g(z) z + z + ; g (z) z + z + z + (z + ) z + 5z + (z + ) g (z) z + 5 (z + ) (z ) z + 8 (z + ) 3 (z + ) 3 g 3(z 8) (z) + (z + ) 3 (z + ) z 6 4 (z + ) 4 () z i sinh(z)dz (z i) 7. z { Note f(z) sinh(z) dn dz f(z) n And sinh(z) d6 (z i) 7 dw 6 ( ) sinh(z) (z w) wi g(z)dz (z ) πi πi 3 5 sinh(z) if n even cosh(z) if n odd (3) C z i sinh(z) πi dz (z i) 7 6! d 6 (sinh(w)) dw6 wi πi πi sinh(i) 6! 6! (ei e i ) e z dz, where C is the rectangle with corners z ± i, ± i. (z ) (z ) (z ) (z + ) let C C C, where C has corners ± i, ±i C has corners ± i, ±i

54 5 4. THE COMPLEX INTEGRAL On C, let f(z) (z + ) (z ) dz f(z) d dz πi C (z ) dw f(w) w ( ) e w πi (w + ) ew (w + ) w 3 ( e πi 4 e ) 8 C e z e z C On C, let f(z) e z dz (z ) C e z (z ) f(z) (z + ) C dz d πi dw f(w) ( πi e z dz (z ) iπe + w ) e (w ) ew πi (w ) w 3 ( e 4 + e ) 8 Remark: Cauchy s formula implies that if f(z) is analytic, then dn dz n f(z) exists for all n. 5. Applications of the Cauchy Formula Let f(z) be analytic on a simply connected domain Ω C. Consider z Ω, and a circle z z r contained in Ω. Then f(z ) f(z) dz πi z z r z z πi π f(z + re πit ) re πit f(z + re πit )dt π f(z + re iθ )dθ πire πit dt f(z ) average value of f(z) on the circle z z r. (Gauss Mean Value Theorem) Can use this to prove:

55 5. APPLICATIONS OF THE CAUCHY FORMULA 53 Maximum Modulus Principle: If f is analytic on a closed, bounded region R C, and f is not constant then Also have M f sup f(z) f(ζ) for some ζ R, z R f(ζ) > f(z) for all z R\ R. Liouville s Theorem: If f(z) is entire, and f(z) M for some finite M R and for all z C, then f(z) must be constant. Proof: and Consider C : z z r, some fixed z C, then f (z ) f(z) πi C (z z ) dz f (z ) f(z) π C (z z ) dz π M r πr where M r sup f(re πit ) (re πit ) sup f(re πit ) t [,] r t [,] Now, we assumed that f(z) M for all z C sup f(re πit ) M M r M t [,] r for any z C, we have f (z ) M r r M r independently of r > f (z ). Corollary (Fundamental Theorem of Algebra): The polynomial equation P (z) a + a z + + a n z n, a n, always has n solutions z C. Proof: Suppose P (z) has no solutions for some non constant polynomialp. Then P (z) for all z C. Now P entire and nowhere zero f(z) P (z) Moreover, P (z) constant P (z) constant. P (z) z n a n + + a z + a n z n lim P (z) lim z z z n a n lim z P (z) f(z) M also entire.

56

57 CHAPTER 5 Complex Power Series. Convergence of Complex Series A complex series is a summation S(z) a n z n where a n C for all n. We n denote by S N (z) the N-th Partial sum, i.e., S N (z) sequence {S N (z)} N of partial sums. N a n z n, and hence define the Definition.. () Given z C, we say S(z ) converges at z if σ lim S N(z ) N exists, i.e., for all ε >, there exists N such that σ S N (z ) < ε when N > N. () The Domain of Convergence of S(z) is the set Ω C such that z Ω S(z ) converges. (3) Conversely, S(z ) diverges if lim N S N(z ) does not exist. Example: Find Domain of convergence of S(z) Note z N ( z)( + z + + z N ) S N (z) zn z Guess Now z re iθ z N r N e inθ z n. n lim S z N+ N(z) lim N N z ( But σ(z) S N (z) z N+ z z n lim N zn if r z <. if z <. z ( σ(z)) ) z N+ z < ε z N+ < ε z (N + ) log z < log(ε z ) N > 55 log(ε z ) log z

58 56 5. COMPLEX POWER SERIES noting log z < if z <. lim S N(z) for all z st z <. N z Now, by analogy with real series there is the Divergence Test: If lim a n z n, then a n z n diverges. n Example: Note z lim z n lim z n lim r n n n n S(z) z n diverges if z. n n Definition.. S(z ) a n z n converges absolutely if the real series n a n z n converges. S(z ) converges conditionally otherwise. n Recall: () Absolute convergence ordinary convergence. () If S(z ) absolutely convergent, then order of summation not important. (3) S (z ) and S (z ) abs convergent S S (z ) abs.cgt. where S (z) S S (z) c n a n z n, S (z) c n z n n a j b n j j where b n z n Example: z ( z) z n for z < n ( ) z n ( k m+nk z n z m ) (k + )z k k

59 . CONVERGENCE OF COMPLEX SERIES 57 Change of Variable: If S(w) a n w n converges for all w Ω and f : C C n is an analytic function such that w f(z), then S(f(z)) z f (Ω) {z C f(z) Ω}. Example: S(w) w n converges for w < : n a n f(z) n converges for all n w e iz S(e iz ) e inz converges for e iz <, where e iz e Re(iz) e Im(z). n e Im(z) < Im(z) < Im(z) > Conversely, Im(z) lim e iz lim e Im(z) n n e inz diverges for Im(z). n Domain of Convergence of e inz ( ): eiz Ratio Test: Consider ρ(z) lim Recall n a n+ z n+ a n z n lim n a n+ a n z (i) If ρ(z ) < then S(z ) converges absolutely at z C. (ii) If ρ(z ) > then S(z ) diverges at z.

60 58 5. COMPLEX POWER SERIES (iii) If ρ(z ) or ρ(z ) does not exist, then don t know. Example: S(z) n z n n! ρ(z) lim n! n (n + )! z lim n n + for all z C. Now consider n z n n! S ( ) ( ) ρ z z lim n n + z for all z z n n! converges for all z. Definition.. S(z). Uniform Convergence a n z n converges uniformly on R C if for all ε > there exists N such that S(z ) S N (z ) < ε for all N N independently of z R. Recall Weierstrass M-test : Consider S(z) a n z n. If there exists a sequence {M n } n of positive real numbers M n such that a n z n M n for all z R C, and uniformly on R. M n <, then S(z) converges Example: S(z) z n converges absolutely on z <, e.g., S ( + i) converges n absolutely since ( ) n + i < <. ( ) n Now z z n z n Mn. In fact, z n converges uniformly on R { z }. z n converges uniformly on { z r} for r <, but not on { z < }.

61 Theorem: Suppose S(w) analytic, w f(z), such that R f(ω). Then () If γ is a smooth path in f (R) Ω S(f(z))dz d () dz S(f(z)) d a n dz (f(z)n ) (3) S(f(z)) Example. UNIFORM CONVERGENCE 59 a n w n converges uniformly on R C, and f : Ω C is γ γ a n f(z) n dz n df na n f(z) dz on f (R). a n f(z) n is analytic on f (R) Ω. In particular, S(z) analytic on R (cf. () plus Morera s theorem ). () S(w) w n converges uniformly on w r < F (z) S(e iz ) e inz analytic on Im(z) log r > Domain of analyticity of F (z) {z C Im(z) > } () w w n on w < F (z) on {Im(z) > }. e iz Hence if γ {Im(z) > } st γ() z, γ() z γ dζ z e iζ z z i S(x) e inζ dζ i n einz i x n n d ne n dx S(x) z z e inζ dζ ] z [ i n einζ + (z z ) z i ( e inz e ) inz + (z z ) n x n x if z <

62 6 5. COMPLEX POWER SERIES x ) ) z i e inz n S(x) ( z i i dζ e iz i eiζ e dt ln t ( x S ( e dζ i [ ln(e )] (z i) eiζ dw w( w) ) ( ln ) ln(e ) e { e iz } dw e iz i w + dw w e e i {Log(e iz ) + Log( e iz ) + log( e } ) e inz n i ([ + iz Log( e iz ) ] ( i) z + i ) i Log( e iz ) on {Im(z) > } { < Re(z) < π} Theorem : If S(z) 3. Taylor Series a n z n converges at z, then S(z) converges uniformly on the set of all z such that z r, where r < z. Hence S(z) is analytic on { z < z }. Proof: S(z ) converges lim a n z n C > such that a n z n C for all n. n Now consider z C st z r < z, write a n z n a n z n ( z z ) n C ( ) n r z for all n. ( ) n r ( ) ( ) n r Let M n C, then M n C C z z r. z Since r <. Hence Weierstrass z a n z n converges uniformly on { z r}. Change of Variable: If S(z a) a n (z a) n converges at z a C then S(z a) converges uniformly on { z a r}, where r < z a. Hence S(z a) analytic on { z a < z a }. Definition 3.. : The largest r such that a n(z a) n converges for all z { z a < r}, given a C, is called the radius of convergence of S(z a). The set

63 3. TAYLOR SERIES 6 { z a < r max }, where r max is the radius of convergence, is called the disc of convergence of S(z a). Theorem : Suppose f(z) is analytic on a disc of radius r about a C then there exists a power series S(z a) a n (z a) n which converges to f(z) for all z D r (a). Moreover, a n f (n) (a) n! for each n. Proof: First consider a C, and z C such that z < r. Now choose r such that z < r < r, and define C { z r } in C. Cauchy s formula f(z ) πi πi C C f(z) dz z z f(z)dz z( z z ). Note z r z < z ( z ) z f(z ) πi πi n ( z ) n z f(z) C z n ( z n ( z ) n dz z ) f(z)dz C z n+ since f analytic and ( z ) n converges uniformly on z < r z r < r. z

64 6 5. COMPLEX POWER SERIES f(z ) πi c n z n for all z D r (), where c n f(z)dz C z n+ πi n! f (n) (), f(z) f (n) () z n on D r (). n! Change of variable: z w a, f(w) f(w a) f(z) f(w) f (n) (a) f(w a) (w a) n. n! f (n) (a) Remark: If r is the largest radius for which (z a) n converges to f(z) on n! D r (a), then f(z) must have a singularity at some pt z such that z a r. Example: f(z) z f (n) n! (z) ( z) f (n) () n+ n! f (n) () Hence z n z n converges to f(z) on D (), with singularity at z. n! 4. Laurent series Recall the Riemann sphere S C { } (cf., e.g., Churchill and Brown, p.38). Define a complex coordinate near infinity to be the set of all complex numbers w C such that w, where z C is the usual complex coordinate near C. Hence z w corresponds to z on S. Now consider D r () {z C z < r } and D r ( ) {w C w < r } such that r > r. Then D r () D r ( ) {z C r < z < r }.

65 4. LAURENT SERIES 63 Suppose S (z) a n z n converges on D r () and S (w) D r ( ). Then on D r () D r ( ) we can write ( ) S (w) S z b n w n converges on b n z n. ( ) Write L(z) S (z) + S z c k z k a k if k > where c k b k if k < a + b if k. Note L(z) is convergent on the annulus D r () D r ( ) D r () D () r Laurent s theorem: Suppose f(z) is analytic on an annular region A {r < z < r }, then for all z A there exists a power series c k z k L(z) such that L(z ) converges to f(z ). Moreover c k πi Proof: C f(z)dz z k+ for all k, where C { z s} for some s (r, r ).

66 64 5. COMPLEX POWER SERIES Cauchy formula Now f(z ) πi z ρ πi f(z)dz z ρ z z z ρ Hence f(z ) deformation of contours γ f(z) z z dz z ρ f(z) z z dz f(z) dz z z πi f(z) z ρ z n z n f(z)dz z ( z z ) (m (n + )) ( c k z, k where c k z ρ z ρ z ρ ( f(z)dz z ρ z n+ f(z) z ρ z n f(z) z z dz ) ( z ) n dz z ), while ( ( ) ) n z dz z ( ) z (n+) z n f(z)dz z ρ m z m f(z)dz z ρ z m+ f(z)dz πi z ρ if k z k+ f(z) πi z ρ dz if k z k+ z s, s (r, r ).

67 4. LAURENT SERIES 65 Moreover c k z k converges uniformly inside A. Change of Variable: f(z) analytic on A {r < z a < r } f(z ) such that c k πi C f(z)dz (z a) k+. c k (z a) k

68

69 CHAPTER 6 Residue Theory and Applications. Complex Residues Definition.. : Let f(z) be analytic on the punctured disc D r (z )\{z } {z < z z < r}. The Residue of f at z is given by Res(f, z ) f(z)dz πi z z r for any < r < r. Consider L f (z, z ) c k (z z ) k, c k f(z)dz πi z z r (z z ). k+ Then But f(z)dz c k (z z ) k dz πi z z r πi c k (z z ) πi z z k dz. r { (z z ) k πi if k dz z z r k f(z)dz c πi z z r Theorem: Res(f, z ) c. 67

70 68 6. RESIDUE THEORY AND APPLICATIONS Example: f(z) z + i z + i i z i. Res(f, i)? Note z + i i z + i 4 L f (z, i) 4 (z i) + i i( i (z i)) ( ) k i (z i) ( i ) k (z i) k i (z i) c i Res(f, i) Now consider domain Ω C, such that f(z) analytic on Ω\{z,, z k }, z i Ω. Ω f(z)dz C C f(z)dz + Cauchy Theorem: k i Residue Theorem: z z i ε f(z)dz C C f(z)dz If Ω is a closed simple contour, and f(z) is analytic on Ω\{z,, z k } for z i Ω, then f(z)dz πi Ω k Res(f, z i ) i

71 Example: Compute z 3 dz z. COMPLEX RESIDUES 69 using residues z 3 ( ) ( ) dz z Res z, + Res z, Now z z z + ( ) ( ) Res z, Res z, 4πi ( ) ( ) Res z, Res z +, 4πi dz z. z 3 z ε dz z z+ ε dz z + Example: f(z) sin(z). Compute Res(f, ). z sinh(z) e z + z + z! + z3 3! + e iz + iz + (iz) + (iz)3 +! 3! sin(z) eiz e iz {iz + (iz)3 i i 3! + (iz)5 5! } + z { z3 3! + z5 5! z z sinh(z) ez e z } {z + z3 3! + z5 + 5! } {z + z3 3! + z5 5! + z sin(z) z sin h(z) z + z4 3! 5! z{ + z + z4 + } 3! 5! z { + } z 3! c Res(f, ). c k z k 3! + z4 5! } } { + z 3! + z4 5! +

72 7 6. RESIDUE THEORY AND APPLICATIONS. Isolated Singularities Definition.. : Given L f (z, z ) c k (z z ) k, define the Principal Part [L f (z, z )] c k (z z ) k. () f(z) has a pole of order N at z C if [L f (z, z )] c k (z z ) k, i.e. c k k < N. N Example: f(z) has poles of order 3 at z ± (z ) 3 f(z) sin(z) z sinh(z) has pole of order at z. () f(z) has an isolated essential singularity at z C if [L f (z, z ))] has infinitely many terms. Example: e z + z +!z + 3!z 3 + c k k! k > (3) f(z) has a Removable singularity at z C if f(z ) may be redefined to make f analytic at z. Example: f(z) sin(z) z + z4 z 3! 5! - not defined at z, but analytic if we define { sin(z) z z f(z) z. Remarks: () f(z) has a pole or order N at z lim z z (z z ) N f(z) < and lim f(z) z z

73 . ISOLATED SINGULARITIES 7 since L f (z, z ) c N (z z ) N + + c (z z ) + c + c (z z ) + ( c N + c (z z ) N N+ (z z ) + c (z z ) N + ) cf. Graph of f(z) : () f(z) has a removable singularity at z lim z z (z z )f(z). (3) f(z) has essential singularity at z lim z z f(z) does not exist ( ). (cf. Cassorati-Weierstrass thm) Example: () f(z) (z ) lim(z 3 z )3 f(z) lim z (z + ) 3 8 L f (z, ) c k (z ) k c 3 8. () f(z) sin(z) z 3 lim z zf(z) lim z sin(z) Definition.. : Order of f(z) at z, N if f(z) (z z ) N a n (z z ) n ord f (z ) N if f(z) (z z ) N if z essential. if f(z ) < a ( zero ) a n (z z ) n a ( pole )

74 7 6. RESIDUE THEORY AND APPLICATIONS Suppose ord f (z ) k, ord g (z ) l, then [ ] [ ] f g (z z ) k a n (z z ) n (z z ) l b m (z z ) m (z z ) k+l c p (z z ) p where c a b. c a b + a b.. ord f g (z ) k + l Moreover g Define ϕ(z z ) Now (z z ) l [b + b (z z ) + ] (b ) b m (z z ) m b g (z z ) l b ( ϕ) ϕ ϕ n if ϕ < (i.e., z z ) < ε) g (z z ) l b [ + ϕ + ϕ + ] ord (z ) l, g ord f/g (z ) k l. Example: Find ord h () for h(z) z + 3z sin 3 (z). f(z) 3z + z ord f (). sin(z) z z3 3! + z5 5! z( z 3! + z4 5! ) g(z) ( ) 3 sin 3 (z) z 3 z 3! + z4 5! ord g () 3 ord h () 3

75 In general f(z) c N (z z ) N + + c (z z ) + c +. ISOLATED SINGULARITIES 73 (z z ) N f(z) c N + c N+ (z z ) + + c (z z ) N + c (z z ) N + d N (N )! dz [(z z ) N f(z)] c N + c (z z ) + { Res(f, z ) lim z z (N )! Example: Compute Now z z d N [ (z z ) N f(z) ] dz N f(z)dz for f(z) z sin(z). ( ) dz z sin(z) πires z sin(z), } ord f () f(z) c z + c z + c + c z + d [ Res(f, ) lim z f(z) ] z! dz [ ] d z lim z dz sin(z) { lim z sin(z) z } sin (z) cos(z) { } sin(z) z cos(z) lim z sin (z) { } cos(z) cos(z) + z sin(z) (L Hôpital) lim z sin(z) cos(z) { } z lim z cos(z) Example: z sin ( z ) dz z ( ( sin z Res z ), ) πi

76 74 6. RESIDUE THEORY AND APPLICATIONS ( ) sin z ( ) z sin z z z 3 3! + z 5 5! z z 4 3! + z 6 5! L sin( (z, ) z z) Res ( z sin ( z ), ) c. 3. Applying Residues to Real Integration. Trigonometric Integrals: Consider integrals of the form: π P (sin θ, cos θ) dθ ; P, Q polynomials. Q(sin θ, cos θ) Example: π Recall sinθ z z i z z i if z cos θ + i sin θ e iθ since z z when z. Similarly cos θ z + z. Now z e iθ dz ie iθ dθ izdθ dθ iz dz P (sin θ, cos θ)dθ Q (a R) π z dθ a + sin θ P Q ( i (z z ), ) dz (z + z ) iz z z dz iz ( a + ( )) z z i dz iaz + z Note z + iaz (z + ia) + a (z + ia) (i a ) (z + i(a + a ))(z + i(a a ))

77 π dθ a + sin θ 3. APPLYING RESIDUES TO REAL INTEGRATION 75 z dz (z + i(a + a ))(z + i(a a )). Now a + a (a a ) a + a a a a + a a a But a + a a assume w.l.o.g. a > a + a > } π dθ a + sin θ Res(f(z), (a a )i) πi (f(z) : {[z + i(a + a )][z + i(a a )]} ) Let g(z) z + i(a + g(z), then f(z) a ) Cauchy formula z + i(a a ). Improper Integrals: πi Res(f(z), (a a )i) z g(z)dz z + i(a a ) πig( i(a a )) 4πi i a π a Example: x x 4 + dx. Note z4 + when z e i( π 4 + πk 4 ) (k,,, 3) Write x x 4 + dx lim a a x dx b x lim b x dx x 4 + Consider contour C : [, b] [, ib] γ such that γ {be iθ ϑ π } and b >.

78 76 6. RESIDUE THEORY AND APPLICATIONS Note C ( ) z dz z z 4 + πires z 4 +, eiπ/4 [ ] πi lim (z e iπ/4) z ) z e iπ/4 z 4 + (simple pole: N ) [ ] z lim z e iπ/4 (πi) lim z e iπ/4 4z 3 (L Hôpital s Rule) [ ] iπ z iπe iπ/4 Now z [, b] z tb (t [, ]) z [, ib] z tbi (t [, ]) z be iθ (dz izdθ) z dz C z 4 + b b t dt b 4 t 4 + ib Recall M max z θ π/ z 4 + z dz i γ z 4 + Moreover z b z z 4 + z z 4 πb 3 lim ML lim b b (b 4 ) iπ π ( i) 4 ( + i) b t dt b 4 t i γ ML M πb b b 4 z dz z 4 +. π b x dx ( + i) ( + i) lim b x 4 + (x bt)

79 3. APPLYING RESIDUES TO REAL INTEGRATION 77 Finally x dx x 4 + π + i + i π. x x 4 + even x x 4 + dx π x x 4 + dx x x 4 + dx

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Syllabus: for Complex variables

Syllabus: for Complex variables EE-2020, Spring 2009 p. 1/42 Syllabus: for omplex variables 1. Midterm, (4/27). 2. Introduction to Numerical PDE (4/30): [Ref.num]. 3. omplex variables: [Textbook]h.13-h.18. omplex numbers and functions,

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

Functions of a Complex Variable and Integral Transforms

Functions of a Complex Variable and Integral Transforms Functions of a Complex Variable and Integral Transforms Department of Mathematics Zhou Lingjun Textbook Functions of Complex Analysis with Applications to Engineering and Science, 3rd Edition. A. D. Snider

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Topic 2 Notes Jeremy Orloff

Topic 2 Notes Jeremy Orloff Topic 2 Notes Jeremy Orloff 2 Analytic functions 2.1 Introduction The main goal of this topic is to define and give some of the important properties of complex analytic functions. A function f(z) is analytic

More information

Complex Analysis. Travis Dirle. December 4, 2016

Complex Analysis. Travis Dirle. December 4, 2016 Complex Analysis 2 Complex Analysis Travis Dirle December 4, 2016 2 Contents 1 Complex Numbers and Functions 1 2 Power Series 3 3 Analytic Functions 7 4 Logarithms and Branches 13 5 Complex Integration

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill Lecture Notes omplex Analysis based on omplex Variables and Applications 7th Edition Brown and hurchhill Yvette Fajardo-Lim, Ph.D. Department of Mathematics De La Salle University - Manila 2 ontents THE

More information

Complex Function. Chapter Complex Number. Contents

Complex Function. Chapter Complex Number. Contents Chapter 6 Complex Function Contents 6. Complex Number 3 6.2 Elementary Functions 6.3 Function of Complex Variables, Limit and Derivatives 3 6.4 Analytic Functions and Their Derivatives 8 6.5 Line Integral

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information

Solutions to Exercises 1.1

Solutions to Exercises 1.1 Section 1.1 Complex Numbers 1 Solutions to Exercises 1.1 1. We have So a 0 and b 1. 5. We have So a 3 and b 4. 9. We have i 0+ 1i. i +i because i i +i 1 {}}{ 4+4i + i 3+4i. 1 + i 3 7 i 1 3 3 + i 14 1 1

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep Complex Variables Notes for Math 703. Updated Fall 20 Anton R. Schep CHAPTER Holomorphic (or Analytic) Functions. Definitions and elementary properties In complex analysis we study functions f : S C,

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos Solutions to Selected Exercises in Complex Analysis with Applications by N. Asmar and L. Grafakos Section. Complex Numbers Solutions to Exercises.. We have i + i. So a and b. 5. We have So a 3 and b 4.

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems Based on lectures by I. Smith Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Complex Variables. Cathal Ormond

Complex Variables. Cathal Ormond Complex Variables Cathal Ormond Contents 1 Introduction 3 1.1 Definition: Polar Form.............................. 3 1.2 Definition: Length................................ 3 1.3 Definitions.....................................

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers.

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers. Complex Analysis Sketches of Solutions to Selected Exercises Homework 2..a ( 2 i) i( 2i) = 2 i i + i 2 2 = 2 i i 2 = 2i 2..b (2, 3)( 2, ) = (2( 2) ( 3), 2() + ( 3)( 2)) = (, 8) 2.2.a Re(iz) = Re(i(x +

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Solution for Final Review Problems 1

Solution for Final Review Problems 1 Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Selected Solutions To Problems in Complex Analysis

Selected Solutions To Problems in Complex Analysis Selected Solutions To Problems in Complex Analysis E. Chernysh November 3, 6 Contents Page 8 Problem................................... Problem 4................................... Problem 5...................................

More information

18.04 Practice problems exam 1, Spring 2018 Solutions

18.04 Practice problems exam 1, Spring 2018 Solutions 8.4 Practice problems exam, Spring 8 Solutions Problem. omplex arithmetic (a) Find the real and imaginary part of z + z. (b) Solve z 4 i =. (c) Find all possible values of i. (d) Express cos(4x) in terms

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

Solutions to Tutorial for Week 3

Solutions to Tutorial for Week 3 The University of Sydney School of Mathematics and Statistics Solutions to Tutorial for Week 3 MATH9/93: Calculus of One Variable (Advanced) Semester, 08 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b Comple Analysis Parametric interval Curve 0 t z(t) ) 0 t α 0 t ( t α z α ( ) t a a t a+α 0 t a α z α 0 t a α z = z(t) γ a t b z = z( t) γ b t a = (γ, γ,..., γ n, γ n ) a t b = ( γ n, γ n,..., γ, γ ) b

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. hapter 3 The Residue Theorem Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. - Winston hurchill 3. The Residue Theorem We will find that many

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

1 Complex Numbers. 1.1 Sums and Products

1 Complex Numbers. 1.1 Sums and Products 1 Complex Numbers 1.1 Sums Products Definition: The complex plane, denoted C is the set of all ordered pairs (x, y) with x, y R, where Re z = x is called the real part Imz = y is called the imaginary part.

More information

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u =

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u = Homework -5 Solutions Problems (a) z = + 0i, (b) z = 7 + 24i 2 f(z) = u(x, y) + iv(x, y) with u(x, y) = e 2y cos(2x) and v(x, y) = e 2y sin(2x) u (a) To show f(z) is analytic, explicitly evaluate partials,,

More information

COMPLEX ANALYSIS MARCO M. PELOSO

COMPLEX ANALYSIS MARCO M. PELOSO COMPLEX ANALYSIS MARCO M. PELOSO Contents. Holomorphic functions.. The complex numbers and power series.2. Holomorphic functions 3.3. The Riemann sphere 7.4. Exercises 8 2. Complex integration and Cauchy

More information

u = 0; thus v = 0 (and v = 0). Consequently,

u = 0; thus v = 0 (and v = 0). Consequently, MAT40 - MANDATORY ASSIGNMENT #, FALL 00; FASIT REMINDER: The assignment must be handed in before 4:30 on Thursday October 8 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus,

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

2. Complex Analytic Functions

2. Complex Analytic Functions 2. Complex Analytic Functions John Douglas Moore July 6, 2011 Recall that if A and B are sets, a function f : A B is a rule which assigns to each element a A a unique element f(a) B. In this course, we

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 67 Outline

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

III.2. Analytic Functions

III.2. Analytic Functions III.2. Analytic Functions 1 III.2. Analytic Functions Recall. When you hear analytic function, think power series representation! Definition. If G is an open set in C and f : G C, then f is differentiable

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Mathematics 32 omplex Analysis I Lecture Notes Fall 22 Michael Kozdron kozdron@stat.math.uregina.ca http://stat.math.uregina.ca/ kozdron List of Lectures Lecture #: Introduction to

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

ECM3703: Complex Analysis

ECM3703: Complex Analysis ECM373: Complex Analysis April 5, 23 Module Convener: Dr. Robin Chapman Transcriber: Oliver Bond Contents Review of Complex Numbers 3. Basics................................................... 3.2 Argand

More information

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

More information

Complex Analysis. sin(z) = eiz e iz 2i

Complex Analysis. sin(z) = eiz e iz 2i Complex Analysis. Preliminaries and Notation For a complex number z = x + iy, we set x = Re z and y = Im z, its real and imaginary components. Any nonzero complex number z = x + iy can be written uniquely

More information

Chapter II. Complex Variables

Chapter II. Complex Variables hapter II. omplex Variables Dates: October 2, 4, 7, 2002. These three lectures will cover the following sections of the text book by Keener. 6.1. omplex valued functions and branch cuts; 6.2.1. Differentiation

More information

MATH COMPLEX ANALYSIS. Contents

MATH COMPLEX ANALYSIS. Contents MATH 3964 - OMPLEX ANALYSIS ANDREW TULLOH AND GILES GARDAM ontents 1. ontour Integration and auchy s Theorem 2 1.1. Analytic functions 2 1.2. ontour integration 3 1.3. auchy s theorem and extensions 3

More information

MATH Complex Analysis. Charles Walkden

MATH Complex Analysis. Charles Walkden MATH200 Complex Analysis Charles Walkden 9 th September, 206 MATH200 Complex Analysis Contents Contents 0 Preliminaries 2 Introduction 4 2 Limits and differentiation in the complex plane and the Cauchy-Riemann

More information

MATH FINAL SOLUTION

MATH FINAL SOLUTION MATH 185-4 FINAL SOLUTION 1. (8 points) Determine whether the following statements are true of false, no justification is required. (1) (1 point) Let D be a domain and let u,v : D R be two harmonic functions,

More information

Part IB. Complex Methods. Year

Part IB. Complex Methods. Year Part IB Year 218 217 216 215 214 213 212 211 21 29 28 27 26 25 24 23 22 21 218 Paper 1, Section I 2A Complex Analysis or 7 (a) Show that w = log(z) is a conformal mapping from the right half z-plane, Re(z)

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Faculteit Wiskunde en Informatica

Faculteit Wiskunde en Informatica Faculteit Wiskunde en Informatica Lecture notes for courses on Complex Analysis, Fourier Analysis and Asymptotic Analysis of Integrals S.W. Rienstra Originally based on the lecture notes for complex function

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

4 Uniform convergence

4 Uniform convergence 4 Uniform convergence In the last few sections we have seen several functions which have been defined via series or integrals. We now want to develop tools that will allow us to show that these functions

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

Complex Homework Summer 2014

Complex Homework Summer 2014 omplex Homework Summer 24 Based on Brown hurchill 7th Edition June 2, 24 ontents hw, omplex Arithmetic, onjugates, Polar Form 2 2 hw2 nth roots, Domains, Functions 2 3 hw3 Images, Transformations 3 4 hw4

More information

Math 423/823 Exam 1 Topics Covered

Math 423/823 Exam 1 Topics Covered Math 423/823 Exam 1 Topics Covered Complex numbers: C: z = x+yi, where i 2 = 1; addition and multiplication behaves like reals. Formally, x + yi (x,y), with (x,y) + (a,b) = (x + a,y + b) and (x,y)(a,b)

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1 MATH 85: COMPLEX ANALYSIS FALL 2009/0 PROBLEM SET 9 SOLUTIONS. Consider the functions defined y g a (z) = eiπz/2 e iπz/2 + Show that g a maps the set to D(0, ) while g maps the set and g (z) = eπz/2 e

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

MA 412 Complex Analysis Final Exam

MA 412 Complex Analysis Final Exam MA 4 Complex Analysis Final Exam Summer II Session, August 9, 00.. Find all the values of ( 8i) /3. Sketch the solutions. Answer: We start by writing 8i in polar form and then we ll compute the cubic root:

More information

Part IB Complex Methods

Part IB Complex Methods Part IB Complex Methods Based on lectures by R. E. Hunt Notes taken by Dexter Chua Lent 26 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i. . 5(b). (Problem) Show that z n = z n and z n = z n for n =,,... (b) Use polar form, i.e. let z = re iθ, then z n = r n = z n. Note e iθ = cos θ + i sin θ =. 9.(Problem) Evaluate each of the following,

More information

EE2007: Engineering Mathematics II Complex Analysis

EE2007: Engineering Mathematics II Complex Analysis EE2007: Engineering Mathematics II omplex Analysis Ling KV School of EEE, NTU ekvling@ntu.edu.sg V4.2: Ling KV, August 6, 2006 V4.1: Ling KV, Jul 2005 EE2007 V4.0: Ling KV, Jan 2005, EE2007 V3.1: Ling

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki Page 48, Problem. Complex Analysis for Applications, Math 3/, Home Work Solutions-II Masamichi Takesaki Γ Γ Γ 0 Page 9, Problem. If two contours Γ 0 and Γ are respectively shrunkable to single points in

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Comple Analsis II Lecture Notes Part I Chapter 1 Preliminar results/review of Comple Analsis I These are more detailed notes for the results

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution.

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution. M 74 An introduction to Complex Numbers. 1 Solving equations Throughout the calculus sequence we have limited our discussion to real valued solutions to equations. We know the equation x 1 = 0 has distinct

More information

Assignment 2 - Complex Analysis

Assignment 2 - Complex Analysis Assignment 2 - Complex Analysis MATH 440/508 M.P. Lamoureux Sketch of solutions. Γ z dz = Γ (x iy)(dx + idy) = (xdx + ydy) + i Γ Γ ( ydx + xdy) = (/2)(x 2 + y 2 ) endpoints + i [( / y) y ( / x)x]dxdy interiorγ

More information

MATH Complex Analysis. Charles Walkden

MATH Complex Analysis. Charles Walkden MATH200 Complex Analysis Charles Walkden 9 th January, 208 MATH200 Complex Analysis Contents Contents 0 Preliminaries 2 Introduction 5 2 Limits and differentiation in the complex plane and the Cauchy-Riemann

More information

Complex Analysis review notes for weeks 1-6

Complex Analysis review notes for weeks 1-6 Complex Analysis review notes for weeks -6 Peter Milley Semester 2, 2007 In what follows, unless stated otherwise a domain is a connected open set. Generally we do not include the boundary of the set,

More information

Complex Analysis Important Concepts

Complex Analysis Important Concepts Complex Analysis Important Concepts Travis Askham April 1, 2012 Contents 1 Complex Differentiation 2 1.1 Definition and Characterization.............................. 2 1.2 Examples..........................................

More information

III. Consequences of Cauchy s Theorem

III. Consequences of Cauchy s Theorem MTH6 Complex Analysis 2009-0 Lecture Notes c Shaun Bullett 2009 III. Consequences of Cauchy s Theorem. Cauchy s formulae. Cauchy s Integral Formula Let f be holomorphic on and everywhere inside a simple

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

Functions 45. Integrals, and Contours 55

Functions 45. Integrals, and Contours 55 MATH 43 COMPLEX ANALYSIS TRISTAN PHILLIPS These are notes from an introduction to complex analysis at the undergraduate level as taught by Paul Taylor at Shippensburg University during the Fall 26 semester.

More information

NOTES FOR 18.04, Spring 2017

NOTES FOR 18.04, Spring 2017 NOTES FOR 8.04, Spring 207 0 8.04 course introduction 0. Brief course description Jeremy Orloff omplex analysis is a beautiful, tightly integrated subject. It revolves around complex analytic functions.

More information

Evaluation of integrals

Evaluation of integrals Evaluation of certain contour integrals: Type I Type I: Integrals of the form 2π F (cos θ, sin θ) dθ If we take z = e iθ, then cos θ = 1 (z + 1 ), sin θ = 1 (z 1 dz ) and dθ = 2 z 2i z iz. Substituting

More information