Description Features of Metals Dynamics at Solid and Liquid States with Phase Transitions at Intensive Pulsed Flows Impact

Size: px
Start display at page:

Download "Description Features of Metals Dynamics at Solid and Liquid States with Phase Transitions at Intensive Pulsed Flows Impact"

Transcription

1 N.B. Volkov, E.A. Chingina Description Features of Metals Dynamics at Solid and Liquid States with Phase Transitions at Intensive Pulsed Flows Impact Institute of Electrophysics UB RAS Amundsen street 106, Yekaterinburg, , Russia The work is carried out under partial financial support of the RFBR (project No a, project No mol_a) and FASO within the Presidium of Russian Academy of Sciences fundamental research program (UB RAS project No.12-P-1005, state registration No ).

2 Outline 1. Motivation; 2. Model; 3. Solid metal; 4. Liquid metal; 5. Some reasons; 6. Conclusion; 7. Future work.

3 Motivation The ultra-fast intense processes simulation within mechanics and electrodynamics of continuum media at local thermodynamic equilibrium requires equations of matter states and electronic transport coefficients for its determination. This coefficients are defined by charged particles scattering on density fluctuations, which within long-wave approximation are dependent of isothermal compressibility, i.e. equations of states for matter.

4 From [T. Iida and R.I.L. Guthrie // The physical properties of liquid metals. Oxford: Clarendon Press, 1988]

5 According to J.I. Frenkel and H. Eyring any liquid has a short-range quasi-crystal order in the vicinity of melt curve. Jakov Il ich Frenkel Henri Eyring January 29, 1894 January 23, 1952 February 20, 1901 December 26, 1981

6 John Michael Ziman (May 16, 1925 January 2, 2005) According to Ziman any liquid has topologically disordered structure!

7 Examples of the topological disorder Fig. 2.1 from Models of Disorder by J.M. Ziman a lattice order; b topological disorder; c continual disorder. a b c Fig. 2.5 from Models of Disorder by J.M. Ziman A hot crystal is not topologically disordered!

8 a Fig from Models of Disorder by J.M. Ziman The topological disorder (a) in liquids always can be presented as crystal including a great number of strongly coupled dislocations (b). However the representation is ambiguous (c). b c

9 A model of the liquid disorder according to A.I. Gubanov [A Quantum-Electron Theory of Amorphous Semiconductors. M.: USSR Academy of Science Press, 1963] and A.Z. Patashinskii and B.I. Shumilo. [Theory of condensed matter based on the hypothesis of a local crystalline order. // Sov. Phys. JETP, V. 62. No. 1. P. 177.]: Fig from Models of Disorder by J.M. Ziman

10 According to Bernal any liquid has the statistically distributed densely packed structure. In other words the liquid represents an amorphous solid with the greatest possible density. John Desmond Bernal (May 10, September 15, 1971)

11 According to A.S. Bakai the amorphous solids received at fast cooling of liquids have a poly-cluster short-range order. The polycrystalline short-range order is a special case of the poly-cluster one. A. S. Bakai, academician of the NANU September 16, 1938

12 From [T. Iida and R.I.L. Guthrie // The physical properties of liquid metals. Oxford: Clarendon Press, 1988]

13 From [T. Iida and R.I.L. Guthrie // The physical properties of liquid metals. Oxford: Clarendon Press, 1988]

14 From [T. Iida and R.I.L. Guthrie // The physical properties of liquid metals. Oxford: Clarendon Press, 1988]

15 From [T. Iida and R.I.L. Guthrie // The physical properties of liquid metals. Oxford: Clarendon Press, 1988]

16 From [T. Iida and R.I.L. Guthrie // The physical properties of liquid metals. Oxford: Clarendon Press, 1988]

17 1. On the basis of the analysis of the radial distribution functions submitted above it is possible to assert, that clusters with the short-range order have radiuses about 1-2 nanometers! 2. Cluster symmetry differs from symmetry of a crystal lattice near to the melting curve. Symmetry difference affects, basically, in an oscillatory spectrum of clusters. HOWEVER, a thermal capacity of liquid and solid metal on a melting curve is equal to 3kT/MA. Therefore the cluster oscillatory spectrum can be described as a spectrum of the Debye model, or - the Einstein model, or, that is much more exact, - superposition of spectra of these models. 3. The electron density of liquid and solid metal on the melting curve is unaffected, the fact confirmed by Knight shift registration experiments. An electrical conductivity change during melting is connected first of all with variations of the structure factor S (q). 4. It is possible, according to J.I. Frenkel, to suppose, that melting occurs as a result of a lattice stability loss due to the avalanche-like growth of the point defects, i.e. vacancies and Frenkel pairs («vacancy - interstitial atom»), near to the melting curve. Thus the free volume is concentrated in the intercluster domains with the gas disorder.

18 Solid metal model Free energy: F ( VT, ) = ε ( V) + F ( VT, ) + F ( VT, ), s π sl se ε ( V ) F ( VT, ) π sl Were cold energy; F ( VT, ) se - a thermal excitation of electrons. 13 ( 1 ) a thermal excitation of the lattice; 1 η δ 13 1 aδ bδ επ ( δ ) 1 α exp exp η α ( 1 δ ) + + =Λ α 1 α 1+ a+ b 1/3 2/3 Constants a and b we find from the requirement of agreement with the Thomas - Fermi model with quantum and exchange corrections..

19 Free energy of the lattice: 3 9 k T k T T T 3 k Ts * T 0 1 F ( V, T D B ) B 3 ln 1 exp D D D B D = + 1. sl 8 MA MA T T 4 MA T 2 D th 2 T D 2T 1 1 β z 3 2 (, ) 0 V Free energy of the electron thermal excitations: F VT = c T 2. se e 2 z V e c0 0 1 I.S. Grigoriev, E.Z. Meylikhov. Physical Data. Handbook. Moscow: Energoatomizdat, V.E. Zinoviev. Standard Handbook of Properties: Metals at High Temperatures. New York: CRC Press, L.A. Novitskii, I.G. Kozhevnikov. Thermophysical Properties of Metals at Low Temperatures. Moscow: Mashinostroyenie, 1975.

20 1. A.A. Bakanova, I.P. Dudoladov, R.F. Trunin. // Sov. Phys. Solid state, 7, 1307 (1965). 2. S.P. March (Ed.) LASL Shock Hugoniot Data. Berkeley: California University Press, L.V. Al tshuler. // Sov. Phys. Uspekhi, 8, 52 (1965). 4. M.H. Rice. // J. Phys. Chem. Solids, 26, 483 (1965). 5. Cross-cup points of shock adiabats with calculated melting curves. Comparison of calculated and experimental Hugoniot adiabatic curves for Pb, Na and Cs

21 Free energy: were Liquid metal ( ) F = c F( VT, ) + 1 c F( VT, ) + F ( VT, ), L cl cl cl g Te V 9 kt cl cl kt T T ccl =, F ( V, T) = ε ( V) + + 3ln 1 exp cl D cl V cl π 8 MA MA T T 3k T T 3 B cl * cl0 1 kt 1 c ϕ cl ( cs ) MA 1 ln 1 ξ exp, 4MA T 2 2 T + MA c cl cl kt cl th 2T kt Fg = 1+ ln VMA, c = or ζλ MA 3 2 MAkT ζ cclλ ϕ 2 ( cl) 2π 1 ccl H. Eyring is the energy spent on formation of free volume at melting.

22 1. Constants ξζ,, Tcl* we find from a condition of equality of volume and entropy jumps on melting curve at normal pressure to experimental values. 2. The melting curve at pressure exceeding normal we find according to the following algorithm: By Lindeman criterion we estimate a melting temperature T m at given P. Afterwards we find phase densities Vsm, VLm. We check correctness of performance of equality of the Gibbs potentials for solid and liquid phases μs ( Tm, Vsm) = μ( Tm, VLm). If the equality is not fulfilled, we change T m and then repeat the procedure until this equality can be satisfied with given accuracy. We calculate the jump of entropy and then shift to new pressure value. 3. Equilibrium values of ccl, V and T outside the melting curve we find from the minimum of the Gibbs potential.

23 The melting curves for Na: 1 experimental points from [E. Gregoryanz et al. Phys. Rev. Lett., V. 94. A. no ]; 2 experimental points from [C.S. Zha, R. Boehler. Phys. Rev. B, V. 31. P ]; 3 our calculation on the two-phase equation of state (EOS); 4 our calculation on the one-phase EOS with using the Lindeman criterion; 5 the shock adiabatic curve calculated by us on the one-phase EOS.

24 a b The jumps of volume (a) and entropy (b) at the sodium melting: 1 our calculation on the two-phase EOS; 2 the experimental estimates from Stishov review [S.M. Stishov. Soviet Phys. Usp., V. 17. No. 5. P. 625.]

25 aα ()( t α = 1,2,3) β β a = N ( β = 1,2,3) N g β (,) r t = β a dr is the lattice translation vector; is a vector of the reciprocal lattice; is an integer coordinate measured in units of translation vectors; αβ α β = aa, g = aa are the invariant metric tensors of lattice; αβ α β ( αβ ) ε = ε g + ε f + ε f is the internal energy of solid metal; s l p p e e Some reasons An equilibrium relation for the diamond anvil: ( ) αβ αβ αβ ( Σ) i k ( l) ( p) ( e) α β i k Π ik = σ + λ p + λ e i k εl = nn 2 f f a a nn P.

26 The future work is aimed at: search of the most adequate description of the cluster oscillatory spectrum and the energy spent on formation of free volume at melting; calculation of shock adiabatic curves and thermo physical characteristics for liquid metals; calculation of the structural factor and electronic transport coefficients within the framework of plasma model for metal.

27 Many Thanks for Your Attention!!!

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

QUANTUM MECHANICAL THEORY OF THE EQUATION OF STATE FOR POTASSIUM, ALUMINUM, AND IRON

QUANTUM MECHANICAL THEORY OF THE EQUATION OF STATE FOR POTASSIUM, ALUMINUM, AND IRON SOVIET PHYSICS JETP VOLUME 24, NUMBER 1 JANUARY, 1967 QUANTUM MECHANICAL THEORY OF THE EQUATION OF STATE FOR POTASSIUM, ALUMINUM, AND IRON G. M. GANDEL'MAN Submitted to JETP editor February 28, 1966 J.

More information

arxiv: v1 [cond-mat.soft] 7 Jul 2017

arxiv: v1 [cond-mat.soft] 7 Jul 2017 Supercritical Grüneisen parameter and its universality at the Frenkel line L. Wang, M. T. Dove, and K. Trachenko School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1

More information

Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry

Imry-Ma disordered state induced by defects of random local anisotropy type in the system with O(n) symmetry 1 Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry A.A. Berzin 1, A.I. Morosov 2, and A.S. Sigov 1 1 Moscow Technological University (MIREA),

More information

Isotope effect in the thermal conductivity of germanium single crystals

Isotope effect in the thermal conductivity of germanium single crystals Isotope effect in the thermal conductivity of germanium single crystals V. I. Ozhogin, A. V. Inyushkin, A. N. Taldenkov, A. V. Tikhomirov, and G. É. Popov Institute of Molecular Physics, Kurchatov Institute,

More information

SPECTRAL AND THERMODYNAMIC PROPERTIES OF CHOLESTERYL MYRISTATE IN THE REGION OF PHASE TRANSITION

SPECTRAL AND THERMODYNAMIC PROPERTIES OF CHOLESTERYL MYRISTATE IN THE REGION OF PHASE TRANSITION SPECTRAL AND THERMODYNAMIC PROPERTIES OF CHOLESTERYL MYRISTATE IN THE REGION OF PHASE TRANSITION V. DANCHUK 1, A. KRAVCHUK 1, G. PUCHKOVSKA 2, A. YAKUBOV 3 1 National Transport University, 1 Suvorova str.,

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

PHASE TRANSITION IN SIMPLEST PLASMA MODELS

PHASE TRANSITION IN SIMPLEST PLASMA MODELS PHASE TRANSITION IN SIMPLEST PLASMA MODELS I.L. Iosilevski, A.Yu. Chigvintsev Moscow Institute of Physics and Technology (Dolgoprudny, Moscow Region, 141700, USSR) The well-known simplest plasma model

More information

The Super Fragment Separator of FAIR. Future Research Work and Education in Theoretical and Experimental Physics

The Super Fragment Separator of FAIR. Future Research Work and Education in Theoretical and Experimental Physics The Super Fragment Separator of FAIR. Future Research Work and Education in Theoretical and Experimental Physics C.-V. Meister Technische Universität Darmstadt The Fragment Separator at GSI (Photo: A.

More information

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry Crystals Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 1, Statistical Thermodynamics, MC26P15, 5.1.216 If you find a mistake, kindly report it to the

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

Chapter 6. Heat capacity, enthalpy, & entropy

Chapter 6. Heat capacity, enthalpy, & entropy Chapter 6 Heat capacity, enthalpy, & entropy 1 6.1 Introduction In this lecture, we examine the heat capacity as a function of temperature, compute the enthalpy, entropy, and Gibbs free energy, as functions

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

MIT Amorphous Materials

MIT Amorphous Materials MIT 3.071 Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch. 16 Introduction to Glass Science and Technology

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter?

Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter? Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter? Kabir Ramola Martin Fisher School of Physics, Brandeis University August 19, 2016 Kabir Ramola Disordered

More information

Layered growth of a two-component crystal (theory)

Layered growth of a two-component crystal (theory) Layered growth of a two-component crystal (theory) E. A. Brener and S. V. Meshkov Institute of Solid State Physics, Academy of Sciences of the USSR (Submitted 28 August 1984) Zh. Eksp. Teor. Fiz. 88, 1300-1309

More information

Entropy of bcc L, fcc L, and fcc bcc Phase Transitions of Elemental Substances as Function of Transition Temperature

Entropy of bcc L, fcc L, and fcc bcc Phase Transitions of Elemental Substances as Function of Transition Temperature Doklady Physics, Vol. 45, No. 7, 2, pp. 311 316. ranslated from Doklady Akademii Nauk, Vol. 373, No. 3, 2, pp. 323 328. Original Russian ext Copyright 2 by Udovskiœ. PHYSICS Entropy of bcc, fcc, and fcc

More information

arxiv:cond-mat/ v2 7 Dec 1999

arxiv:cond-mat/ v2 7 Dec 1999 Molecular dynamics study of a classical two-dimensional electron system: Positional and orientational orders arxiv:cond-mat/9906213v2 7 Dec 1999 Satoru Muto 1, Hideo Aoki Department of Physics, University

More information

Elastic constants and the effect of strain on monovacancy concentration in fcc hard-sphere crystals

Elastic constants and the effect of strain on monovacancy concentration in fcc hard-sphere crystals PHYSICAL REVIEW B 70, 214113 (2004) Elastic constants and the effect of strain on monovacancy concentration in fcc hard-sphere crystals Sang Kyu Kwak and David A. Kofke Department of Chemical and Biological

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

TRIBUTE TO LEV GORKOV

TRIBUTE TO LEV GORKOV TRIBUTE TO LEV GORKOV 81 = 9 x 9 LANDAU S NOTEBOOK To solve the Problem of Critical Phenomena using Diagrammatics To find the level statistics in nuclei taking into account their mutual repulsion

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

Lecture #1 Introduction & Overview

Lecture #1 Introduction & Overview Al-Mustansiriyah University College of Sciences Physics Department. Year 4 Semester 1 Solid State Physics Lecture #1 Introduction & Overview Assistant Professor Dr. Osama Abdulazeez Dakhil Email: dr.osama@uomustansiriyah.edu.iq

More information

The Boguslawski Melting Model

The Boguslawski Melting Model World Journal of Condensed Matter Physics, 6, 6, 45-55 Published Online February 6 in SciRes. http://www.scirp.org/journal/wjcmp http://dx.doi.org/.46/wjcmp.6.67 The Boguslawski Melting Model Vladimir

More information

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of Chapter 4 The Effect of Elastic Softening and Cooperativity on the Fragility of Glass-Forming Metallic Liquids Key words: Amorphous metals, Shear transformation zones, Ultrasonic measurement, Compression

More information

Local and regular plasma oscillations in bulk donor type semiconductors

Local and regular plasma oscillations in bulk donor type semiconductors Local and regular plasma oscillations in bulk donor type semiconductors Yuri Kornyushin Maître Jean Brunschvig Research Unit, Chalet Shalva, Randogne, CH-3975 Abstract Restoring force acts on the electronic

More information

8 A Microscopic Approach to Entropy

8 A Microscopic Approach to Entropy 8 A Microscopic Approach to Entropy The thermodynamic approach www.xtremepapers.com Internal energy and enthalpy When energy is added to a body, its internal energy U increases by an amount ΔU. The energy

More information

Chapter 5 Phonons II Thermal Properties

Chapter 5 Phonons II Thermal Properties Chapter 5 Phonons II Thermal Properties Phonon Heat Capacity < n k,p > is the thermal equilibrium occupancy of phonon wavevector K and polarization p, Total energy at k B T, U = Σ Σ < n k,p > ħ k, p Plank

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

Stability analysis of graphite crystal lattice with moment interactions

Stability analysis of graphite crystal lattice with moment interactions Proc. of XXXIV Summer School "Advanced Problems in Mechanics", St.-Petersburg, Russia. 2007. (Accepted) Stability analysis of graphite crystal lattice with moment interactions Igor E. Berinskiy berigor@mail.ru

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 26 Nov 1999

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 26 Nov 1999 arxiv:cond-mat/9911407v2 [cond-mat.mtrl-sci] 26 Nov 1999 Equations of state for solids at high pressures and temperatures from shock-wave data Valentin Gospodinov Bulgarian Academy of Sciences, Space Research

More information

Downloaded from

Downloaded from THERMODYNAMICS Thermodynamics: is the branch of science which deals with deals with the study of different forms of energy and the quantitative relationship between them. Significance of Thermodynamics:

More information

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4 Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas Partition function?!?! Thermodynamic limit 4211 Statistical Mechanics 1 Week 4 4.1.2 Phase diagrams p S S+L S+G L S+G L+G G G T p solid triple

More information

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM 13 CHAPER SPONANEOUS PROCESSES AND HERMODYNAMIC EQUILIBRIUM 13.1 he Nature of Spontaneous Processes 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 13.3 Entropy and Heat: Macroscopic

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

1. Liquid Wall Ablation 2. FLiBe Properties

1. Liquid Wall Ablation 2. FLiBe Properties 1. Liquid Wall Ablation 2. FLiBe Properties A. R. Raffray and M. Zaghloul University of California, San Diego ARIES-IFE Meeting Princeton Plasma Physics Laboratory Princeton, New Jersey October 2-4, 2002

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Oriented single crystal photocathodes: A route to high-quality electron pulses. W. Andreas Schroeder. Benjamin L. Rickman and Tuo Li

Oriented single crystal photocathodes: A route to high-quality electron pulses. W. Andreas Schroeder. Benjamin L. Rickman and Tuo Li Femtosecond Electron Imaging and Spectroscopy (FEIS-2) 2015 Lansing, Michigan, May 6-9, 2015. Oriented single crystal photocathodes: A route to high-quality electron pulses W. Andreas Schroeder Benjamin

More information

Melting of Li, K, Rb and Cs at high pressure

Melting of Li, K, Rb and Cs at high pressure Melting of Li, K, Rb and Cs at high pressure R N Singh and S Arafin Abstract Lindemann s melting law has been used to develop analytical expression to determine the pressure (P) dependence of the melting

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

6 Kosterlitz Thouless transition in 4 He thin films

6 Kosterlitz Thouless transition in 4 He thin films 6 Kosterlitz Thouless transition in 4 He thin films J.M. Kosterlitz and D.J. Thouless, Phys. 5, L124 (1972); ibid. 6, 1181 (1973) Topological phase transitions associated with: 1. dislocation-pair unbinding

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Abhishek Mukherjee University of Illinois at Urbana-Champaign Work done with : Vijay Pandharipande, Gordon Baym, Geoff Ravenhall, Jaime Morales and Bob Wiringa National Nuclear

More information

AR-7781 (Physical Chemistry)

AR-7781 (Physical Chemistry) Model Answer: B.Sc-VI th Semester-CBT-602 AR-7781 (Physical Chemistry) One Mark Questions: 1. Write a nuclear reaction for following Bethe s notation? 35 Cl(n, p) 35 S Answer: 35 17Cl + 1 1H + 35 16S 2.

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

1. ADR General Description

1. ADR General Description 1. ADR General Description 1.1. Principle of Magnetic Cooling A cooling process may be regarded as an entropy reducing process. Since entropy (or degree of disorder) of a system at constant volume or constant

More information

Point Defects in Hard-Sphere Crystals

Point Defects in Hard-Sphere Crystals 6722 J. Phys. Chem. B 2001, 105, 6722-6727 Point Defects in Hard-Sphere Crystals Sander Pronk and Daan Frenkel* FOM Institute for Atomic and Molecular Physics, Kruislaan 407 1098 SJ Amsterdam, The Netherlands

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Excess Entropy, Diffusion Coefficient, Viscosity Coefficient and Surface Tension of Liquid Simple Metals from Diffraction Data

Excess Entropy, Diffusion Coefficient, Viscosity Coefficient and Surface Tension of Liquid Simple Metals from Diffraction Data Materials Transactions, Vol. 43, No. 1 (2002) pp. 67 to 72 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Excess Entropy, Diffusion Coefficient, Viscosity Coefficient and Surface Tension

More information

arxiv: v1 [cond-mat.other] 11 Sep 2008

arxiv: v1 [cond-mat.other] 11 Sep 2008 arxiv:0809.1990v1 [cond-mat.other] 11 Sep 2008 Momentum deficit in quantum glasses A.F. Andreev Kapitza Institute for Physical Problems, Russian Academy of Sciences, Kosygin Str. 2, Moscow, 119334 Russia

More information

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN UNIVERSITY OF LONDON BSc and MSci EXAMINATION 005 For Internal Students of Royal Holloway DO NOT UNTIL TOLD TO BEGIN PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS

More information

2. Surface geometric and electronic structure: a primer

2. Surface geometric and electronic structure: a primer 2. Surface geometric and electronic structure: a primer 2.1 Surface crystallography 2.1.1. Crystal structures - A crystal structure is made up of two basic elements: lattice + basis Basis: Lattice: simplest

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Topics to discuss...

Topics to discuss... MME 467: Ceramics for Advanced Applications Lecture 18 Defects in Ceramics 2 Ref: Barsoum, Fundamentals of Ceramics, Ch6, McGraw-Hill, 2000 Prof. A. K. M. B. Rashid Department of MME, BUET, Dhaka Topics

More information

Supersolidity of excitons

Supersolidity of excitons Supersolidity of excitons Michał Matuszewski Institute of Physics, Polish Academy of Sciences, Warsaw Thomas R. Taylor and Alexey V. Kavokin University of Southampton, UK ISNP 2012, Phuket Outline 1. What

More information

Competition between face-centered cubic and icosahedral cluster structures

Competition between face-centered cubic and icosahedral cluster structures Competition between face-centered cubic and icosahedral cluster structures R. S. Berry University of Chicago, Chicago, IL 60637, USA B. M. Smyrnov, and A. Yu. Strizhev High-Temperatures Institute, Russian

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

Superfluids in Flatland

Superfluids in Flatland Superfluids in Flatland Topology, Defects, and the 2016 Nobel Prize in Physics Sid Parameswaran Saturday Mornings of Theoretical Physics Oxford, October 28, 2017 Image Credit: Wikipedia Superfluids in

More information

PLASMA PHASE TRANSITION IN THE WARM DENSE HYDROGEN

PLASMA PHASE TRANSITION IN THE WARM DENSE HYDROGEN the Seventh International EMMI Workshop on Plasma Physics with Intense Heavy Ion and Laser Beams at FAIR PLASMA PHASE TRANSITION IN THE WARM DENSE HYDROGEN G.E. Norman I.M. Saitov V.V. Stegailov December

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 1-1 Lecture 1 - Electrons, Photons and Phonons Contents: September 4, 2002 1. Electronic structure of semiconductors 2. Electron statistics

More information

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State 23 Bulletin of Research Center for Computing and Multimedia Studies, Hosei University, 28 (2014) Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State Yosuke

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

HELICAL SPIN STRUCTURES IN c-axis Dy/V SUPERLATTICE* Μ. SΕROCZΥŃSKA AND J. KOCIŃSKI

HELICAL SPIN STRUCTURES IN c-axis Dy/V SUPERLATTICE* Μ. SΕROCZΥŃSKA AND J. KOCIŃSKI Vol. 89 (1996) ACTA PHYSICA POLONICA A No. 1 HELICAL SPIN STRUCTURES IN c-axis Dy/V SUPERLATTICE* Μ. SΕROCZΥŃSKA AND J. KOCIŃSKI Warsaw University of Technology, Institute of Physics Koszykowa 75, 00-662

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

SIMULATION OF DOUBLE-PULSE LASER ABLATION OF METALS

SIMULATION OF DOUBLE-PULSE LASER ABLATION OF METALS SIMULATION OF DOUBLE-PULSE LASER ABLATION OF METALS M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures, RAS, Moscow, Russia povar@ihed.ras.ru T. Itina Laboratoire Hubert

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

arxiv: v1 [cond-mat.soft] 20 Jun 2008

arxiv: v1 [cond-mat.soft] 20 Jun 2008 Accurate determination of crystal structures based on averaged local bond order parameters Wolfgang Lechner and Christoph Dellago Faculty of hysics, University of Vienna, Boltzmanngasse, 19 Vienna, Austria

More information

Thermally Activated Processes

Thermally Activated Processes General Description of Activated Process: 1 Diffusion: 2 Diffusion: Temperature Plays a significant role in diffusion Temperature is not the driving force. Remember: DRIVING FORCE GRADIENT of a FIELD VARIALE

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

ELECTRODYNAMICS OF CONTINUOUS MEDIA

ELECTRODYNAMICS OF CONTINUOUS MEDIA ELECTRODYNAMICS OF CONTINUOUS MEDIA by L. D. LANDAU and E. M. LIFSHITZ Institute of Physical Problems, USSR Academy of Sciences Volume 8 of Course of Theoretical Physics Translated from the Russian by

More information

Investigations of the effects of 7 TeV proton beams on LHC collimator materials and other materials to be used in the LHC

Investigations of the effects of 7 TeV proton beams on LHC collimator materials and other materials to be used in the LHC Russian Research Center Kurchatov Institute Investigations of the effects of 7 ev proton beams on LHC collimator materials and other materials to be used in the LHC A.I.Ryazanov Aims of Investigations:

More information

MOLECULAR DYNAMICS CALCULATION OF SURFACE TENSION USING THE EMBEDDED ATOM MODEL

MOLECULAR DYNAMICS CALCULATION OF SURFACE TENSION USING THE EMBEDDED ATOM MODEL MOLECULAR DYNAMICS CALCULATION OF SURFACE TENSION USING THE EMBEDDED ATOM MODEL David Belashchenko & N. Kravchunovskaya Moscow Steel and Alloys Institute, Russian Federation Oleg Ostrovski University of

More information

Micro-canonical ensemble model of particles obeying Bose-Einstein and Fermi-Dirac statistics

Micro-canonical ensemble model of particles obeying Bose-Einstein and Fermi-Dirac statistics Indian Journal o Pure & Applied Physics Vol. 4, October 004, pp. 749-757 Micro-canonical ensemble model o particles obeying Bose-Einstein and Fermi-Dirac statistics Y K Ayodo, K M Khanna & T W Sakwa Department

More information

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Quantum heat engine using energy quantization in potential barrier

Quantum heat engine using energy quantization in potential barrier Quantum heat engine using energy quantization in potential barrier Sibasish Ghosh Optics and Quantum Information Group The Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai 600113. [In

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information

On correlation lengths of thermal electromagnetic fields in equilibrium and out of equilibrium conditions

On correlation lengths of thermal electromagnetic fields in equilibrium and out of equilibrium conditions On elation lengths of thermal electromagnetic fields in uilibrium and out of uilibrium conditions Illarion Dorofeyev Institute for Physics of Microstructures Russian Academy of Sciences, GSP-5, Nizhny

More information

Chapter 1. Crystal structure. 1.1 Crystal lattices

Chapter 1. Crystal structure. 1.1 Crystal lattices Chapter 1 Crystal structure 1.1 Crystal lattices We will concentrate as stated in the introduction, on perfect crystals, i.e. on arrays of atoms, where a given arrangement is repeated forming a periodic

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

PHYS First Midterm SOLUTIONS

PHYS First Midterm SOLUTIONS PHYS 430 - First Midterm SOLUIONS 1. Comment on the following concepts (Just writing equations will not gain you any points): (3 points each, 21 points total) (a) Negative emperatures emperature is a measure

More information

21 Lecture 21: Ideal quantum gases II

21 Lecture 21: Ideal quantum gases II 2. LECTURE 2: IDEAL QUANTUM GASES II 25 2 Lecture 2: Ideal quantum gases II Summary Elementary low temperature behaviors of non-interacting particle systems are discussed. We will guess low temperature

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

The role of specific cations and water entropy on the stability of branched DNA motif structures

The role of specific cations and water entropy on the stability of branched DNA motif structures The role of specific cations and water entropy on the stability of branched DNA motif structures Tod A Pascal, William A Goddard III, Prabal K Maiti and Nagarajan Vaidehi 1. Figures Supporting Information

More information

Equations of State of Al, Au, Cu, Pt, Ta, and W and Revised Ruby Pressure Scale 1

Equations of State of Al, Au, Cu, Pt, Ta, and W and Revised Ruby Pressure Scale 1 ISSN 8-334X, Doklady Earth Sciences, 6, Vol. 4, No. 7, pp. 9 95. leiades ublishing, Inc., 6. ublished in Russian in Doklady Akademii Nauk, 6, Vol. 4, No., pp. 39 43. GEOHEMISTRY Equations of State of Al,

More information

Tutorial on rate constants and reorganization energies

Tutorial on rate constants and reorganization energies www.elsevier.nl/locate/jelechem Journal of Electroanalytical Chemistry 483 (2000) 2 6 Tutorial on rate constants reorganization energies R.A. Marcus * Noyes Laboratory of Chemical Physics, MC 127-72, California

More information

Ginzburg-Landau theory of supercondutivity

Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of superconductivity Let us apply the above to superconductivity. Our starting point is the free energy functional Z F[Ψ] = d d x [F(Ψ)

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

3- APPROXIMATIONS USED IN THE THEORY OF LATTICE DYNAMICS

3- APPROXIMATIONS USED IN THE THEORY OF LATTICE DYNAMICS 45 3- APPROXIMATIONS USED IN THE THEORY OF LATTICE DYNAMICS 3.1 INTRODUCTION:- The theoretical and experimental study of lattice dynamical problem has been of interest to physicists for understanding the

More information

Physics 119A Final Examination

Physics 119A Final Examination First letter of last name Name: Perm #: Email: Physics 119A Final Examination Thursday 10 December, 2009 Question 1 / 25 Question 2 / 25 Question 3 / 15 Question 4 / 20 Question 5 / 15 BONUS Total / 100

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information