2. Fluid-Flow Equations

Size: px
Start display at page:

Download "2. Fluid-Flow Equations"

Transcription

1 . Fli-Flo Eqation Governing Eqation Conervation eqation for: ma momentm energy (other contitent) Alternative form: integral (control-volme) eqation ifferential eqation Integral (Control-olme) Approach Conier the get of any phyical qantity in any control volme RATE OF CHANGE inie ADECTION throgh onaryof DIFFSION SORCE inie Finite-volme metho for CFD 1

2 Ma Conervation (Continity) Ma conervation: ma i neither create nor etroye (ma) net inar ma flx (ma) net otar ma flx A n (ma) face (ma flx) Ma in a cell: ρ Ma flx throgh a face: C ρ A n ρ A Ma Conervation - Differential Eqation t (ma) net otar ma flx z n y e x (ρ ) (ρa) e (ρa) (ρva) n (ρva) (ρa) t (ρa) (ρδxδyδz ) [(ρ) e (ρ) ]ΔyΔz [(ρv) n (ρv) ]ΔzΔx [(ρ) t (ρ) ]ΔxΔy ρ (ρ) e (ρ) Δx (ρv) n (ρv) Δy (ρ) t (ρ) Δz ρ (ρ) (ρv) (ρ) t x y z ρ (ρ) t Continity in Incompreile Flo t (volme) net otarvolme flx z n y e x v x y z

3 Momentm Eqation Momentm Principle: force = rate of change of momentm F If teay: force = (momentm flx) ot (momentm flx) in If nteay: force = / (momentm inie control volme) + (momentm flx) ot (momentm flx) in Momentm Eqation Rate of change of momentm = force (momentm) net otarmomentm flx force A n (ma ) face (ma flx ) F Momentm of fli in a cell Momentm flx throgh a face = ma = ma flx ( ρ ) ( ρ A) Fli Force Srface force (proportional to area): prere y force tre area vico force: τ μ y Boy force (proportional to volme): z force enity force volme gravity: ρge z g axi R R centrifgal force: ρω R r Corioli force: ρω In inertial frame In rotating frame 3

4 Differential Eqation t (momentm) net momentm flx force z n y e (ρ) (ρa) e e (ρa) (ρva) n n (ρva) (ρa) t t (ρa) p A pe Ae vico an other force x (ρδxδyδz ) [(ρ) ee (ρ) ]ΔyΔz [(ρv) nn (ρv) ]ΔzΔx ( p pe)δyδz vico an other force [(ρ) t t (ρ) ]ΔxΔy (ρ) (ρ) e (ρ) (ρv) n (ρv) (ρ) t (ρ) Δx Δy Δz ( pe p) vico an other force Δx (ρ) (ρ) (ρv) (ρ) p μ other force t x y z x General Scalar Rate of change + net otar flx = orce Amont in a cell: Flx throgh a face: = concentration (amont per nit ma) (ma concentration) A n avection: iffion: ( ρ A) Γ A n (ma flx concentration) (iffivity graient area) Sorce: S (orce enity volme) (ma ) (ma flx Γ A) n face (ρ) (ρ Γ ) (ρv Γ ) (ρ Γ ) t x x y y z z Momentm Component a General Scalar Momentm eqation: (ma ) face ma flx (ma ) (ma flx μ A) other force n face (μ A) face n other force vico force General calar-tranport eqation: (ma ) (ma flx Γ A) n face S elocity component, v, atify inivial calar-tranport eqation: concentration, velocity component iffivity, vicoity orce, S other force Difference: momentm eqation are non-linear momentm eqation are cople the velocity fiel alo ha to e ma-conitent 4

5 Differential Eqation For Fli Flo Form of the eqation in primitive variale may e: Conervative can e integrate irectly to give net flx = orce Non-conervative can t e integrate irectly Other form of the eqation incle thoe for: Derive variale e.g. velocity potential; tream fnction. Example ( y ) g( x) x y y g( x) x conervative non-conervative Same eqation!... t only the firt can e integrate irectly Rate of Change Folloing the Flo t,x) Total erivative (folloing any path x(t) x y z t x y z (x(t), y(t), z(t)) Material erivative (folloing the flo): x, etc D v t x y z D t 5

6 Non-Conervative Flo Eqation conervative form non-conervative form D (ρ) (ρ) (ρv) (ρ) ρ t x y z ( ma conervation) D p ρ μ e.g. momentm eqation: x ma acceleration force Proof: (ρ) (ρ) (ρv) (ρ) t x y z ρ (ρ) (ρv) (ρ) ρ ρ ρv ρ t t x x y y z z ρ (ρ) (ρv) (ρ) t x y z D ρ ycontinity ρ v t x y z D/ yefinition Example Q1 (Eqation Maniplation) In - flo, the continity an x-momentm eqation can e ritten in conervative form a ρ p (ρ) (ρv) ( ρ) (ρ) (ρv) μ t x y t x y x (a) Sho that thee can e ritten in the eqivalent non-conervative form: Dρ v ρ( ) x y D p ρ μ x () Define careflly hat i meant y the tatement that a flo i incompreile. To hat oe the continity eqation rece in incompreile flo? (c) Write on conervative form of the 3- eqation for ma an x-momentm. () Write on the z-momentm eqation, incling the gravitational force. (e) Sho that, for contant-enity flo, prere an gravity can e comine in the momentm eqation via the piezometric prere p + gz. axi R R (f) In a rotating reference frame there are aitional apparent force (per nit volme): centrifgal force: ρω ( Ω r) or r ρω R Corioli force: ρω here Ω i the anglar velocity of the reference frame, i the fli velocity in that frame, r i the poition vector an R i it projection perpeniclar to the axi of rotation. By riting the centrifgal force a the graient of ome qantity ho that it can e me into a moifie prere. Alo, fin the component of the Corioli force if rotation i aot the z axi. Example Q (Exact Soltion) The x-component of the momentm eqation i given y D p ρ μ x ing thi eqation, erive the velocity profile in flly-evelope, laminar flo for: (a) () prere-riven flo eteen tationary parallel plane ( Plane Poieille flo ); contant-prere flo eteen tationary an moving plane ( Coette flo ). Ame flo in the x irection, an oning plane y = an y = h. The velocity i then ((y),,). y (y) h In part (a) oth all are tationary. In part () the pper all lie parallel to the loer all ith velocity. x 6

7 Non-Dimenionaliation - Avantage All ynamically-imilar prolem (ame Re etc.) can e olve ith a ingle comptation The nmer of parameter i rece It inicate the relative ize of ifferent term in the governing eqation: in particlar, hich might e neglecte Comptational variale are imilar ize, yieling etter nmerical accracy Non-Dimenionaliation Form non-imenional variale ing length (L ), velocity ( ) an enity ( ) cale: L,,, ρ ρ ρ x L, ρ x t t p pref p, etc. Stitte into the governing eqation: D p ρ μ x ρ D ρ p μ ρ L L x L D p μ ρ x ρ L D p ρ x 1 Re Ientify important imenionle grop: ρ Re μ L D p 1 ρ x Re Common Dimenionle Grop ρl Re μ Reynol nmer (vico flo; μ = ynamic vicoity) Fr gl Froe nmer (open-channel flo; g = gravity) Ma c Mach nmer (compreile flo; c = pee of on) Ro ΩL Roy nmer (rotating flo; Ω = anglar velocity of frame) ρ L We σ Weer nmer (free-rface flo; σ = rface tenion) 7

8 Smmary (1) The fli-flo eqation are conervation eqation for: ma momentm energy (aitional contitent) The eqation can e ritten in eqivalent integral (control-volme) or ifferential form The finite-volme metho i a irect icretiation of the control-volme eqation Differential form of the flo eqation may e conervative or nonconervative For any conerve property an aritrary control volme: rate of change + net otar flx = orce Smmary () There are really jt to canonical eqation to olve: ma conervation (continity) a generic calar-tranport eqation Each Carteian velocity component atifie it on calar-tranport eqation Hoever, the momentm eqation are: non-linear cople alo reqire to e ma-conitent Non-imenionaliation: olve ynamically-imilar (Re, Fr, Ro, ) flo ith a ingle comptation rece the nmer of parameter ientifie relative importance of ifferent term in eqation maintain nmerical variale of imilar ize 8

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Nuclear and Particle Physics - Lecture 16 Neutral kaon decays and oscillations

Nuclear and Particle Physics - Lecture 16 Neutral kaon decays and oscillations 1 Introction Nclear an Particle Phyic - Lectre 16 Netral kaon ecay an ocillation e have alreay een that the netral kaon will have em-leptonic an haronic ecay. However, they alo exhibit the phenomenon of

More information

Bifurcation analysis of the statics and dynamics of a logistic model with two delays

Bifurcation analysis of the statics and dynamics of a logistic model with two delays Plihe in the Chao, Soliton & Fractal, Vol. 8, Ie, April 6, Page 54 554 Bifrcation analyi of the tatic an ynamic of a logitic moel with two elay. Berezowi, E. Fała Sileian Univerity of Technology Intitte

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,, Pr) N f (, Pr) he Empirical Method he empirical correlation N C he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m, n var

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,Re,Pr) N f (Re,Pr) he Empirical Method he empirical correlation N C Re he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m,

More information

Net Force on a Body Completely in a Fluid. Natural Convection Heat Transfer. Net Buoyancy Force and Temperature

Net Force on a Body Completely in a Fluid. Natural Convection Heat Transfer. Net Buoyancy Force and Temperature Natral Conection eat ranfer Net Force on a Bo Comletel in a Fli he net force alie to a bo comletel bmere in a fli i Bo F W F net bo bo boanc V bo fli fli V V bo bo W F boanc Fli q he bo can be a blk of

More information

OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIELD OF A POLYHEDRAL BODY WITH LINEARLY INCREASING DENSITY 1

OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIELD OF A POLYHEDRAL BODY WITH LINEARLY INCREASING DENSITY 1 OPTIMUM EXPRESSION FOR COMPUTATION OF THE GRAVITY FIEL OF A POLYHERAL BOY WITH LINEARLY INCREASING ENSITY 1 V. POHÁNKA2 Abstract The formla for the comptation of the gravity field of a polyhedral body

More information

Complementing the Lagrangian Density of the E. M. Field and the Surface Integral of the p-v Vector Product

Complementing the Lagrangian Density of the E. M. Field and the Surface Integral of the p-v Vector Product Applie Mathematics,,, 5-9 oi:.436/am..4 Pblishe Online Febrary (http://www.scirp.org/jornal/am) Complementing the Lagrangian Density of the E. M. Fiel an the Srface Integral of the p- Vector Proct Abstract

More information

Rainer Friedrich

Rainer Friedrich Rainer Frierich et al Rainer Frierich rfrierich@lrztme Holger Foysi Joern Sesterhenn FG Stroemngsmechanik Technical University Menchen Boltzmannstr 5 D-85748 Garching, Germany Trblent Momentm an Passive

More information

DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS

DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS Forth International Conference on CFD in the Oil and Gas, Metallrgical & Process Indstries SINTEF / NTNU Trondheim, Noray 6-8 Jne 005 DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS John MORUD 1 1 SINTEF

More information

Effect of Bubbles Number on Cavitating Flow Through a Venturi

Effect of Bubbles Number on Cavitating Flow Through a Venturi Ninth International Conference on Comtational Fli ynamic (ICCF9), Itanbl, Trkey, Jly -5, 06 ICCF9- Effect of Bbble Nmber on Caitating Flow Throgh a Ventri Mohamme ZAMOUM, Mohan KESSA, achi BOUCETTA aboratoire

More information

Desert Mountain H. S. Math Department Summer Work Packet

Desert Mountain H. S. Math Department Summer Work Packet Corse #50-51 Desert Montain H. S. Math Department Smmer Work Packet Honors/AP/IB level math corses at Desert Montain are for stents who are enthsiastic learners of mathematics an whose work ethic is of

More information

PHASE-FIELD SIMULATION OF SOLIDIFICATION WITH DENSITY CHANGE

PHASE-FIELD SIMULATION OF SOLIDIFICATION WITH DENSITY CHANGE Proceeing of IMECE04 004 ASME International Mechanical Engineering Congre an Epoition November 3-0, 004, Anaheim, California USA IMECE004-60875 PHASE-FIELD SIMULATION OF SOLIDIFICATION WITH DENSITY CHANGE

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

22. SEISMIC ANALYSIS USING DISPLACEMENT LOADING. Direct use of Earthquake Ground Displacement in a Dynamic Analysis has Inherent Numerical Errors

22. SEISMIC ANALYSIS USING DISPLACEMENT LOADING. Direct use of Earthquake Ground Displacement in a Dynamic Analysis has Inherent Numerical Errors 22. SEISIC ANALYSIS USING DISPLACEENT LOADING Direct e of Earthqake Grond Diplacement in a Dynamic Analyi ha Inherent Nmerical Error 22.1 INTRODUCTION { XE "Diplacement Seimic Loading" }ot eimic trctral

More information

BOUNDARY LAYER FLOW: APPLICATION TO EXTERNAL FLOW

BOUNDARY LAYER FLOW: APPLICATION TO EXTERNAL FLOW CHAPER 4 4. Introction BOUNDARY AYER FOW: APPICAION O EXERNA FOW Navier-Stoe eqation an te energ eqation are impliie ing te bonar laer concept. Uner pecial conition certain term in te eqation can be neglecte.

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK 2 SOLUTIONS PHIL SAAD 1. Carroll 1.4 1.1. A qasar, a istance D from an observer on Earth, emits a jet of gas at a spee v an an angle θ from the line of sight of the observer. The apparent spee

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrical oule layer: reviit ae on ounary conition Jong U. Kim Department of Electrical an Computer Engineering, Texa A&M Univerity College Station, TX 77843-38, USA Atract The electrical oule layer at

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting Fonations of the metho of M fiel separation into pgoing an ongoing parts an its application to MCSM ata Michael S. Zhanov an Shming Wang*, Universit of Utah Smmar The renee interest in the methos of electromagnetic

More information

Logarithmic, Exponential and Other Transcendental Functions

Logarithmic, Exponential and Other Transcendental Functions Logarithmic, Eponential an Other Transcenental Fnctions 5: The Natral Logarithmic Fnction: Differentiation The Definition First, yo mst know the real efinition of the natral logarithm: ln= t (where > 0)

More information

2.0 ANALYTICAL MODELS OF THERMAL EXCHANGES IN THE PYRANOMETER

2.0 ANALYTICAL MODELS OF THERMAL EXCHANGES IN THE PYRANOMETER 2.0 ANAYTICA MODE OF THERMA EXCHANGE IN THE PYRANOMETER In Chapter 1, it wa etablihe that a better unertaning of the thermal exchange within the intrument i neceary to efine the quantitie proucing an offet.

More information

Solving Ordinary differential equations with variable coefficients

Solving Ordinary differential equations with variable coefficients Jornal of Progreive Reearch in Mathematic(JPRM) ISSN: 2395-218 SCITECH Volme 1, Ie 1 RESEARCH ORGANISATION Pblihe online: November 3, 216 Jornal of Progreive Reearch in Mathematic www.citecreearch.com/jornal

More information

Solution 3.1 Prove the following: γ d. (a) Start with fundamental definitions: V = (b) e = 1 n. wg e S =

Solution 3.1 Prove the following: γ d. (a) Start with fundamental definitions: V = (b) e = 1 n. wg e S = Solution. Prove the folloing: (a) G + e Start ith funamental efinition: W ; W V G ; V V V V G G V (l + e) l + e (l + e) ; ubitute for W an V (b) e n n S G e G ( n) n Solution.2 Dr D r relative enity hich

More information

TRANSIENT FREE CONVECTION MHD FLOW BETWEEN TWO LONG VERTICAL PARALLEL PLATES WITH VARIABLE TEMPERATURE AND UNIFORM MASS DIFFUSION IN A POROUS MEDIUM

TRANSIENT FREE CONVECTION MHD FLOW BETWEEN TWO LONG VERTICAL PARALLEL PLATES WITH VARIABLE TEMPERATURE AND UNIFORM MASS DIFFUSION IN A POROUS MEDIUM VOL. 6, O. 8, AUGUST ISS 89-668 ARP Jornal of Engineering an Applie Sciences 6- Asian Research Pblishing etork (ARP). All rights reserve. TRASIET FREE COVECTIO MD FLOW BETWEE TWO LOG VERTICAL PARALLEL

More information

Mehmet Pakdemirli* Precession of a Planet with the Multiple Scales Lindstedt Poincare Technique (2)

Mehmet Pakdemirli* Precession of a Planet with the Multiple Scales Lindstedt Poincare Technique (2) Z. Natrforsch. 05; aop Mehmet Pakemirli* Precession of a Planet with the Mltiple Scales Linstet Poincare Techniqe DOI 0.55/zna-05-03 Receive May, 05; accepte Jly 5, 05 Abstract: The recently evelope mltiple

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of bonary layer Thickness an classification Displacement an momentm Thickness Development of laminar an trblent flows in circlar pipes Major an

More information

Fluid Dynamics in a High Shear Granulator. Anders Darelius

Fluid Dynamics in a High Shear Granulator. Anders Darelius Chemical Enineerin Dein Flid Dynamic in a Hih Shear Granlator -Experiment and Mechanitic Modellin Ander Dareli Chemical Enineerin Dein Department of Chemical and Bioloial Enineerin Chalmer Ander Dareli

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

Geometric Transformations. Ceng 477 Introduction to Computer Graphics Fall 2007 Computer Engineering METU

Geometric Transformations. Ceng 477 Introduction to Computer Graphics Fall 2007 Computer Engineering METU Geometric ranormation Ceng 477 Introdction to Compter Graphic Fall 7 Compter Engineering MEU D Geometric ranormation Baic Geometric ranormation Geometric tranormation are ed to tranorm the object and the

More information

2.13 Variation and Linearisation of Kinematic Tensors

2.13 Variation and Linearisation of Kinematic Tensors Section.3.3 Variation an Linearisation of Kinematic ensors.3. he Variation of Kinematic ensors he Variation In this section is reviewe the concept of the variation, introce in Part I, 8.5. he variation

More information

n s n Z 0 on complex-valued functions on the circle. Then sgn n + 1 ) n + 1 2) s

n s n Z 0 on complex-valued functions on the circle. Then sgn n + 1 ) n + 1 2) s . What is the eta invariant? The eta invariant was introce in the famos paper of Atiyah, Patoi, an Singer see [], in orer to proce an inex theorem for manifols with bonary. The eta invariant of a linear

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V.

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V. International Jornal of Atomotive and Mechanical Engineering (IJAME) ISSN: 9-8649 (int); ISSN: 18-166 (Online); Volme pp. 31-38 Jly-December 1 niversiti Malaysia Pahang DOI: http://dx.doi.org/1.158/ijame..11.11.19

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

model considered before, but the prey obey logistic growth in the absence of predators. In

model considered before, but the prey obey logistic growth in the absence of predators. In 5.2. First Orer Systems of Differential Equations. Phase Portraits an Linearity. Section Objective(s): Moifie Preator-Prey Moel. Graphical Representations of Solutions. Phase Portraits. Vector Fiels an

More information

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes Final Comprehenive Exam Phyical Mechanic Friday December 15, 000 Total 100 Point Time to complete the tet: 10 minute Pleae Read the Quetion Carefully and Be Sure to Anwer All Part! In cae that you have

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Framework Model For Single Proton Conduction through Gramicidin

Framework Model For Single Proton Conduction through Gramicidin 2 Biophyical Journal Volume 80 January 200 2 30 Framework Moel For Single Proton Conuction through Gramiciin Mark F. Schumaker,* Régi Pomè, an Benoît Roux * Department of Pure an Applie Mathematic, Wahington

More information

THE DISPLACEMENT GRADIENT AND THE LAGRANGIAN STRAIN TENSOR Revision B

THE DISPLACEMENT GRADIENT AND THE LAGRANGIAN STRAIN TENSOR Revision B HE DISPLACEMEN GRADIEN AND HE LAGRANGIAN SRAIN ENSOR Revision B By om Irvine Email: tom@irvinemail.org Febrary, 05 Displacement Graient Sppose a boy having a particlar configration at some reference time

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems Interrogative Simlation and Uncertainty Qantification of Mlti-Disciplinary Systems Ali H. Nayfeh and Mhammad R. Hajj Department of Engineering Science and Mechanics Virginia Polytechnic Institte and State

More information

5.1 Heat removal by coolant flow

5.1 Heat removal by coolant flow 5. Convective Heat Transfer 5.1 Heat removal by coolant flow Fel pellet Bond layer Cladding tbe Heat is transferred from the srfaces of the fel rods to the coolant. T Temperatre at center of fc fel pellet

More information

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration).

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration). Deriation of the basic eqations of flid flos. No article in the flid at this stage (net eek). Conseration of mass of the flid. Conseration of mass of a solte (alies to non-sinking articles at lo concentration).

More information

Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flow

Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flow 3 Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flo In essence, the conjugate heat transfer problem consiers the thermal interaction beteen a boy an a flui floing over or insie it. As

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

Modeling of a Self-Oscillating Cantilever

Modeling of a Self-Oscillating Cantilever Moeling of a Self-Oscillating Cantilever James Blanchar, Hi Li, Amit Lal, an Doglass Henerson University of Wisconsin-Maison 15 Engineering Drive Maison, Wisconsin 576 Abstract A raioisotope-powere, self-oscillating

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Modal Transient Analysis of a Beam with Enforced Motion via a Ramp Invariant Digital Recursive Filtering Relationship

Modal Transient Analysis of a Beam with Enforced Motion via a Ramp Invariant Digital Recursive Filtering Relationship oal ransient Analysis of a Beam ith Enforce otion via a Ramp nvariant Digital Recrsive iltering Relationship By om rvine Email: tomirvine@aol.com December, Variables f f ass matrix Stiness matrix Applie

More information

Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion Ion Correlations

Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion Ion Correlations Cite Thi: Langmuir 18, 4, 1197111985 pub.ac.org/langmuir Electrical ouble Layer: Effect of Aymmetry in Electrolyte Valence on Steric Effect, ielectric ecrement, an IonIon Correlation Ankur Gupta an Howar

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

Objective: To introduce the equations of motion and describe the forces that act upon the Atmosphere

Objective: To introduce the equations of motion and describe the forces that act upon the Atmosphere Objective: To introuce the equations of motion an escribe the forces that act upon the Atmosphere Reaing: Rea pp 18 6 in Chapter 1 of Houghton & Hakim Problems: Work 1.1, 1.8, an 1.9 on pp. 6 & 7 at the

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Lecture 7 Grain boundary grooving

Lecture 7 Grain boundary grooving Lecture 7 Grain oundary grooving The phenomenon. A polihed polycrytal ha a flat urface. At room temperature, the urface remain flat for a long time. At an elevated temperature atom move. The urface grow

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles Study of a Freely Falling Ellipe with a Variety of Apect Ratio and Initial Angle Dedy Zulhidayat Noor*, Ming-Jyh Chern*, Tzyy-Leng Horng** *Department of Mechanical Engineering, National Taiwan Univerity

More information

WJEC Core 2 Integration. Section 1: Introduction to integration

WJEC Core 2 Integration. Section 1: Introduction to integration WJEC Core Integration Section : Introuction to integration Notes an Eamples These notes contain subsections on: Reversing ifferentiation The rule for integrating n Fining the arbitrary constant Reversing

More information

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae Copyright c 27 ICCES ICCES, vol.4, no.1, pp.19-24, 27 Nmerical Simlation of Three Dimensional Flo in Water Tank of Marine Fish Larvae Shigeaki Shiotani 1, Atsshi Hagiara 2 and Yoshitaka Sakakra 3 Smmary

More information

Heat Transfer Enhancement in A Two Dimensional Semi-Circular Protrusion on Fin Surface at A Constant Heat Flux (CHF) Condition

Heat Transfer Enhancement in A Two Dimensional Semi-Circular Protrusion on Fin Surface at A Constant Heat Flux (CHF) Condition IJSRD - International Jornal for Scientific Research & Development Vol, Isse, ISS (online): - Heat Transfer Enhancement in A Two Dimensional Semi-irclar Protrsion on Fin Srface at A onstant Heat Flx (HF)

More information

Further Investigations of Colorant Database Development for Two-Constant Kubelka- Munk Theory for Artist Acrylic and Oil Paints

Further Investigations of Colorant Database Development for Two-Constant Kubelka- Munk Theory for Artist Acrylic and Oil Paints Frther Invetigation of Colorant Databae Development for ToContant bela Mn Theory for Artit Acrylic and Oil Paint Yonghi Zhao Roy. Bern Jne 2006 Abtract It i a common practice to prepare tint ladder of

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Nmerical Methos for Engineering Design an Optimization in Li Department of ECE Carnegie Mellon University Pittsbrgh, PA 53 Slie Overview Geometric Problems Maximm inscribe ellipsoi Minimm circmscribe

More information

Abstract. Introduction

Abstract. Introduction Capillary Flow of Dicotic Nematic Liqid Crytal Onion Textre Liz R.P. de Andrade a; Alejandro D. Rey Department of Chemical Engineering, McGill Univerity 60 Univerity Street, Montreal, Qebec, Canada HA

More information

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA Modeling Effort on Chamber Clearing for IFE Liqid Chambers at UCLA Presented by: P. Calderoni own Meeting on IFE Liqid Wall Chamber Dynamics Livermore CA May 5-6 3 Otline his presentation will address

More information

EXERCISES FOR SECTION 6.3

EXERCISES FOR SECTION 6.3 y 6. Secon-Orer Equation 499.58 4 t EXERCISES FOR SECTION 6.. We ue integration by part twice to compute Lin ωt Firt, letting u in ωt an v e t t,weget Lin ωt in ωt e t e t lim b in ωt e t t. in ωt ω e

More information

Torque Ripple minimization techniques in direct torque control induction motor drive

Torque Ripple minimization techniques in direct torque control induction motor drive orque Ripple minimization technique in irect torque control inuction motor rive inoini Bhole At.Profeor, Electrical Department College of Engineering, Pune, INDIA vbb.elec@coep.ac.in B.N.Chauhari Profeor,Electrical

More information

arxiv: v1 [physics.flu-dyn] 7 Oct 2014

arxiv: v1 [physics.flu-dyn] 7 Oct 2014 9 th Symposim on Naval Hyroynamics Gothenbrg, Sween, 6-3 Agst arxiv:4.896v physics.fl-yn] 7 Oct 4 Nmerical Simlation of Internal Tie Generation at a Continental Shelf Brea Lara K. Brant, James W. Rottman,

More information

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63 5 Kragjevac J. Sci. 34 () 5-. UDC 53.5: 536.4:537.63 UNSTEADY MHD FLOW AND HEAT TRANSFER BETWEEN PARALLEL POROUS PLATES WITH EXPONENTIAL DECAYING PRESSURE GRADIENT Hazem A. Attia and Mostafa A. M. Abdeen

More information

t=4m s=0 u=0 t=0 u=4m s=4m 2

t=4m s=0 u=0 t=0 u=4m s=4m 2 Chapter 15 Appendix A: Variable The Mandeltam In Chapter. we already encontered diæerent invariant kinematical qantitie. We generalize Fig...1 inofar that we leave open which particle are incoming and

More information

Chapter 4: Fundamental Forces

Chapter 4: Fundamental Forces Chapter 4: Fundamental Forces Newton s Second Law: F=ma In atmospheric science it is typical to consider the force per unit mass acting on the atmosphere: Force mass = a In order to understand atmospheric

More information

Momentum and Energy. Chapter Conservation Principles

Momentum and Energy. Chapter Conservation Principles Chapter 2 Momentum an Energy In this chapter we present some funamental results of continuum mechanics. The formulation is base on the principles of conservation of mass, momentum, angular momentum, an

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

7. Differentiation of Trigonometric Function

7. Differentiation of Trigonometric Function 7. Differentiation of Trigonoetric Fnction RADIAN MEASURE. Let s enote the length of arc AB intercepte y the central angle AOB on a circle of rais r an let S enote the area of the sector AOB. (If s is

More information

EGN 3353C Fluid Mechanics

EGN 3353C Fluid Mechanics eture 5 Bukingham PI Theorem Reall dynami imilarity beteen a model and a rototye require that all dimenionle variable mut math. Ho do e determine the '? Ue the method of reeating variable 6 te Ste : Parameter

More information

Microscale physics of fluid flows

Microscale physics of fluid flows Microscale physics of flid flows By Nishanth Dongari Senior Undergradate Department of Mechanical Engineering Indian Institte of Technology, Bombay Spervised by Dr. Sman Chakraborty Ot line What is microflidics

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. Uniqueness for solutions of ifferential equations. We consier the system of ifferential equations given by x = v( x), () t with a given initial conition

More information

2.20 Marine Hydrodynamics Lecture 3

2.20 Marine Hydrodynamics Lecture 3 2.20 Marine Hyroynamics, Fall 2018 Lecture 3 Copyright c 2018 MIT - Department of Mechanical Engineering, All rights reserve. 1.7 Stress Tensor 2.20 Marine Hyroynamics Lecture 3 1.7.1 Stress Tensor τ ij

More information

Journal of Physical Mathematics

Journal of Physical Mathematics Journal of Phyical Mathematic ISSN: 090-090 Journal of Phyical Mathematic Eienman, J Phy Math 06, 7:3 DOI: 0.47/090-090.00098 Reearch rticle rticle Open Open cce Back to Galilean Tranformation an Newtonian

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

Analysis of Passive Suspension System using MATLAB, Simulink and SimScape

Analysis of Passive Suspension System using MATLAB, Simulink and SimScape Analyi of Paive Spenion Sytem ing ATLAB, Simlink and SimScape iran Antony Atract The prpoe of the penion ytem in atomoile i to improve ride comfort and road handling. In thi crrent work the ride and handling

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Adjoint-Based Optimization for Rigid Body Motion in Multiphase Navier-Stokes Flow

Adjoint-Based Optimization for Rigid Body Motion in Multiphase Navier-Stokes Flow Adjoint-Based Optimization for Rigid Body Motion in Mltiphase Navier-Stokes Flow Jlia Springer nd Karsten Urban Preprint Series: 2014-03 Fakltät für Mathematik nd Wirtschaftswissenschaften UNIVERSITÄT

More information

Math 273b: Calculus of Variations

Math 273b: Calculus of Variations Math 273b: Calcls of Variations Yacob Kreh Homework #3 [1] Consier the 1D length fnctional minimization problem min F 1 1 L, or min 1 + 2, for twice ifferentiable fnctions : [, 1] R with bonary conitions,

More information

OCN-ATM-ESS 587. Simple and basic dynamical ideas.. Newton s Laws. Pressure and hydrostatic balance. The Coriolis effect. Geostrophic balance

OCN-ATM-ESS 587. Simple and basic dynamical ideas.. Newton s Laws. Pressure and hydrostatic balance. The Coriolis effect. Geostrophic balance OCN-ATM-ESS 587 Simple and basic dynamical ideas.. Newton s Laws Pressure and hydrostatic balance The Coriolis effect Geostrophic balance Lagrangian-Eulerian coordinate frames Coupled Ocean- Atmosphere

More information

Lecture 8. MOS (Metal Oxide Semiconductor) Structures

Lecture 8. MOS (Metal Oxide Semiconductor) Structures Lecture 8 MOS (Metal Oie Semiconuctor) Structure In thi lecture you will learn: The funamental et of equation governing the behavior of MOS capacitor Accumulation, Flatban, Depletion, an Inverion Regime

More information

Q2. The velocity field in a fluid flow is given by

Q2. The velocity field in a fluid flow is given by Kinematics of Flid Q. Choose the correct anser (i) streamline is a line (a) hich is along the path of a particle (b) dran normal to the elocit ector at an point (c) sch that the streamlines diide the passage

More information

Non-Lecture I: Linear Programming. Th extremes of glory and of shame, Like east and west, become the same.

Non-Lecture I: Linear Programming. Th extremes of glory and of shame, Like east and west, become the same. The greatest flood has the soonest ebb; the sorest tempest the most sdden calm; the hottest love the coldest end; and from the deepest desire oftentimes enses the deadliest hate. Th extremes of glory and

More information

1 )( )( )( TRANSPORTATION. Energy Cost of Transport. Problem Set Solutions

1 )( )( )( TRANSPORTATION. Energy Cost of Transport. Problem Set Solutions TRANSPORTATION Energy Cot of Tranport Problem Set Solution For the following problem, we have provie all of the value neee to olve them. However, thee number are relatively eay to etimate or fin online

More information

DESIGN OF CONTROLLERS FOR STABLE AND UNSTABLE SYSTEMS WITH TIME DELAY

DESIGN OF CONTROLLERS FOR STABLE AND UNSTABLE SYSTEMS WITH TIME DELAY DESIGN OF CONTROLLERS FOR STABLE AND UNSTABLE SYSTEMS WITH TIME DELAY P. Dotál, V. Bobál Department of Proce Control, Facult of Technolog, Toma Bata Univerit in Zlín Nám. T. G. Maarka 75, 76 7 Zlín, Czech

More information

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code A Flly-Neoclassical Finite-Orbit-Width Version of the CQL3 Fokker-Planck code CompX eport: CompX-6- Jly, 6 Y. V. Petrov and. W. Harvey CompX, el Mar, CA 94, USA A Flly-Neoclassical Finite-Orbit-Width Version

More information