Quantum Ideas. Syllabus:

Size: px
Start display at page:

Download "Quantum Ideas. Syllabus:"

Transcription

1 Quantum Ideas Syllabus: The success of classical physics, measurements in classical physics. The nature of light, the ultraviolet catastrophe, the photoelectric effect and the quantisation of radiation. Atomic spectral lines and the discrete energy levels of electrons in atoms, the Frank-Hertz experiment and the Bohr model of an atom. Magnetic dipoles in homogeneous and inhomogeneous magnetic fields and the Stern- Gerlach experiment showing the quantisation of the magnetic moment. The Uncertainty principle by considering a microscope and the momentum of photons, zero point energy, stability and size of atoms. Measurements in quantum physics, the impossibility of measuring two orthogonal components of magnetic moments. The EPR paradox, entanglement, hidden variables, non-locality and Aspect's experiment, quantum cryptography and the BB84 protocol. Schrödinger's cat and the many-world interpretation of quantum mechanics. Interferometry with atoms and large molecules. Amplitudes, phases and wavefunctions. Interference of atomic beams, discussion of two-slit interference, Bragg diffraction of atoms, quantum eraser experiments. A glimpse of quantum engineering and quantum computing. Schrödinger's equation and boundary conditions. Solution for a particle in an infinite potential well, to obtain discrete energy levels and wavefunctions.

2 Failure of Classical Physics Photoelectric Effect Blackbody Radiation Uncertainty Principle Interference of massive particles De Brogie Wavelength Spectral lines Schrödinger s Equation Quantisation of radiation Planck s Hypothesis Wave-Particle Duality Quantised energy levels Quantum Physics Structure of Matter Atom model (Bohr) Molecules, Solid state, etc. Modern Applications Quantum Cryptography Quantum Computing Paradoxa in early Gedanken-experiments Entanglement Superposition Probabilities Role of the observer Break-down of the Wavefunction Many-world interpretation

3 Classical Physics: classical mechanics (Newton; F = m a) electricity and magnetism (Coulomb, Faraday, Maxwell) electromagnetic waves (rf... light... x-ray... gamma) thermodynamics (energy conservation, equilibration, statistical mechanics) accurate measurement of all observables (position x(t)and momentum p(t) ) Quantum Physics: probabilistic - not deterministic (Einstein: Good does not play dice ) probability wave function ψ(x,t) to describe a particle superposition and entanglement non-local behaviour ( Spooky interaction at a distance that bothered Einstein) uncertainty principle: Δx Δp ħ/2 and ΔE Δt ħ/2

4

5

6

7 illumination with a mercury lamp, filtering a single spectral line. Cathode metal with a binding energy (or work function) of Ebind = 2.02 ev yellow, 578nm, 5.19E+14 Hz, Ekin = 0.13 ev green, 546nm, 5.50E+14 Hz, Ekin = 0.27 ev blue, 436nm, 6.88E+14 Hz, Ekin = 0.81 ev violet, 405nm, 7.41E+14 Hz, Ekin = 1.02 ev Planck s constant is obtained from the slope of the kinetic energy, Ekin(ν)

8

9 Hints for quantisation: a) threshold (minimum frequency required): resonance phenomenon quantised medium or light b) linear in the intensity (for ν=const). electron number proportional to photon number c) photo current insensitive to ν (provided hν > Ebind) no change of the electron current if photon flux constant albeit the intensity is increasing: Iphoto ν d) no delay direct evidence! it lasts seconds until a single atom accumulates enough energy, so the radiation cannot be continuous

10

11

12

13 Blackbody = Cavity? - Multiple reflections -> absorption of incident light - Thermal equilibrium -> Walls <-> Cavity modes - Spectral energy density ρ(ν)dν R(ν)dν (Radiance through whole) - Boundary conditions: Nodes on the walls - Standing waves along x,y,z Consider a 2D problem and decompose λ into λx = λ / cos(α) λy = λ / sin(α) with nx λx = 2L etc... ==> nx = (2L/ λ) cos(α) and ny = (2L/ λ) sin(α) square and add these conditions (generalise into 3D): (2L/ λ) 2 = nx 2 + ny 2 + nz 2

14 Number of Modes in the cavity with frequencies smaller than ν: - sphere of radius R = (nx 2 + ny 2 + nz 2 ) = 2L/ λ = 2L/c ν - mode number N(ν) = 4/3 π R 3 2/8 =... - same for N(ν+dν) =... Mode number in the interval ν...ν+dν ΔN = N(ν+dν) - N(ν) = 8π ν 2 L 3 / c 3 dν Spectral density per unit volume ρ(ν)dν = ΔΝ/L 3 = 8π ν 2 / c 3 dν

15 1/t*1.* "{& ZD Lutb- *,id7 # L \"= )'/-x \7 = Vi*x f-) r, L Lou- L,.n-L h n-, "l ll fzl '- tl,*tt h" \, - ZLI ', ), -- zli h,o h)r' 7L.,\ ZL J. ql ;LJ -' hr' * 'rt = *" -D 6 Lo f*,*c'j l" 3?, R

16 Sil*'L i. ll h - slpaa, svj;u, IZ, //,-Lu o(,--l = l,/o/,*,l ll 70., hor= = \r 81,,' L ll (fry..)) = ( ts' 7'trLt.r #,l --,,Ln 6 4 I 7'.,{u u*( 3o3 Z g'l.,-:,j'-' (ot:l:.t ryn{r.^ , Jrt r?,t 6N 0t) do =,({,t,ju1-//u) StiJ',t= y #'(y')'-'=8o4u 1 = 8try" t, a.'dy v 3Y'Jt' + "(*L fu u--:l e'sb*,- I

17

18 Blackbody Radiation Average energy <E>per frequency mode, using the Boltzmann distribution P(E) ne nhν kt E = with n=0 E n P(E) hν = P(E) n=0 n=0 e nhν kt n=0 ( ) = 1 B Bexp hν kt = hν A B and A Aexp( hν ) kt = Bexp( hν ) kt A B = 1 exp hν kt ( ) 1 and E = hν ( ) 1 exp hν kt

19 Planck s law Spectral energy density (energy per unit volume in the frequency range ν...ν+dν): ρ(ν)dν = 8πν 2 c 3 hν ( ) 1 = 8πhν exp hν kt 3 1 c 3 ( ) 1 exp hν kt total energy density: ρ = ρ(ν)dν = 8π 5 k 4 15(hc) 3 T 4 = σt 4

20

21

22 Ao^*'l a,- ol a q- Pt L- ft t^j/ c = hg E;-,h,-! =,,o' = h?^ -t Pc ]o' \ II l- ll(*" ( s tttt = t*t C De--Lnjt.,"*(*rlL \ = % '7* " I ii.,") l,o,ouin ",u\"::f_?], +k tul/...* Lo[u,*, ej L k",j, 14'"'r'*iltLt=?x -t glno u).t/.' i (G,t) = uflz (w - aili v;ll a.?rt)

23

24 ?r s&t o {_r"/ trll* :'-.6'ao' ^. L"l-- o rt "kn tj,l- tu" +-J"{ to.(-7; f =r^ P, '9^l CO',otte*{i* z c)"?o s;" q?.*6 Ar 'I (al 'er - )'s;"o (t L-%*o J*, J*r \t.7, - 2fi,*'a / Y n*t -D d,.rk.- gh -, - "/.J** C.'->un-hn*"A!Jpu:lL [n}ux{ut- fair,'tq,.t.k,a- [=hf,=b= b 'lt\t?^'=":h.-zutlc' ' < t I e ^: ^1 + 1i1t' 'a Ln.* (I{- \,)2,o" L (i-*)- rt^*a s Zh(t.*re)

25 c9 r'^ I rr Vqu!/(e.-C(l"^: J \ / t = Ao L l-a-e) a-/f0/t> 'I t...r14 v"rolo-lq,/ Ao- _,.' t 7". _-,ov -t2 = Z.?3 - t0'- nelq

26

27

28 Hanbury-Brown and Twiss: Intensity correlation measurements - dead time of the detectors - beam splitter - pair of photon counters - cross correlation Single-photon emitters: - single atoms or ions - crystal defects (Quantum dots)

29

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics PHY202 Quantum Mechanics Topic 1 Introduction to Quantum Physics Outline of Topic 1 1. Dark clouds over classical physics 2. Brief chronology of quantum mechanics 3. Black body radiation 4. The photoelectric

More information

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Dr. Jamie Sanchez-Fortún Stoker Department of Physics, University of Waterloo Fall 2005 1 Introduction to Modern Physics 1.1

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Lecture 8. > Blackbody Radiation. > Photoelectric Effect

Lecture 8. > Blackbody Radiation. > Photoelectric Effect Lecture 8 > Blackbody Radiation > Photoelectric Effect *Beiser, Mahajan & Choudhury, Concepts of Modern Physics 7/e French, Special Relativity *Nolan, Fundamentals of Modern Physics 1/e Serway, Moses &

More information

Quantum Mechanics: Blackbody Radiation

Quantum Mechanics: Blackbody Radiation Blackbody Radiation Quantum Mechanics Origin of Quantum Mechanics Raleigh-Jeans law (derivation)-ultraviolet catastrophe, Wien s Distribution Law & Wein s Displacement law, Planck s radiation law (calculation

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics Chemistry 4521 Time is flying by: only 15 lectures left!! Six quantum mechanics Four Spectroscopy Third Hour exam Three statistical mechanics Review Final Exam, Wednesday, May 4, 7:30 10 PM Quantum Mechanics

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Chapter 9: Electrons in Atoms

Chapter 9: Electrons in Atoms General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 9: Electrons in Atoms Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall 2002 Prentice-Hall

More information

10/17/11. Chapter 7. Quantum Theory and Atomic Structure. Amplitude (intensity) of a wave. Quantum Theory and Atomic Structure

10/17/11. Chapter 7. Quantum Theory and Atomic Structure. Amplitude (intensity) of a wave. Quantum Theory and Atomic Structure Quantum Theory and Atomic Structure Chapter 7 7. The Nature of Light Quantum Theory and Atomic Structure 7. Atomic Spectra 7. The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical Model

More information

Quantum Physics (PHY-4215)

Quantum Physics (PHY-4215) Quantum Physics (PHY-4215) Gabriele Travaglini March 31, 2012 1 From classical physics to quantum physics 1.1 Brief introduction to the course The end of classical physics: 1. Planck s quantum hypothesis

More information

An object capable of emitting/absorbing all frequencies of radiation uniformly

An object capable of emitting/absorbing all frequencies of radiation uniformly 1 IIT Delhi - CML 100:1 The shortfalls of classical mechanics Classical Physics 1) precise trajectories for particles simultaneous specification of position and momentum 2) any amount of energy can be

More information

Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton

Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton Light: II. ELECTRICITY & MAGNETISM Maxwell's Equations III. THERMODYNAMICS Gibbs Helmholz

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

General Chemistry. Contents. Chapter 9: Electrons in Atoms. Contents. 9-1 Electromagnetic Radiation. EM Radiation. Frequency, Wavelength and Velocity

General Chemistry. Contents. Chapter 9: Electrons in Atoms. Contents. 9-1 Electromagnetic Radiation. EM Radiation. Frequency, Wavelength and Velocity General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 9: Electrons in Atoms Philip Dutton University of Windsor, Canada N9B 3P4 Contents 9-1 Electromagnetic

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

Quantum Mechanics. Reilly V. Bautista. September 5, Reilly V. Bautista Quantum Mechanics September 5, / 78

Quantum Mechanics. Reilly V. Bautista. September 5, Reilly V. Bautista Quantum Mechanics September 5, / 78 Quantum Mechanics Reilly V. Bautista September 5, 2016 Reilly V. Bautista Quantum Mechanics September 5, 2016 1 / 78 Contents Properties of electromagnetic radiation Issues with classical model of physics

More information

CHE3935. Lecture 2. Introduction to Quantum Mechanics

CHE3935. Lecture 2. Introduction to Quantum Mechanics CHE3935 Lecture 2 Introduction to Quantum Mechanics 1 The History Quantum mechanics is strange to us because it deals with phenomena that are, for the most part, unobservable at the macroscopic level i.e.,

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom The Nature of Light:Its Wave Nature Light is a form of electromagnetic radiation composed of perpendicular oscillating waves, one for the electric field

More information

Quantum Theory and Atomic Structure. Quantum Mechanics. Quantum Theory and Atomic Structure. 7.3 The Wave-Particle Duality of Matter and Energy

Quantum Theory and Atomic Structure. Quantum Mechanics. Quantum Theory and Atomic Structure. 7.3 The Wave-Particle Duality of Matter and Energy Chapter 7 Quantum Theory and Atomic Structure Chap 7-1 Quantum Theory and Atomic Structure 7.1 The Nature of Light 7.2 Atomic Spectra 7.3 The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical

More information

Chapter 7. Quantum Theory and Atomic Structure. Quantum Mechanics. Chap 7-1

Chapter 7. Quantum Theory and Atomic Structure. Quantum Mechanics. Chap 7-1 Chapter 7 Quantum Theory and Atomic Structure Chap 7-1 Quantum Theory and Atomic Structure 7.1 The Nature of Light 7.2 Atomic Spectra 7.3 The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical

More information

Complementi di Fisica Lectures 3, 4

Complementi di Fisica Lectures 3, 4 Complementi di Fisica Lectures 3, 4 Livio Lanceri Università di Trieste Trieste, 3/8-10-015 Course Outline - Reminder Quantum Mechanics: an introduction Waves as particles and particles as waves (the crisis

More information

Fundamental of Spectroscopy for Optical Remote Sensing Xinzhao Chu I 10 3.4. Principle of Uncertainty Indeterminacy 0. Expression of Heisenberg s Principle of Uncertainty It is worth to point out that

More information

ψ x=0,t =ψ x=l,t =0 ψ x,t = X x T t X x t t =X x 2 Something more about. Standing Waves Standing Waves Wave Function Differential Wave Equation X=L

ψ x=0,t =ψ x=l,t =0 ψ x,t = X x T t X x t t =X x 2 Something more about. Standing Waves Standing Waves Wave Function Differential Wave Equation X=L Something more about. Standing Waves Wave Function Differential Wave Equation Standing Waves Boundary Conditions: ψ x=0,t =ψ x=l,t =0 Separation of variables: X=0 sin(πx/l) sin(πx/l) sin(3πx/l) X=L Y Axis

More information

Radiation and the Atom

Radiation and the Atom Radiation and the Atom PHYS Lecture Departamento de Física Instituto Superior de Engenharia do Porto cav@isep.ipp.pt Overview SI Units and Prefixes Radiation Electromagnetic Radiation Electromagnetic Spectrum

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Lecture 2 Blackbody radiation

Lecture 2 Blackbody radiation Lecture 2 Blackbody radiation Absorption and emission of radiation What is the blackbody spectrum? Properties of the blackbody spectrum Classical approach to the problem Plancks suggestion energy quantisation

More information

Physics. Light Quanta

Physics. Light Quanta Physics Light Quanta Quantum Theory Is light a WAVE or a PARTICLE? Particle tiny object like a bullet, has mass and travels in straight lines unless a force acts upon it Waves phenomena that extend in

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

1 Photon optics! Photons and modes Photon properties Photon streams and statistics

1 Photon optics! Photons and modes Photon properties Photon streams and statistics 1 Photons and modes Photon properties Photon optics! Photon streams and statistics 2 Photon optics! Photons and modes Photon properties Energy, polarization, position, momentum, interference, time Photon

More information

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 QC-2 QUANTUM CHEMISTRY (Classical Concept) Dr. A. DAYALAN,Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai

More information

The Quantum Theory of Atoms and Molecules

The Quantum Theory of Atoms and Molecules The Quantum Theory of Atoms and Molecules Breakdown of classical physics: Wave-particle duality Dr Grant Ritchie Electromagnetic waves Remember: The speed of a wave, v, is related to its wavelength, λ,

More information

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

Lecture 16 Quantum Physics Chapter 28

Lecture 16 Quantum Physics Chapter 28 Lecture 16 Quantum Physics Chapter 28 Particles vs. Waves Physics of particles p = mv K = ½ mv2 Particles collide and do not pass through each other Conservation of: Momentum Energy Electric Charge Physics

More information

The Death of Classical Physics. The Rise of the Photon

The Death of Classical Physics. The Rise of the Photon The Death of Classical Physics The Rise of the Photon A fundamental question: What is Light? James Clerk Maxwell 1831-1879 Electromagnetic Wave Max Planck 1858-1947 Photon Maxwell's Equations (1865) Maxwell's

More information

Theoretical Biophysics. Quantum Theory and Molecular Dynamics. Pawel Romanczuk WS 2017/18

Theoretical Biophysics. Quantum Theory and Molecular Dynamics. Pawel Romanczuk WS 2017/18 Theoretical Biophysics Quantum Theory and Molecular Dynamics Pawel Romanczuk WS 2017/18 http://lab.romanczuk.de/teaching/ 1 Introduction Two pillars of classical theoretical physics at the begin of 20th

More information

Complementi di Fisica Lectures 7-9

Complementi di Fisica Lectures 7-9 Complementi di Fisica Lectures 7-9 Livio Lanceri Università di Trieste Trieste, 07/09-10-2012 Course Outline - Reminder Quantum Mechanics: an introduction Waves as particles and particles as waves (the

More information

Complementi di Fisica Lectures 10, 11

Complementi di Fisica Lectures 10, 11 Complementi di Fisica Lectures 10, 11 Livio Lanceri Università di Trieste Trieste, 07/08-11-2006 Course Outline - Reminder The physics of semiconductor devices: an introduction Quantum Mechanics: an introduction

More information

I. INTRODUCTION AND HISTORICAL PERSPECTIVE

I. INTRODUCTION AND HISTORICAL PERSPECTIVE I. INTRODUCTION AND HISTORICAL PERSPECTIVE A. Failures of Classical Physics At the end of the 19th century, physics was described via two main approaches. Matter was described by Newton s laws while radiation

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom Quantum Mechanics The Behavior of the Very Small Electrons are incredibly small. Electron behavior determines much of the behavior of atoms. Directly

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

Dynamics inertia, mass, force. Including centripetal acceleration

Dynamics inertia, mass, force. Including centripetal acceleration For the Singapore Junior Physics Olympiad, no question set will require the use of calculus. However, solutions of questions involving calculus are acceptable. 1. Mechanics Kinematics position, displacement,

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis:

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis: Announcements HW3: Ch.3-13, 17, 23, 25, 28, 31, 37, 38, 41, 44 HW3 due: 2/16 ** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes,

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Chapter 38. Photons Light Waves Behaving as Particles

Chapter 38. Photons Light Waves Behaving as Particles Chapter 38 Photons Light Waves Behaving as Particles 38.1 The Photoelectric Effect The photoelectric effect was first discovered by Hertz in 1887, and was explained by Einstein in 1905. The photoelectric

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Chapter 38 Quantum Mechanics

Chapter 38 Quantum Mechanics Chapter 38 Quantum Mechanics Units of Chapter 38 38-1 Quantum Mechanics A New Theory 37-2 The Wave Function and Its Interpretation; the Double-Slit Experiment 38-3 The Heisenberg Uncertainty Principle

More information

PARTICLE PHYSICS LECTURE 4. Georgia Karagiorgi Department of Physics, Columbia University

PARTICLE PHYSICS LECTURE 4. Georgia Karagiorgi Department of Physics, Columbia University PARTICLE PHYSICS LECTURE 4 Georgia Karagiorgi Department of Physics, Columbia University SYNOPSIS 2 Session 1: Introduction Session 2: History of Particle Physics Session 3: Special Topics I: Special Relativity

More information

ugrad/361

ugrad/361 Quantum Mechanics and Atomic Physics Monday & Wednesday 1:40-3:00 SEC 209 http://www.physics.rutgers.edu/ugrad/361 Sean Oh ohsean@physics.rutgers.edu sics ed Serin W121 http://www.physics.rutgers.edu/

More information

Physics 2D Lecture Slides Lecture 10. Jan.25, 2010

Physics 2D Lecture Slides Lecture 10. Jan.25, 2010 Physics 2D Lecture Slides Lecture 10 Jan.25, 2010 Radiation from A Blackbody (a) Intensity of Radiation I =! R (#) d# " T 4 I =! T 4 (Area under curve) Stephan-Boltzmann Constant σ = 5.67 10-8 W / m 2

More information

Photoelectric Effect & Bohr Atom

Photoelectric Effect & Bohr Atom PH0008 Quantum Mechanics and Special Relativity Lecture 03 (Quantum Mechanics) 020405v2 Photoelectric Effect & Bohr Atom Prof Department of Physics Brown University Main source at Brown Course Publisher

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

1. Historical perspective

1. Historical perspective Atomic and Molecular Physics/Lecture notes presented by Dr. Fouad Attia Majeed/Third year students/college of Education (Ibn Hayyan)/Department of Physics/University of Babylon. 1. Historical perspective

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

Photoelectric Effect

Photoelectric Effect Photoelectric Effect The ejection of electrons from a surface by the action of light striking that surface is called the photoelectric effect. In this experiment, as you investigate the photoelectric effect,

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Also: Question: what is the nature of radiation emitted by an object in equilibrium

Also: Question: what is the nature of radiation emitted by an object in equilibrium They already knew: Total power/surface area Also: But what is B ν (T)? Question: what is the nature of radiation emitted by an object in equilibrium Body in thermodynamic equilibrium: i.e. in chemical,

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications Unit title: Atomic and Nuclear Physics for Spectroscopic Applications Unit code: Y/601/0417 QCF level: 4 Credit value: 15 Aim This unit provides an understanding of the underlying atomic and nuclear physics

More information

January 2010, Maynooth. Photons. Myungshik Kim.

January 2010, Maynooth. Photons. Myungshik Kim. January 2010, Maynooth Photons Myungshik Kim http://www.qteq.info Contents Einstein 1905 Einstein 1917 Hanbury Brown and Twiss Light quanta In 1900, Max Planck was working on black-body radiation and suggested

More information

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

The term black body was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation. Black body (Redirected from Black-body radiation) As the temperature decreases, the peak of the black body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph

More information

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS CHAPTER 2: POSTULATES OF QUANTUM MECHANICS Basics of Quantum Mechanics - Why Quantum Physics? - Classical mechanics (Newton's mechanics) and Maxwell's equations (electromagnetics theory) can explain MACROSCOPIC

More information

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( )

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( ) Quantum physics Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 (1885-1962) I can safely say that nobody understand quantum physics Richard Feynman

More information

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5) ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5) properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ELECTROMAGNETIC RADIATION subatomic particles (electron,

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

Physics 1161: Lecture 22

Physics 1161: Lecture 22 Physics 1161: Lecture 22 Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 30-4 Everything comes unglued The predictions of classical physics (Newton s laws and Maxwell s equations)

More information

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas Chapter 7: Quantum Theory: Introduction and Principles classical mechanics, the laws of motion introduced in the seventeenth century

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Models of the Atom Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy Quantum Physics at a glance Quantum Physics deals with the study of light and particles at atomic and smaller levels. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom The Quantum Gang Problems with Classical Physics Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom Why this shape? Why the drop? Blackbody Radiation A black body is an ideal system

More information

Nanoelectronics 04. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture ' E = A. ' t gradφ ' ) / ' ) ε ρ

Nanoelectronics 04. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture ' E = A. ' t gradφ ' ) / ' ) ε ρ Nanoelectronics 04 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 23/January/2018 (P/T 005) Quick Review over the Last Lecture Maxwell equations with ( scalar ) potential ( f ) and ( vector

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

QM all started with - - The Spectrum of Blackbody Radiation

QM all started with - - The Spectrum of Blackbody Radiation QM all started with - - The Spectrum of Blackbody Radiation Thermal Radiation: Any object, not at zero temperature, emits electromagnetic called thermal. When we measure the intensity of a real object,

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information