Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N

Size: px
Start display at page:

Download "Standing Waves on Strings - string fixed at both end fundamental, harmonics, overtones, modes of vibration (Fig ) Node Antinode N A N A N"

Transcription

1 PHYS2 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 11 WAVES Standing Waes Doppler Eect Sections: Examples: CHECKLIST Standing Waes (stationary waes) intererence, nodes, antinodes, waelength λ is twice the node-to-node distance or twice the antinode-to-antinode distance Standing Waes on Strings - string ixed at both end undamental, harmonics, oertones, modes o ibration (Fig ) Node Antinode N A N A N λ FT 1 FT L = N N = N 1 = λ = 1 = µ = m/ L 2 u 2L u mode number, N = 1, 2, 3, (Eq , 11.15) Standing Waes in air columns - both ends open or closed undamental, harmonics, oertones, modes o modal patterns, chamber open at both ends and closed at both ends pressure: open N A N A N open closed A N A N A closed particle displacement: open A N A N A open λ L = N N = N 1 = λ 2 mode number, N = 1, 2, 3, closed N A N A N closed (Eq ) a3\p1\waes\waes1111.doc 9:14 AM 1

2 Standing Waes in air columns - one end open, other closed undamental, harmonics, oertones, modes o ibration, modal patterns, chamber open / closed pressure: open N A N A closed particle displacement: open A N A N A closed λ L = N N = N 1 = λ (Eq ) 4 mode number, N = 1, 3, 5, only odd harmonics resonant Doppler Eect o = s ± o ± s (Eq ) o > s source and/or obsering moing towards each other only o < s source and/or obserer receding rom each other only Shock waes NOTES STANDING (STATIONARY) WAVES Wae traelling to right ---> y 1 (x,t) = A sin(k x - ω t) Wae traelling to the let <--- y 2 (x,t) = A sin(k x + ω t) Two waes traelling in opposite directions with equal displacement amplitudes and with identical periods and waelengths interere with each other to gie a standing (stationary) wae (not a traelling wae - positions o nodes and antinodes are ixed with time) standing wae (no proo) y R (x,t) = 2 A sin(k x) cos(ω t) amplitude o standing wae (aries with position only and is independent o time) y Rm (x) = 2 A sin(k x) cos(ω t) each point oscillates with SHM, period T = 2π / ω a3\p1\waes\waes1111.doc 9:14 AM 2

3 Nodes I k x = n π (n =, 1, 2, 3,...) then y R (x) = zero amplitude at x and at all times t k = 2π / λ (2π x) / λ = n π x = n λ / 2 adjacent nodes are separated by λ / 2 Antinodes I k x = (n + ½) π (n =, 1, 2, 3,...) then y R (x) = 2A max amplitude at x and at all times t k = 2π / λ (2π x) / λ = (n + ½) π x = (n + ½)λ / 2 adjacent antinodes are separated by λ / 2 and are located halway between pairs o nodes STANDING WAVES IN STRINGS AND RESONANCE String instruments orm a large group o musical instruments which include the iolin, guitar and piano. All these instruments make a sound by causing a taut string to ibrate. The string may be bowed (iolin), plucked (guitar) or struck by a hammer (piano). The pitch o the note produced depends on three actors length, linear density and string tension. A shorter, lighter or tighter string gies a higher note. The iolin amily o instruments are the most expressie o sting instruments. The iolin has our strings o dierent linear densities. These are wound around tuning pegs to produce the correct tension. The perormer stops the string ibrating to obtain other notes. By pressing one or more strings against the ingerboard to shorten the section that ibrates, higher notes can be played. The body o the iolin acts as an resonant ampliier. The ront and back o the iolin are connected by a short sound post that transmits ibrations to the back. The whole body ibrates and the sound wae is emitted through -shaped sound holes on the ront o the instrument. a3\p1\waes\waes1111.doc 9:14 AM 3

4 Waes relected at boundaries O O x = x = L Boundary conditions imposed on ibrating string y R (,t) = and y R (L,t) = The natural ibrations o the string are described by y R (x,t) = 2 A sin(k x) cos(ωt) At x = y R (,t) = boundary condition satisied At x = L y R (L,t) = boundary condition k L = N π N = 1, 2, 3,... N is reerred to as the mode number The waelength λ is determined by the distance L between the supports at the end 2L λn o the string λn = L= N N 2 The speed o a transerse wae on a string is determine by the string tension and its linear density = Natural requencies FT µ N 1 FT = = N λ 2L µ N Resonance ( large amplitude oscillations) occurs when the string is excited or drien at one o its natural requencies. Harmonic series N = 1 undamental or irst harmonic λ 1 = 2L 1 = (1/2L). (F T / µ) N = 2 2nd harmonic (1st oertone) λ 2 = L = λ 1 / 2 2 = 2 1 N = 3 3rd harmonic (2nd oertone) λ 3 = 2L / 3 = λ 1 / 3 3 = 3 1 N Nth harmonic (N-1 th oertone) λ N = 2L / N = λ 1 / N N = N 1 N position along string 1 a3\p1\waes\waes1111.doc 9:14 AM 4

5 Why does a iolin sound dierent to a iola? Why do musicians hae to tune their string instruments beore a concert? Fingerboard Body o instrument (belly) resonant chamber - ampliier dierent string - µ bridges - change L tuning knobs (pegs) - adjust F T λ L F = T 1 FT µ L µ 1 F 2L µ T 1 = N = N 1 N = 1,2,3,... iolin spectrum harmonics (undamental 1 = 44 Hz) time t (s) iola spectrum harmonics (undamental 1 = 44 Hz) time t (s) a3\p1\waes\waes1111.doc 9:14 AM 5

6 Problem A particular iolin string plays at a requency o 44 Hz. I the tension is increased by 8.%, what is the new requency? Solution A = 44 Hz B =? Hz F TB = 1.8 F TA λ A = λ B µ A = µ B L A = L B N A = N B = λ = (F T / µ) string ixed at both ends L = N λ/2 λ = 2L / N natural requencies N = N / 2L = (N / 2L). (F T / µ) B / A = (F TB / F TA ) 2B = (44) (1.8) = 457 Hz Problem A guitar string is 9 mm long and has a mass o 3.6 g. The distance rom the bridge to the support post is 6 mm and the string is under a tension o 52 N. 1 Sketch the shape o the wae or the undamental mode o ibration 2 Calculate the requency o the undamental. 3 Sketch the shape o the string or the sixth harmonic and calculate its requency. 4 Sketch the shape o the string or the third oertone and calculate its requency. Solution L 1 = 9 mm =.9 m L = 6 mm =.6 m m = 3.6 g = kg F T = 52 N µ = m / L 1 = /.9 =.4 kg.m -1 = (F T / µ) = (52 /.4) = 36.6 m.s -1 λ 1 = 2L = (2)(.6) = 1.2 m Fundamental requency 1 = / λ 1 = 36.6 / 1.2 = 3 Hz N = N 1 sixth harmonic N = 6 6 = (6)(3) = 18 Hz = 1.8 khz third oertone = 4th harmonic N = 4 4 = (4)(3) = 12 = 1.2 khz a3\p1\waes\waes1111.doc 9:14 AM 6

7 STANDING WAVES IN AIR COLUMNS Woodwind instruments are not necessarily made o wood eg saxophone, but they do require wind to make a sound. They basically consist o a tube with a series o holes. Air is blow into the top o the tube, either across a hole or past a lexible reed. This makes the air inside the tube ibrate and gie out a note. The pitch o the note depends upon the length o the tube. A shorter tube produces a higher note, and so holes are coered. Blowing harder makes a louder sound. To produce deep notes woodwind instruments hae to be quite long and thereore the tube is cured. Brass instruments (usually made o brass) consist o a long pipe that is usually coiled and has no holes. The player blows into a mouthpiece at one end o the pipe, the ibration o the lips setting the air column ibrating throughout the pipe. The trombone has a section o pipe called a slide that can be moed in and out. To produce a lower note the slide is moed out. The trumpet has three pistons that are pushed down to open extra sections o tubing. Up to six dierent notes are obtained by using combinations o the three pistons. For pipes closed at both ends or open at both ends: all harmonics exists just like a string ixed at both ends. Pipe closed at one end and open at the other closed end particle displacement zero node open end max particle displacement antinode node Particle displacement zero antinode Particle displacement maximum a3\p1\waes\waes1111.doc 9:14 AM 7

8 position along column Boundary conditions - relection o sound wae at end o air column (pipe) At an open end a compression is relected as a rareaction and a rareaction as a compression (π phase shit). To match the boundary conditions 4L λ2n 1 λ2n 1 = L= ( 2N 1) N = 1,2,3,... 2N 1 4 Speed o sound in air (at room temperature ~ 344 m.s -1 ) = λ Natural requencies o ibration (open closed air column) 2N 1 2N 1 = = λ 4L 2N 1 odd harmonics exit: 1, 3, 5, 7, a3\p1\waes\waes1111.doc 9:14 AM 8

9 equilibrium position o particles instantaneous position o particles sine cure showing instantaneous displacement o particles rom equilibrium instantaneous pressure distribution time aeraged pressure luctuations Enter t/t An air stream produced by mouth by blowing the instruments interacts with the air in the pipe to maintain a steady oscillation. All brass instruments are closed at one end by the mouth o the player. Flute and piccolo open at atmosphere and mouth piece (embouchure) coering holes L λ Trumpet open at atmosphere and closed at mouth coering holes adds loops o tubing into air stream L λ Woodwinds ibrating reed used to produce oscillation o the air molecules in the pipe. a3\p1\waes\waes1111.doc 9:14 AM 9

10 Problem What are the natural requencies o a human ear? Why do sounds ~ 3 4 Hz appear loudest? Solution Assume the ear acts as pipe open at the atmosphere and closed at the eardrum. The length o the auditory canal is about 25 mm. Take the speed o sound in air as 34 m.s -1. L = 25 mm =.25 m = 34 m.s -1 For air column closed at one end and open at the other L = λ 1 / 4 λ 1 = 4 L 1 = / λ 1 = (34)/{(4)(.25)} = 34 Hz When the ear is excited at a natural requency o ibration large amplitude oscillations (resonance) sounds will appear loudest ~ 3 4 Hz. a3\p1\waes\waes1111.doc 9:14 AM

11 DOPPLER EFFECT - motion related requency changes Doppler 1842, Buys Ballot trumpeters on railway carriage o = s ± ± o s obserer (source) = (source) = (wae) (source) = (wae) / 2 (source) = 1.25 (wae) source s obserer o obsered requency o stationary stationary = o stationary receding < o stationary approaching > o receding stationary < o approaching stationary > o receding receding < o approaching approaching > o approaching receding? receding approaching? a3\p1\waes\waes1111.doc 9:14 AM 11

12 Applications: police microwae speed units, speed o a tennis ball, speed o blood lowing through an artery, heart beat o a deeloping etous, burglar alarms, sonar ships & submarines to detect submerged objects, detecting distance planets, obsering the motion o oscillating stars. Shock Waes supersonic waes boat moing through water: speed o boat > speed o water wae created ast moing power boat sailing boat rocket iolently - wae crests add to gie large wae shock wae - bunching o waeronts ---> abruptie rise and all o air pressure Mach cone sonic boooom plane traelling at supersonic speeds Mach Number = / s s speed o sound in air eg Mach Number = 2.3 speed is 2.3 times the speed o sound a3\p1\waes\waes1111.doc 9:14 AM 12

13 Problem The speed o blood in the aorta is normally about.3 m.s -1. What beat requency would you expect i 4. MHz ultrasound waes were directed along the blood low and relected rom the end o red blood cells? Assume that the sound waes trael through the blood with a elocity o 154 m.s -1. Solution Setup s1 = 4. MHz = 4.x 6 Hz 1 =.3 m.s -1 = 1.54x 3 m.s -1 o1 =? Hz o2 =? Hz s2 = o1 relected wae s2 =.3 m.s -1 Doppler Eect Action o = s ± ± o s Beats beat = 2 1 Blood is moing away rom source obserer moing away rom source o < s ( ) Hz 3 ± o o1 = s1 = 3 = ± s Wae relected o red blood cells source moing away rom obserer o < s ( ) Hz 3 ± o o2 = s2 = 3 = ± s Beat requency = Hz = 1558 Hz In this type o calculation you must keep extra signiicant igures. a3\p1\waes\waes1111.doc 9:14 AM 13

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance Standing Waes Doppler Eect Standing Waes (stationary waes) intererence, nodes, antinodes, waelength is twice the node-to-node distance Standing Waes on Strings - string ixed at both end undamental, harmonics,

More information

Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L. Closed at both ends

Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L. Closed at both ends LECTURE 8 Ch 16 Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L 1 Closed at both ends Closed at one end open at the other Open at both ends

More information

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode

Longitudinal Waves. Reading: Chapter 17, Sections 17-7 to Sources of Musical Sound. Pipe. Closed end: node Open end: antinode Longitudinal Waes Reading: Chapter 7, Sections 7-7 to 7-0 Sources o Musical Sound Pipe Closed end: node Open end: antinode Standing wae pattern: Fundamental or irst harmonic: nodes at the ends, antinode

More information

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in Chapter 4 PRBLEM LUTN 4. ince light sound, the time required or the lash o light to reach the obserer is negligible in comparison to the time required or the sound to arrie. Thus, we can ignore the time

More information

Honors Classical Physics I

Honors Classical Physics I Honors Classical Physics I PHY141 ecture 32 ound Waes Please set your clicker to channel 21 ecture 32 1 Bosch 36W column loudspeaker polar pattern Monsoon Flat Panel speaker: (5 db grid) 400 Hz: Real oudspeakers

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys Lectures 3, 33 Sound, Decibels, Doppler Eect Key points: ntensity o Sound: Decibels Doppler Eect Re: -,,7. Page Characteristics o Sound Sound can trael through any kind o matter, but not through a

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

2/11/2006 Doppler ( F.Robilliard) 1

2/11/2006 Doppler ( F.Robilliard) 1 2//2006 Doppler ( F.obilliard) Deinition o Terms: The requency o waes can be eected by the motion o either the source,, or the receier,, o the waes. This phenomenon is called the Doppler Eect. We will

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1 P S S S 0 x S A B C 7/5/006 Superposition ( F.Robilliard) Superposition of Waes: As we hae seen preiously, the defining property of a wae is that it can be described by a wae function of the form - y F(x

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

SOUND AND HEARING. = BkA and Bk is constant gives pmax1 / A1 = pmax2 / A2 p Pa p. = BkA and solve for A. fba. 10 Pa) (1480 m s) 10 Pa) (1000 Hz)

SOUND AND HEARING. = BkA and Bk is constant gives pmax1 / A1 = pmax2 / A2 p Pa p. = BkA and solve for A. fba. 10 Pa) (1480 m s) 10 Pa) (1000 Hz) OUND AND HEARING 6 6 IDENTIFY and ET UP: Eq() gies the waelength in terms o the requency Use Eq(6) to relate the pressure and displacement amplitudes EXECUTE: (a) λ = / = (44 m/s)/000 Hz = 044 m (b) p

More information

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS

Prashant Patil ( ) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 19/07/2017 TEST ID: 11 Time : 00:45:00 PHYSICS Prashant Patil (99709774) PRASHANT PATIL PHYSICS CLASSES NEET/JEE(Main) Date : 9/07/07 TEST ID: Time : 00:45:00 PHYSICS Marks : 80 5. STATIONARY WAVES Single Correct Answer Type. Stationary waes are set

More information

Exam 3 Review. F P av A. m V

Exam 3 Review. F P av A. m V Chapter 9: luids Learn the physics o liquids and gases. States o Matter Solids, liquids, and gases. Exam 3 Reiew ressure a ascal s rinciple change in pressure at any point in a conined luid is transmitted

More information

Last Name First Name Date

Last Name First Name Date Last Name irst Name Date 16.1 The Nature of Waes 16.2 Periodic Waes 16.3 The Speed of a Wae in a String Conceptual Questions 1,2,3,7, 8, 11 page 503 Problems 2, 4, 6, 12, 15, 16 page 501-502 Types of Waes

More information

SOUND. Responses to Questions

SOUND. Responses to Questions SOUND Responses to Questions. Sound exhibits several phenomena that give evidence that it is a wave. ntererence is a wave phenomenon, and sound produces intererence (such as beats). Diraction is a wave

More information

Physics 231 Lecture 28

Physics 231 Lecture 28 Physics 231 Lecture 28 Main points of today s lecture: Reflection of waes. rigid end inerted wae free end non-inerted wae Standing waes on string: n 2L f n λn n 1, 2, 3,,, 2L n Standing wae in air columns:

More information

Superposition and Standing Waves

Superposition and Standing Waves 8 Superposition and Standing Waes CHPTER OUTLINE 8. Superposition and Intererence 8. Standing Waes 8.3 Standing Waes in a String Fixed at Both Ends 8. Resonance 8.5 Standing Waes in ir Columns 8.6 Standing

More information

Get Solution of These Packages & Learn by Video Tutorials on WAVES ON A STRING

Get Solution of These Packages & Learn by Video Tutorials on  WAVES ON A STRING WVES ON STRING WVES Wae motion is the phenomenon that can be obsered almost eerywhere around us, as well it appears in almost eery branch o physics. Surace waes on bodies o mater are commonly obsered.

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work.

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work. Chapter 21. Sound wae Content 21.1 Propagation o ound wae 21.2 Source o ound 21.3 Intenity o ound 21.4 Beat 21.5 Doppler eect 1 2 objectie a) explain the propagation o ound wae in air in term o preure

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waes and Sound 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place. 16.1 The Nature of Waes Transerse Wae 16.1 The Nature of Waes Longitudinal

More information

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

Physics 11 Chapter 15/16 HW Solutions

Physics 11 Chapter 15/16 HW Solutions Physics Chapter 5/6 HW Solutions Chapter 5 Conceptual Question: 5, 7 Problems:,,, 45, 50 Chapter 6 Conceptual Question:, 6 Problems:, 7,, 0, 59 Q5.5. Reason: Equation 5., string T / s, gies the wae speed

More information

Sound Intensity. Sound Level. Doppler Effect. Ultrasound. Applications

Sound Intensity. Sound Level. Doppler Effect. Ultrasound. Applications Lecture 20 Sound Hearing Sound Intensity Sound Leel Doppler Eect Ultrasound Applications Sound Waes Sound Waes (Longitudinal waes) When a gas, liquid or solid is mechanically disturbed Sound waes are produced

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys101 Lectures 31, 32 Sound, Decibels, Doppler Effect Key points: Intensity of Sound: Decibels Doppler Effect Ref: 12-1,2,7. Page 1 Characteristics of Sound Sound can trael through any kind of matter,

More information

PHYSICS 231 Sound PHY 231

PHYSICS 231 Sound PHY 231 PHYSICS 231 Sound 1 Sound: longitudinal waves A sound wave consist o longitudinal oscillations in the pressure o the medium that carries the sound wave. Thereore, in vacuum: there is no sound. 2 Relation

More information

Unit 4 Waves and Sound Waves and Their Properties

Unit 4 Waves and Sound Waves and Their Properties Lesson35.notebook May 27, 2013 Unit 4 Waves and Sound Waves and Their Properties Today's goal: I can explain the difference between transverse and longitudinal waves and their properties. Waves are a disturbances

More information

Physics 4C Spring 2016 Test 3

Physics 4C Spring 2016 Test 3 Physics 4C Spring 016 Test 3 Name: June 1, 016 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must gie your answer in terms of the ariables gien

More information

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ.

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ. Standing Waves I the same type o waves move through a common region and their requencies,, are the same then so are their wavelengths,. This ollows rom: v=. Since the waves move through a common region,

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Get Solution of These Packages & Learn by Video Tutorials on SOUND WAVES

Get Solution of These Packages & Learn by Video Tutorials on  SOUND WAVES Get Solution of These Packages & Learn by Video Tutorials on www.mathsbysuhag.com. PROPAGATION OF SOUND WAVES : Sound is a mechanical three dimensional and longitudinal wae that is created by a ibrating

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is:

1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is: 1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is: 2) The bob of simple Pendulum is a spherical hallow ball filled with water. A plugged hole near

More information

Downloaded from

Downloaded from Chapter 15 (Waves) Multiple Choice Questions Single Correct Answer Type Q1. Water waves produced by a motorboat sailing in water are (a) neither longitudinal nor transverse (b) both longitudinal and transverse

More information

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string =

Chap 12. Sound. Speed of sound is different in different material. Depends on the elasticity and density of the medium. T v sound = v string = Chap 12. Sound Sec. 12.1 - Characteristics of Sound Sound is produced due to source(vibrating object and travels in a medium (londitudinal sound waves and can be heard by a ear (vibrations. Sound waves

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

WAVES( SUB) 2. What is the property of the medium that is essential for the propagation of mechanical wave? Ans: Elasticity and inertia

WAVES( SUB) 2. What is the property of the medium that is essential for the propagation of mechanical wave? Ans: Elasticity and inertia WAES( SUB). What is meant by a wave? Ans: The disturbance set up in a medium is known as a wave. What is the property of the medium that is essential for the propagation of mechanical wave? Ans: Elasticity

More information

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature Physics 111 Lecture 31 (Walker: 14.7-8) Wave Superposition Wave Interference Physics of Musical Instruments Temperature Superposition and Interference Waves of small amplitude traveling through the same

More information

A wave is a disturbance that propagates energy through a medium without net mass transport.

A wave is a disturbance that propagates energy through a medium without net mass transport. Waes A wae is a disturbance that propagates energy through a medium without net mass transport. Ocean waes proide example of transerse waes in which if we focus on a small olume of water, at a particular

More information

Wave Motion Wave and Wave motion Wave is a carrier of energy Wave is a form of disturbance which travels through a material medium due to the repeated periodic motion of the particles of the medium about

More information

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a)

TRAVELING WAVES. Conceptual Questions v a v b v c. Wave speed is independent of wave amplitude (a) TRAVELING WAVES 0 Conceptual Questions 0.1. a b c. Wae speed is independent o wae amplitude. 0.. (a) T T T 0 cm/s (b) 100 cm/s 4 T 4m (c) cm/s (d) so the speed is unchanged: 00 cm/s. /4 4L 0.3. The constant

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

To prepare for this lab, you should read the following sections of the text: Sections 3.4, 11.3, and 12.1 OVERVIEW

To prepare for this lab, you should read the following sections of the text: Sections 3.4, 11.3, and 12.1 OVERVIEW Section: Monday / Tuesday (circle one) Name: Partners: Total: /35 PHYSICS 107 LAB #4: WIND INSTRUMENTS: WAVES IN AIR Equipment: Thermometer, function generator, two banana plug wires, resonance tube with

More information

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t =

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t = Question 15.1: A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance

More information

Simple Harmonic Motion

Simple Harmonic Motion Please get your personal iclicker from its pigeonhole on North wall. Simple Harmonic Motion 0 t Position: x = A cos(ω t + φ) Velocity: x t = (ω A) sin(ω t + φ) { max Acceleration: t = (ω2 A) cos(ω t +

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S PW CONCEPTS C C Equation of a Travelling Wave The equation of a wave traveling along the positive x-ax given by y = f(x vt) If the wave travelling along the negative x-ax, the wave funcion

More information

Sound. Speed of Sound

Sound. Speed of Sound Sound TUNING FORK CREATING SOUND WAVES GUITAR STRING CREATING SOUND WAVES Speed of Sound Sound travels at a speed that depends on the medium through which it propagates. The speed of sound depends: - directly

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

Physic 231 Lecture 35

Physic 231 Lecture 35 Physic 31 Lecture 35 Main points o last lecture: Waves transverse longitudinal traveling waves v wave λ Wave speed or a string v F µ Superposition and intererence o waves; wave orms interere. Relection

More information

Test 3 Preparation Questions

Test 3 Preparation Questions Test 3 Preparation Questions A1. Which statement is true concerning an object executing simple harmonic motion? (A) Its velocity is never zero. (B) Its acceleration is never zero. (C) Its velocity and

More information

KEY TERMS. compression rarefaction pitch Doppler effect KEY TERMS. intensity decibel resonance KEY TERMS

KEY TERMS. compression rarefaction pitch Doppler effect KEY TERMS. intensity decibel resonance KEY TERMS CHAPTER 12 SECTION 1 Sound Waves Summary The frequency of a sound wave determines its pitch. The speed of sound depends on the medium. The relative motion between the source of waves and an observer creates

More information

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter.

Wave Motion A wave is a self-propagating disturbance in a medium. Waves carry energy, momentum, information, but not matter. wae-1 Wae Motion A wae is a self-propagating disturbance in a medium. Waes carr energ, momentum, information, but not matter. Eamples: Sound waes (pressure waes) in air (or in an gas or solid or liquid)

More information

PHYS-2020: General Physics II Course Lecture Notes Section VIII

PHYS-2020: General Physics II Course Lecture Notes Section VIII PHYS-2020: General Physics II Course Lecture Notes Section VIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects. Sound Waves Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects Introduction Sound Waves: Molecular View When sound travels through a medium, there

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Transverse Wave - Only in solids (having rigidity), in liquids possible only on the surface. Longitudinal Wave

Transverse Wave - Only in solids (having rigidity), in liquids possible only on the surface. Longitudinal Wave Wave is when one particle passes its motion to its neighbour. The Elasticity and Inertia of the medium play important role in the propagation of wave. The elasticity brings the particle momentarily at

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

Waves Encountering Barriers

Waves Encountering Barriers Waves Encountering Barriers Reflection and Refraction: When a wave is incident on a boundary that separates two regions of different wave speed, part of the wave is reflected and part is transmitted. Figure

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Reflection & Transmission

Reflection & Transmission Reflection & Transmission when end is fixed, reflected wave in inverted when end is free to move, reflected wave is not inverted General Physics 2 Waves & Sound 1 Reflection & Transmission when a wave

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

Lorik educatinal academy vidya nagar

Lorik educatinal academy vidya nagar Lorik educatinal academy vidya nagar ========================================================== PHYSICS-Wave Motion & Sound Assignment. A parachutist jumps from the top of a very high tower with a siren

More information

Written homework due in class on Monday Online homework due on Tuesday by 8 am

Written homework due in class on Monday Online homework due on Tuesday by 8 am Homework #13 Written homework due in class on Monday Online homework due on Tuesday by 8 am Problem 15.35: use v sound = 343 m/s Final exam Thu May 14 from 1:30 to 3:30 pm (see info on blog) Boyden gym

More information

Chapter 16 Sound and Hearing by C.-R. Hu

Chapter 16 Sound and Hearing by C.-R. Hu 1. What is sound? Chapter 16 Sound and Hearing by C.-R. Hu Sound is a longitudinal wave carried by a gas liquid or solid. When a sound wave passes through a point in space the molecule at that point will

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PW W A V E S Syllabus : Wave motion. Longitudinal and transverse waves, speed of wave. Dplacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves

More information

Chapter 17. Superposition & Standing Waves

Chapter 17. Superposition & Standing Waves Chapter 17 Superposition & Standing Waves Superposition & Standing Waves Superposition of Waves Standing Waves MFMcGraw-PHY 2425 Chap 17Ha - Superposition - Revised: 10/13/2012 2 Wave Interference MFMcGraw-PHY

More information

Solution The light plates are at the same heights. In balance, the pressure at both plates has to be the same. m g A A A F A = F B.

Solution The light plates are at the same heights. In balance, the pressure at both plates has to be the same. m g A A A F A = F B. 43. A piece of metal rests in a toy wood boat floating in water in a bathtub. If the metal is removed from the boat, and kept out of the water, what happens to the water level in the tub? A) It does not

More information

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES 15.7 The Doppler effect Sound waves from a moving source A stationary source and a moving observer The Doppler effect for light waves Frequency shift on reflection

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION WAVES SIMPLE HARMONIC MOTION Simple Harmonic Motion (SHM) Vibration about an equilibrium position in which a restoring force is proportional to the displacement from equilibrium TYPES OF SHM THE PENDULUM

More information

Physics 240: Worksheet 24 Name:

Physics 240: Worksheet 24 Name: () Cowboy Ryan is on the road again! Suppose that he is inside one of the many caerns that are found around the Whitehall area of Montana (which is also, by the way, close to Wheat Montana). He notices

More information

41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles?

41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles? Phys 111 Exam 3 41. If you dribble a basketball with a frequency of 1.77 Hz, how long does it take for you to complete 12 dribbles? A. 6.78 s B. 21.2 s C. 0.32 s D. 42.5 s E. 1.07 s 42. A 0.46-kg mass

More information

Physics 2c Lecture 16

Physics 2c Lecture 16 Physics 2c Lecture 16 Standing Waves Recap of last time The Doppler Effect Waves with moving sources or/and observers Shock waves Standing waves = waves that fit boundary conditions for reflection on both

More information

Math and Music Part II. Richard W. Beveridge Clatsop Community College

Math and Music Part II. Richard W. Beveridge Clatsop Community College Math and Music Part II Richard W. Beveridge Clatsop Community College Pythagorean Ratios The Pythagoreans knew that the tones produced by vibrating strings were related to the length o the string. They

More information

Physics 1C. Lecture 13B

Physics 1C. Lecture 13B Physics 1C Lecture 13B Speed of Sound! Example values (m/s): Description of a Sound Wave! A sound wave may be considered either a displacement wave or a pressure wave! The displacement of a small element

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 14

PHYS Summer Professor Caillault Homework Solutions. Chapter 14 PHYS 1111 - Summer 2007 - Professor Caillault Homework Solutions Chapter 14 5. Picture the Problem: A wave of known amplitude, frequency, and wavelength travels along a string. We wish to calculate the

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

Physics 202 Homework 7

Physics 202 Homework 7 Physics 202 Homework 7 May 15, 2013 1. On a cello, the string with the largest linear density (0.0156 kg/m) is the C 171 newtons string. This string produces a fundamental frequency of 65.4 Hz and has

More information

Physics 11. Unit 7 (Part 2) The Physics of Sound

Physics 11. Unit 7 (Part 2) The Physics of Sound Physics 11 Unit 7 (Part 2) The Physics of Sound 1. Sound waves As introduced in the previous section, sound is one of the many types of waves we encounter in our daily lives. It possesses the properties

More information

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring?

Chapter 13, Vibrations and Waves. 1. A large spring requires a force of 150 N to compress it only m. What is the spring constant of the spring? CHAPTER 13 1. A large spring requires a force of 150 N to compress it only 0.010 m. What is the spring constant of the spring? a. 125 000 N/m b. 15 000 N/m c. 15 N/m d. 1.5 N/m 2. A 0.20-kg object is attached

More information

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information

CH 17. Waves II (Sound)

CH 17. Waves II (Sound) CH 17 Waves II (Sound) [SHIVOK SP211] November 1, 2015 I. Sound Waves A. Wavefronts are surfaces over which the oscillations due to the sound wave have the same value; such surfaces are represented by

More information

Chapter 18 Solutions

Chapter 18 Solutions Chapter 18 Solutions 18.1 he resultant wave function has the form y A 0 cos φ sin kx ω t + φ (a) A A 0 cos φ (5.00) cos (π /4) 9.4 m f ω π 100π π 600 Hz *18. We write the second wave function as hen y

More information

UIC PHYSICS 105 Fall 2014 Practice Final Exam. UIC Physics 105. Practice Final Exam. Fall 2014 Best if used by December 7 PROBLEM POINTS SCORE

UIC PHYSICS 105 Fall 2014 Practice Final Exam. UIC Physics 105. Practice Final Exam. Fall 2014 Best if used by December 7 PROBLEM POINTS SCORE UIC Physics 105 Practice Final Exam Fall 2014 Best if used by December 7 PROBLEM POINTS SCORE Multiple Choice Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 50 11 8 7 11 13 Total 100 Page 1 of 7 MULTIPLE

More information

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 16 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Waves and Sound Lectures 26-27 Chapter 16 (Cutnell & Johnson, Physics 7 th edition) 1 Waves A wave is a vibrational, trembling motion in an elastic, deformable body. The wave is initiated

More information

SIMPLE HARMONIC MOTION AND WAVES

SIMPLE HARMONIC MOTION AND WAVES Simple Harmonic Motion (SHM) SIMPLE HARMONIC MOTION AND WAVES - Periodic motion any type of motion that repeats itself in a regular cycle. Ex: a pendulum swinging, a mass bobbing up and down on a spring.

More information

WAVE MOTION. Synopsis :

WAVE MOTION. Synopsis : WAE MOTION Synopsis : 1 Sound is a form of energy produced by a vibrating body, which requires medium to travel Sound travels in the form of waves 3 The audiable sound has frequency range 0 Hz to 0 khz

More information

WAVE MOTION AND SHM SECTON 3 SOLUTIONS. Ans.a

WAVE MOTION AND SHM SECTON 3 SOLUTIONS. Ans.a WAVE MOTION AND SHM SECTON 3 SOLUTIONS πf ω π. V = fλ= =, because πf = ω, = k. Ans.a π / λ k λ. While (a) and (b) are traelling waes, (d) is the superposition of two traelling waes, f(x-t) and f(x+t).

More information