Entropy generation minimization in transient heat conduction processes PART II Transient heat conduction in solids

Size: px
Start display at page:

Download "Entropy generation minimization in transient heat conduction processes PART II Transient heat conduction in solids"

Transcription

1 BULLEIN OF HE POLISH ACADEMY OF SCIENCES ECHNICAL SCIENCES, Vol. 6, No., 1 DOI: 1.78/bpasts-1-97 Entropy generation minimization in transient heat conduction processes PAR II ransient heat conduction in solids Z.S. KOLENDA J.S. SZMYD AGH University of Science echnology, Department of Fundamental Research in Energy Engineering, 3 Mickiewicza Ave., 3-59 Kraków, Pol Abstract. Formulation solution of the initial boundary-value problem of heat conduction in solids have been presented when an entropy generation minimization principle is imposed as the arbitrary constraint. Using an entropy balance equation the Euler-Lagrange variational approach a new form of the heat conduction equation (non-linear partial difference equation) is derived. Key words: transient heat conduction, initial boundary value problem, entropy generation minimization. Nomenclature c constants, c p specific heat capacity [kj/kg K], i internal, k heat conduction coefficient [W/m K], L Wiedemann-Franz constant [W/A K], ṁ mass flow rate [kg/h], q heat flux [W/m ], q v intensity of internal heat source [W/m 3 ], ṡ entropy flux [W/m K], Ṡ gen entropy generation due to the process irreversibility [W/m 3 K], absolute temperature [K], x, y Cartesian coordinates, Θ transformed temperature, Ω domain, operator nabla, - time, ρ density, λ Lagrange multiplier, δ difference. Indexes He helium, in entering, o environment, out leaving, t total, x,y partial derivatives with respects to x y. 1. Introduction he transient heat conduction equation assuming minimization of the entropy generation rate, Ṡ gen,min, can be derived in two ways from the Euler-Lagrange variational principle or direct minimization of the expression describing entropy generation rate. Euler-Lagrange transient heat conduction equation. he function to be minimized is Ṡ gen = Ω = k d, where k is thermal conductivity coefficient (assumed constant), = (x, y, z, ) temperature field, denotes time Ω is the domain model consideration, with additional condition S dωd = C, (1) Ω = where S = S(Ω, ) is entropy of the system C is constant. Condition (1) represents entropy change of the system from initial to final equilibrium state. he problem can be dealt with by means of Lagrange s method of undetermined multipliers as follows Find function (x, y, z, ) which satisfying required initial boundary conditions minimizes simultaneously integral Ṡ gen = Ω = k d minimum over the whole domain Ω provided that S dωd = C. Ω = kolenda@agh.edu.pl 883

2 Z.S. Kolenda J.S. Szmyd o solve the problem a new function [1] K = k + λ S is introduced where λ is the Lagrange multiplier. he extremals must satisfy the Euler-Lagrange equation K 3 ( ) d K =, dx i xi i=1 where xi denotes gradient components / x i, (x i = x, y, z). Introducing from thermodynamics ds d = ρc p function K is K = k + λρc p () Varational calculus requires the function () must satisfy the Euler-Lagrange equation K ( ) K ( ) K ( ) K =. x x y y z z After calculations k k + λ ρc p =. (3) From the fact that the third component of Eq. (3) does not depend on the path of the process, value of λ can be chosen arbitrary. Assuming λ =, Eq. (3) becomes in the final form a a =, () where a = k/ρc p is diffusion coefficient. Additional external heat source q v,ad is described by the second term of Eq. () is. Numerical example q v,a = a. Consider 1D classical initial-boundary problem given by: (in dimensionless form) governing equations x =, = (x, ), x ( 1, 1), (5) (1, ) = (1) = 1, ( 1, ) = ( 1) = 1, (x, ) = (x) = e. A general scheme is presented in Fig. 1. Analytical solution can be easily obtained with separation of variables method is (x, ) = 1 + ( 1) n [ π n + 1 exp (n + 1) π ] n= cos(n + 1) π (6) x. Fig. 1. Initial boundary value problem When the entropy generation minimization approach is applied, the initial-boundary value problem takes the form: (dimensionless form) governing equations x 1 with boundary conditions initial conditions Introducing new variable ( ) = x, = (x, ), x ( 1, 1), ( 1, ) = 1, (1, ) = 1, (x, ) = (x) = e. θ (x, ) = ln(x, ) initial-boundary value problem becomes θ x = θ, θ = θ(x, ) (7) θ (, ) =, θ (1, ) =, θ (x, ) = 1. Its analytical solution is [] θ(x, ) = ( 1) n [ π n + 1 exp (n + 1) π ] n= cos(n + 1) π (8) x (x, ) = exp (θ(x, )). Solutions (6) (8) are presented in Figs. 3 respectively. Difference δ = (x, ) clasical (x, )Ṡgen (9) 88 Bull. Pol. Ac.: ech. 6() 1

3 Entropy generation minimization in transient heat conduction processes. Part II. Fig.. Solution of classical problem Fig. 3. Solution with entropy generation minimization condition Fig.. emperature difference δ(x,) according to Eq. (9) Bull. Pol. Ac.: ech. 6() 1 885

4 Z.S. Kolenda J.S. Szmyd is shown in Fig. where (x, ) clasical (x, )Ṡgen are solutions of classical entropy generation minimization initial-boundary value problems (5) (7). Solutions (6) (8) allow to calculate entropy generation rates Ṡ gen,t = 1 Ṡ gen,t = 1 1 Numerical calculations gives ( ) (x, ) dxd x ( ) θ(x, ) dxd. x classical initial-boundary value problem Ṡ gen,cl =.33 (J/m 3 K), entropy generation minimization Ṡ gen,cl =.67 (J/m 3 K). 3. Example of general solution 3.1. Initial-boundary value problem when boundary conditions depends on time. governing equations (dimensionless form) After transformation the problem is x 1 ( ) = x, = (x, ), x (, 1), (, ) = φ 1 (), (1, ) = φ (), (x, ) = f(x). θ (x, ) = ln(x, ) θ x = θ,, θ (, ) = lnφ 1 (), θ (1, ) = lnφ (), θ (x, ) = lnf(x) its solution is given with the use of Duhamel s theorem []: θ(x, ) = exp ( n π ) sin(nπx) + nπ 1 n= lnf(x ) π sin(nπx )dx + exp ( n π λ ) {lnφ 1 (x) ( 1) n lnφ (x)} (x, ) = exp (θ(x, )). In such cases entropy generation rate calculation requires numerical calculation. 3.. Consider D initial-boundary value problem. governing equations (dimensionless form) [ ( x + y 1 ) ( ) ] + x y After introducing the problem takes the form = (x, ), x, y ( 1, 1), (x, 1, ) = (x, 1, ) = ( 1, y, ) = (1, y, ) = 1, (x, y, ) = (x, y). θ (x, y, ) = ln(x, y, ) θ x + θ y = θ =, θ (x, 1, ) = θ (x, 1, ) = θ ( 1, y, ) = θ (1, y, ) =, θ (x, y, ) = θ (x, y) = ln (x, y). he solution for θ is [3]: x θ (x, y, ) = ψ(x, 1) ψ(y, 1)erf, where finally ψ(x, 1) = π n= ( 1) n [ n + 1 exp (n + 1) π ] cos(n + 1) π x (x, y, ) = exp (θ(x, y, )). 886 Bull. Pol. Ac.: ech. 6() 1

5 Entropy generation minimization in transient heat conduction processes. Part II. Solutions of many initial boundary-value problems can be found in heat transfer literature, [] in monographs on analytical solutions of non-linear partial differential equations [3].. Conclusions he results illustrate a practical aspect of the Principle of Entropy Generation Minimization [] that: he entropy of a system can be reduced only if it is made to interact with one or more auxiliary systems in a process which impacts to these at least a compensating amount of entropy. In the case of heat conduction processes interaction with outside systems are realized by additional internal heat source which becomes as the component of Euler-Lagrange equation. In this way it is possible to explain formation processes of dissipative structures [5]. Additional heat source decreases irreversibility ratio. Analysis of the data presented in Fig. (δ(x, )) points out that the temperature changes with time are more intensive (faster) when the source is included. It leads directly to more effective consumption of driving energy minimization of natural resources. he method is directly connected with exergy optimization. Acknowledgements. Authors are grateful for the support of the Ministry of Science Higher Education (grant AGH no ). REFERENCES [1] A. Bejan, Entropy Generation Minimizations, CRC Press, Boca Raton, [] H.S. Carslaw J.C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, [3] A.P. Polyanin V.F. Zaitsev, Hbook of Nonlinear Partial Differential Equations, Chatman & Hall/CRC, Boca Raton, 3. [] F. Reif, Statistical physics, in Berkley Physics Course, vol. 5, p. 31, MacGraw-Hill, New York, [5] D. Kondepudi I. Prigogine, Modern hermodynamics, John Wiley&Sons, Chichester, Bull. Pol. Ac.: ech. 6() 1 887

Entropy Generation Analysis of Transient Heat Conduction in a Solid Slab with Fixed Temperature Boundary Conditions

Entropy Generation Analysis of Transient Heat Conduction in a Solid Slab with Fixed Temperature Boundary Conditions WSEAS RASACIOS on HEA and MASS RASFER Entropy Generation Analysis of ransient Heat Conduction in a Solid Slab with Fixed emperature Boundary Conditions SOMPOP JARUGHAMMACHOE Mechanical Engineering Department

More information

Chapter 2 Thermodynamics

Chapter 2 Thermodynamics Chapter 2 Thermodynamics 2.1 Introduction The First Law of Thermodynamics is a statement of the existence of a property called Energy which is a state function that is independent of the path and, in the

More information

Investigation of transient heat transfer in composite walls using carbon/epoxy composites as an example

Investigation of transient heat transfer in composite walls using carbon/epoxy composites as an example archives of thermodynamics Vol. 36(2015), No. 4, 87 105 DOI: 10.1515/aoter-2015-0035 Investigation of transient heat transfer in composite walls using carbon/epoxy composites as an example JANUSZ TERPIŁOWSKI

More information

A problem of entropy generation in a channel filled with a porous medium

A problem of entropy generation in a channel filled with a porous medium CREATIVE MATH. & INF. 7 (8), No. 3, 357-36 Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 584-86X Online Edition: ISSN 843-44X Dedicated to Professor Iulian Coroian on the occasion

More information

OPTIMIZATION OF AN IRREVERSIBLE OTTO AND DIESEL CYCLES BASED ON ECOLOGICAL FUNCTION. Paraná Federal Institute, Jacarezinho, Paraná, Brasil.

OPTIMIZATION OF AN IRREVERSIBLE OTTO AND DIESEL CYCLES BASED ON ECOLOGICAL FUNCTION. Paraná Federal Institute, Jacarezinho, Paraná, Brasil. OPIMIZAION OF AN IRREVERSIBE OO AND DIESE CYCES BASED ON ECOOGICA FUNCION André. S. MOSCAO *, Santiago D. R. OIVEIRA, Vicente. SCAON, Alcides PADIA * Paraná Federal Institute, Jacarezinho, Paraná, Brasil.

More information

AGH - UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF NON-FERROUS METALS Department of Theoretical Metallurgy and Metallurgical Engineering

AGH - UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF NON-FERROUS METALS Department of Theoretical Metallurgy and Metallurgical Engineering AGH - UNIVERSIY OF SCIENCE AND ECHNOLOGY FACULY OF NON-FERROUS MEALS Department of heoretical Metallurgy and Metallurgical Engineering Ph.D. HESIS itle: MINIMIZAION OF ENROPY GENERAION IN SEADY SAE PROCESSES

More information

Analytical Studies of the Influence of Regional Groundwater Flow by on the Performance of Borehole Heat Exchangers

Analytical Studies of the Influence of Regional Groundwater Flow by on the Performance of Borehole Heat Exchangers Analytical Studies of the Influence of Regional Groundwater Flow by on the Performance of Borehole Heat Exchangers Claesson, Johan; Hellström, Göran Published in: [Host publication title missing] Published:

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Mass ransfer 57 (2013) 389 396 Contents lists available at SciVerse ScienceDirect International Journal of Heat and Mass ransfer journal homepage: www.elsevier.com/locate/ijhmt

More information

Optimization of flue gas turbulent heat transfer with condensation in a tube

Optimization of flue gas turbulent heat transfer with condensation in a tube Article Calorifics July 011 Vol.56 No.19: 1978 1984 doi: 10.1007/s11434-011-4533-9 SPECIAL TOPICS: Optimization of flue gas turbulent heat transfer with condensation in a tube SONG WeiMing, MENG JiAn &

More information

JUST THE MATHS UNIT NUMBER NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 17.6 NUMERICAL MATHEMATICS 6 (Numerical solution) of (ordinary differential equations (A)) by A.J.Hobson 17.6.1 Euler s unmodified method 17.6.2 Euler s modified method 17.6.3

More information

EXPLICIT SOLUTIONS FOR THE SOLOMON-WILSON-ALEXIADES S MUSHY ZONE MODEL WITH CONVECTIVE OR HEAT FLUX BOUNDARY CONDITIONS

EXPLICIT SOLUTIONS FOR THE SOLOMON-WILSON-ALEXIADES S MUSHY ZONE MODEL WITH CONVECTIVE OR HEAT FLUX BOUNDARY CONDITIONS EXPLICIT SOLUTIONS FOR THE SOLOMON-WILSON-ALEXIADES S MUSHY ZONE MODEL WITH CONVECTIVE OR HEAT FLUX BOUNDARY CONDITIONS Domingo A. Tarzia 1 Departamento de Matemática, FCE, Universidad Austral, Paraguay

More information

EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER S HEAT EXCHANGER

EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER S HEAT EXCHANGER Journal of Engineering Studies and Research Volume 21 (2015) No. 4 35 EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER S HEAT EXCHANGER OLUMUYIWA LASODE 1, JOSEPH OYEKALE

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

Tangent Plane. Linear Approximation. The Gradient

Tangent Plane. Linear Approximation. The Gradient Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,

More information

Open Access. Suman Chakraborty* Q T + S gen = 1 S 1 S 2. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur , India

Open Access. Suman Chakraborty* Q T + S gen = 1 S 1 S 2. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur , India he Open hermodynamics Journal, 8,, 6-65 6 Open Access On the Role of External and Internal Irreversibilities towards Classical Entropy Generation Predictions in Equilibrium hermodynamics and their Relationship

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Thermal Diffusivity of Plastic

Thermal Diffusivity of Plastic Thermal Diffusivity of Plastic School of Physics and Astronomy University of Manchester Amir El-hamdy Sohail Mahmood November 19, 2015 Date Performed: October 6-13, 2015 Demonstrator: Henry Cox Abstract

More information

Measurement of heat flux density and heat transfer coefficient

Measurement of heat flux density and heat transfer coefficient archives of thermodynamics Vol. 31(2010), No. 3, 3 18 DOI: 10.2478/v10173-010-0011-z Measurement of heat flux density and heat transfer coefficient DAWID TALER 1 SŁAWOMIR GRĄDZIEL 2 JAN TALER 2 1 AGH University

More information

The Entropic Potential Concept: a New Way to Look at Energy Transfer Operations

The Entropic Potential Concept: a New Way to Look at Energy Transfer Operations Entropy 2014, 16, 2071-2084; doi:10.3390/e16042071 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article The Entropic Potential Concept: a New Way to Look at Energy Transfer Operations

More information

Lecture 7. Heat Conduction. BENG 221: Mathematical Methods in Bioengineering. References

Lecture 7. Heat Conduction. BENG 221: Mathematical Methods in Bioengineering. References BENG 221: Mathematical Methods in Bioengineering Lecture 7 Heat Conduction References Haberman APDE, Ch. 1. http://en.wikipedia.org/wiki/heat_equation Lecture 5 BENG 221 M. Intaglietta Heat conduction

More information

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES Dr. Mahesh Kumar. P Department of Mechanical Engineering Govt College of Engineering, Kannur Parassinikkadavu (P.O), Kannur,

More information

Thermodynamically Coupled Transport in Simple Catalytic Reactions

Thermodynamically Coupled Transport in Simple Catalytic Reactions University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Yasar Demirel Publications Chemical and Biomolecular Research Papers -- Faculty Authors Series 28 Thermodynamically Coupled

More information

Non-fourier Heat Conduction in a Long Cylindrical Media with Insulated Boundaries and Arbitrary Initial Conditions

Non-fourier Heat Conduction in a Long Cylindrical Media with Insulated Boundaries and Arbitrary Initial Conditions Australian Journal of Basic and Applied Sciences, 3(): 65-663, 009 ISSN 1991-8178 Non-fourier Heat Conduction in a Long Cylindrical Media with Insulated Boundaries and Arbitrary Initial Conditions Mehdi

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statistical Mechanics Notes for Lecture 1 Defining statistical mechanics: Statistical Mechanics provies the connection between microscopic motion of individual atoms of matter and macroscopically

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution

Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution Vol. 3 (3) ACTA PHYSICA POLONICA A No. 6 Acoustic and Biomedical Engineering Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution M.S. Kozie«Institute of Applied Mechanics,

More information

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 7 ǁ July. 2013 ǁ PP.17-29 Entropy generation analysis for fully developed laminar

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Directional Derivative and the Gradient Operator

Directional Derivative and the Gradient Operator Chapter 4 Directional Derivative and the Gradient Operator The equation z = f(x, y) defines a surface in 3 dimensions. We can write this as z f(x, y) = 0, or g(x, y, z) = 0, where g(x, y, z) = z f(x, y).

More information

Thermodynamics super efficiency

Thermodynamics super efficiency Thermodynamics super efficiency Jose Iraides Belandria Escuela de Ingeniería Química, Universidad de Los Andes, Mérida, Venezuela Abstract This article shows a surprising prediction of the global formulation

More information

Minimization of Exergy Destruction Costs for the Production of Hydrogen from Methane Cracking

Minimization of Exergy Destruction Costs for the Production of Hydrogen from Methane Cracking Minimization of Exergy Destruction Costs for the Production of Hydrogen from Methane Cracking Federico Gutiérrez, Federico Méndez. Abstract In the present work, the conservation principles (energy and

More information

Notes on Entropy Production in Multicomponent Fluids

Notes on Entropy Production in Multicomponent Fluids Notes on Entropy Production in Multicomponent Fluids Robert F. Sekerka Updated January 2, 2001 from July 1993 Version Introduction We calculate the entropy production in a multicomponent fluid, allowing

More information

Advanced Thermodynamics

Advanced Thermodynamics Advanced Thermodynamics The Second Law of Thermodynamics Dr. Ayat Gharehghani Assistant Professor School of Mechanical Engineering Iran University of Science & Technology, Tehran, IRAN Winter, 2018 1 Second

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

1.061 / 1.61 Transport Processes in the Environment

1.061 / 1.61 Transport Processes in the Environment MIT OpenCourseWare http://ocw.mit.edu 1.061 / 1.61 Transport Processes in the Environment Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Solution

More information

Preface Acknowledgments

Preface Acknowledgments Contents Preface Acknowledgments xi xix Chapter 1: Brief review of static optimization methods 1 1.1. Introduction: Significance of Mathematical Models 1 1.2. Unconstrained Problems 4 1.3. Equality Constraints

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT PROFILE

THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT PROFILE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT

More information

OPTIMIZATION OF AN INDUSTRIAL HEAT EXCHANGER BY THE MINIMALIZATION OF ENTROPY SVOČ FST 2017

OPTIMIZATION OF AN INDUSTRIAL HEAT EXCHANGER BY THE MINIMALIZATION OF ENTROPY SVOČ FST 2017 OPTIMIZATION OF AN INDUSTRIAL HEAT EXCHANGER BY THE MINIMALIZATION OF ENTROPY SVOČ FST 217 Bc. Richard Pisinger, University of West Bohemia, Univerzitní 8, 36 14 Pilsen Czech Republic ABSTRACT A second

More information

Basic Concepts and Tools in Statistical Physics

Basic Concepts and Tools in Statistical Physics Chapter 1 Basic Concepts and Tools in Statistical Physics 1.1 Introduction Statistical mechanics provides general methods to study properties of systems composed of a large number of particles. It establishes

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Critical Role of Control Volume in Thermodynamics Education for the Analysis of Energy and Entropy Balance.

Critical Role of Control Volume in Thermodynamics Education for the Analysis of Energy and Entropy Balance. Academia Journal of Scientific Research 4(4): 085-092, April 2016 DOI: 10.15413/ajsr.2016.0601 ISSN: 2315-7712 2016 Academia Publishing Research Paper Critical Role of Control Volume in Thermodynamics

More information

A Simple Method for Thermal Characterization of Low-Melting Temperature Phase Change Materials (PCMs)

A Simple Method for Thermal Characterization of Low-Melting Temperature Phase Change Materials (PCMs) A Simple Method for hermal Characterization of Low-Melting emperature Phase Change Materials (PCMs) L. Salvador *, J. Hastanin, F. Novello, A. Orléans 3 and F. Sente 3 Centre Spatial de Liège, Belgium,

More information

10.3 Multimode Heat Transfer with Radiation

10.3 Multimode Heat Transfer with Radiation 0.3 Multimode Heat Transfer with Radiation When radiation is combined with conduction and/or convection, the problems are called conjugate or multimode heat transfer. As an example of a combined-mode radiationconduction

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), ISSN Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), 377 382 www.emis.de/journals ISSN 1786-0091 FINSLER STRUCTURE IN THERMODYNAMICS AND STATISTICAL MECHANICS TAKAYOSHI OOTSUKA Abstract.

More information

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz. 374 Exergy Analysis The value of the exergy of the system depends only on its initial and final state, which is set by the conditions of the environment The term T 0 P S is always positive, and it does

More information

I.D The Second Law Q C

I.D The Second Law Q C I.D he Second Law he historical development of thermodynamics follows the industrial revolution in the 19 th century, and the advent of heat engines. It is interesting to see how such practical considerations

More information

Reading Problems , 8-34, 8-50, 8-53, , 8-93, 8-103, 8-118, 8-137

Reading Problems , 8-34, 8-50, 8-53, , 8-93, 8-103, 8-118, 8-137 Availability Readg Problems 8-1 8-8 8-9, 8-34, 8-50, 8-53, 8-63 8-71, 8-93, 8-103, 8-118, 8-137 Second Law Analysis of Systems AVAILABILITY: the theoretical maximum amount of work that can be obtaed from

More information

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry 1 On the Asymptotic Convergence of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans Research School Of Chemistry Australian National University Canberra, ACT 0200 Australia

More information

Slope Fields, Differential Equations... and Maybe Euler s Method, Too

Slope Fields, Differential Equations... and Maybe Euler s Method, Too Slope Fields, Differential Equations... and Maybe Euler s Method, Too Chuck Garner, Ph.D. Department of Mathematics Rockdale Magnet School for Science and Technology October 10, 2014 / Georgia DOE AP Content

More information

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time.

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time. PROBLEM 5.1 NOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly

More information

Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate

Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate Renewable Energy 3 (007) 1967 1980 www.elsevier.com/locate/renene Second law optimization of a solar air heater having chamfered rib groove roughness on absorber plate Apurba Layek a,, J.S. Saini b, S.C.

More information

Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian Decomposition Method

Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian Decomposition Method World Applied Sciences Journal 19 (1): 171-17, 1 ISSN 1818? 95 IDOSI Publications, 1 DOI: 1.589/idosi.was.1.19.1.581 Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian

More information

Exergy Sustainability for Complex Systems

Exergy Sustainability for Complex Systems Chapter 1 Exergy Sustainability for Complex Systems Rush D. Robinett, III David G. Wilson Alfred W. Reed Sandia National Laboratories, New Mexico {rdrobin,dwilso,awreed}@sandia.gov Exergy is the elixir

More information

Role of closed paths in the path integral approach of statistical thermodynamics

Role of closed paths in the path integral approach of statistical thermodynamics Journal of Physics: Conference Series PAPER OPEN ACCESS Role of closed paths in the path integral approach of statistical thermodynamics To cite this article: Jean-Pierre Badiali 215 J. Phys.: Conf. Ser.

More information

Mathematical modeling of temperature during laser forming using bimodal beam

Mathematical modeling of temperature during laser forming using bimodal beam Engineering Solid Mechanics 3 (015) 187-194 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Mathematical modeling of temperature during laser

More information

The Laws of Thermodynamics

The Laws of Thermodynamics MME 231: Lecture 06 he Laws of hermodynamics he Second Law of hermodynamics. A. K. M. B. Rashid Professor, Department of MME BUE, Dhaka oday s opics Relation between entropy transfer and heat Entropy change

More information

Midterm Examination April 2, 2013

Midterm Examination April 2, 2013 CHEM-UA 652: Thermodynamics and Kinetics Professor M.E. Tuckerman Midterm Examination April 2, 203 NAME and ID NUMBER: There should be 8 pages to this exam, counting this cover sheet. Please check this

More information

( ) ( )( k B ( ) ( ) ( ) ( ) ( ) ( k T B ) 2 = ε F. ( ) π 2. ( ) 1+ π 2. ( k T B ) 2 = 2 3 Nε 1+ π 2. ( ) = ε /( ε 0 ).

( ) ( )( k B ( ) ( ) ( ) ( ) ( ) ( k T B ) 2 = ε F. ( ) π 2. ( ) 1+ π 2. ( k T B ) 2 = 2 3 Nε 1+ π 2. ( ) = ε /( ε 0 ). PHYS47-Statistical Mechanics and hermal Physics all 7 Assignment #5 Due on November, 7 Problem ) Problem 4 Chapter 9 points) his problem consider a system with density of state D / ) A) o find the ermi

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL

ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL U.P.B. Sci. Bull., Series A, Vol. 77, Iss., 5 ISSN 3-77 ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL Anthony Rotimi HASSAN * and Jacob Abiodun GBADEYAN This research

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 1 June 2006 1.30 to 4.30 PAPER 76 NONLINEAR CONTINUUM MECHANICS Attempt FOUR questions. There are SIX questions in total. The questions carry equal weight. STATIONERY

More information

Numerical optimization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method.

Numerical optimization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method. cent Advances in Fluid Mechanics and Heat & Mass Transfer Numerical imization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method. PIOTR JAIŃKI Department of

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Mass Transfer 54 (211) 349 359 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt

More information

Department: Machines and equipments. Stage: First Stage Title: Thermodynamic week: 19

Department: Machines and equipments. Stage: First Stage Title: Thermodynamic week: 19 Department: Machines and equipments Stage: First Stage Title: Thermodynamic week: 19 Entropy, changes on closed systems and temperature entropy plane Entropy is an extensive property of a system and sometimes

More information

Rionero s critical perturbations method via weighted energy for stability of convective motions in anisotropic porous media

Rionero s critical perturbations method via weighted energy for stability of convective motions in anisotropic porous media 1 Rionero s critical perturbations method via weighted energy for stability of convective motions in anisotropic porous media F. Capone,a, M. Gentile,a, A. A. Hill,b a Department of Mathematics and Applications

More information

A variational formulation for dissipative systems

A variational formulation for dissipative systems International/Interdisciplinary Seminar on Nonlinear Science The University of Tokyo, komaba Campus March 22, 2017 ------------------------------------------------------------------------------- A variational

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic]

Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic] Thermodynamics Review [?] Entropy & thermodynamic potentials Hydrostatic equilibrium & buoyancy Stability [dry & moist adiabatic] Entropy 1. (Thermodynamics) a thermodynamic quantity that changes in a

More information

ONSAGER S VARIATIONAL PRINCIPLE AND ITS APPLICATIONS. Abstract

ONSAGER S VARIATIONAL PRINCIPLE AND ITS APPLICATIONS. Abstract ONSAGER S VARIAIONAL PRINCIPLE AND IS APPLICAIONS iezheng Qian Department of Mathematics, Hong Kong University of Science and echnology, Clear Water Bay, Kowloon, Hong Kong (Dated: April 30, 2016 Abstract

More information

ISSN Article

ISSN Article Entropy 23, 5, 28-299; doi:.339/e5628 OPEN ACCESS entropy ISSN 99-43 www.mdpi.com/journal/entropy Article Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective

More information

Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 6

Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 6 Vol. 119 011) ACA PHYSICA POLONICA A No. 6 Endoreversible Modeling and Optimization of a Multistage Heat Engine System with a Generalized Heat ransfer Law via Hamilton Jacobi Bellman Equations and Dynamic

More information

Index. a Anisotropic thermoelectric elements 147, 148 Archimedes principle b Benedicks effect 12 Bridgman effect 13

Index. a Anisotropic thermoelectric elements 147, 148 Archimedes principle b Benedicks effect 12 Bridgman effect 13 335 Index a Anisotropic thermoelectric elements 147, 148 Archimedes principle. 191 b Benedicks effect 12 Bridgman effect 13 c Cascaded thermoelectric generators 230 CHI See Constant heat input (CHI) model

More information

Diffusion of a density in a static fluid

Diffusion of a density in a static fluid Diffusion of a density in a static fluid u(x, y, z, t), density (M/L 3 ) of a substance (dye). Diffusion: motion of particles from places where the density is higher to places where it is lower, due to

More information

Continuum Mechanics Lecture 5 Ideal fluids

Continuum Mechanics Lecture 5 Ideal fluids Continuum Mechanics Lecture 5 Ideal fluids Prof. http://www.itp.uzh.ch/~teyssier Outline - Helmholtz decomposition - Divergence and curl theorem - Kelvin s circulation theorem - The vorticity equation

More information

Closed-form solution of linear buckling for tapered tubular columns with constant thickness

Closed-form solution of linear buckling for tapered tubular columns with constant thickness Closed-form solution of linear buckling for tapered tubular columns with constant thickness Marco Fabiani Dipartimento di Ingegneria Civile, Edile e Architettura, DICEA, Università Politecnica delle Marche,

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt Lehrstuhl für Prozesstechnik, RWTH Aachen Turmstr. 46, D-5264 Aachen,

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

MSE 360 Exam 1 Spring Points Total

MSE 360 Exam 1 Spring Points Total MSE 360 Exam 1 Spring 011 105 Points otal Name(print) ID number No notes, books, or information stored in calculator memories may be used. he NCSU academic integrity policies apply to this exam. As such,

More information

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid

Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a Porous Medium Saturated with a Pseudoplastic Fluid ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.8(4) No.,pp.7-38 Viscosity and Fluid Suction/Injection Effects on Free Convection Flow from a Vertical Plate in a

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

Algebraically Explicit Analytical Solution of Three- Dimensional Hyperbolic Heat Conduction. Equation

Algebraically Explicit Analytical Solution of Three- Dimensional Hyperbolic Heat Conduction. Equation Adv. Theor. Appl. Mech., Vol. 3, 010, no. 8, 369-383 Algebraically Explicit Analytical Solution of Three- Dimensional Hyperbolic Heat Conduction Equation Seyfolah Saedodin Department of Mechanical Engineering,

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A Conduction Heat Transfer Reading Problems 10-1 10-6 10-20, 10-48, 10-59, 10-70, 10-75, 10-92 10-117, 10-123, 10-151, 10-156, 10-162 11-1 11-2 11-14, 11-20, 11-36, 11-41, 11-46, 11-53, 11-104 Fourier Law

More information

The closed-form resolution of integrals is one of the

The closed-form resolution of integrals is one of the Construction of Generalized Integral Formulas By Means of Laplace Transformations Adam C. Buss, Department of Physics, Indiana University - Northwest Faculty Mentor: Dr. Axel Schulze-Halberg ABSTRACT We

More information

SECOND LAW ANALYSIS OF LAMINAR FORCED CONVECTION IN A ROTATING CURVED DUCT

SECOND LAW ANALYSIS OF LAMINAR FORCED CONVECTION IN A ROTATING CURVED DUCT HERMAL SCIENCE, Year 2015, Vol. 19, No. 1, pp. 95-107 95 SECOND LAW ANALYSIS OF LAMINAR FORCED CONVECION IN A ROAING CURVED DUC by Seyed Esmail RAZAVI a, Hosseali SOLANIPOUR b, and Parisa CHOUPANI a a

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y.

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y. MATH 391 Test 1 Fall, 2018 (1) (12 points each)compute the general solution of each of the following differential equations: (a) (b) x dy dx + xy = x2 + y. (x + y) dy dx = 4x 2y. (c) yy + (y ) 2 = 0 (y

More information