Factor model shrinkage for linear instrumental variable analysis with many instruments

Size: px
Start display at page:

Download "Factor model shrinkage for linear instrumental variable analysis with many instruments"

Transcription

1 Factor model shrinkage for linear instrumental variable analysis with many instruments P. Richard Hahn Booth School of Business University of Chicago Joint work with Hedibert Lopes 1

2 My goals for this talk: 1) Describe the endogenous predictor problem and the instrumental variables approach. 2) Explain some challenges posed by this standard approach. 3) Argue that some recent advances in factor modeling can help overcome these challenges. 2

3 Instrumental variable analysis is a popular technique for dealing with endogenous predictors. y i = x i β + i (I) i =1,...,n But if cov(x i, i )=α = 0 (II) y i = x i β + αx i + =(β + α)x i + 3

4 Example: consider looking at data on families where y i = x i = incidence of cancer percentage of smokers But smoking may be associated with other attributes which are themselves linked to cancer, e.g. biological or socioeconomic factors. This inter-relatedness causes an interpretation problem: we want β but our wild type inferences give us β + α. 4

5 ε x x α y x β y x i ε x + x y i x i β + y 5

6 εx x α y x x β y x i ε x + x y i x i β + α x + y x 6

7 x y x α z γ x β y x i z i γ + x y i x i β + α x + y x Example: z = tax rate on cigarettes. We assume that the instrument cannot cause cancer but through its effect on smoking. 7

8 x α y x z γ x β y Operationally the trick is that the instrument renders x = x i z i γ quasi-observable via. x x i z i N(z i γ,σ 2 x) y i z i,x i N(x i β + α(x i z i γ),σ 2 y x ) 8

9 This yields a joint normal distribution for (x i,y i z i ) : αγzi µ i = Σ= γz i σx 2 σx(α 2 + β) σx(α 2 + β) σx(α 2 + β) 2 + σy x 2 Now β is identified. 9

10 Bayesian linear IV has been treated by (among others): Lindley, D. V. and G. M. El Sayyad (1968). The Bayesian estimation of a linear functional relationship. Dreze, J. H. (1976). Bayesian limited information analysis of the simultaneous equations model. Geweke, J. (1996). Bayesian reduced rank regression. Chao, J. C. and P. C. B. Phillips (1998). Posterior distribution in limited information analysis of the simultaneous equations model using Jeffreys prior. Kleibergen, F. and E. Zivot (2003). Bayesian and Classical approaches to Instrumental Variable regression. Lopes, H. and Polson, N. (2012). Bayesian instrumental variables: likelihoods and priors. 10

11 Some general references on causal modeling: Judea Pearl s book Causality Phil Dawid s notes Fundamentals of Statistical Causality Chris Sims s notes on Bayesian IV Rossi, Allenby and McCulloch s book Bayesian Statistics and Marketing, Chapter 7 Haavelmo, The Statistical Implications of Simultaneous Equations (esp. section 4 Equations of predictions versus equations of theory ) 11

12 Our work considers the many instruments case. Slogan: If you want to know β you gotta know γ. If dim(z i )=p is large relative to the sample size, all the usual estimation difficulties remain, even if the causal effect of interest is a scalar. Fortunately, we have a strategy for this scenario: factor models. 12

13 A Gaussian factor model can be formulated as a particular decomposition of a covariance matrix: Σ=BB t +Ψ p-by-k p-by-p diagonal This assumption immediately reduces the numbers of covariance parameters to be estimated. Why does this benefit the regression case? West, M. (2003). Bayesian factor regression models in the large p, small n paradigm. 13

14 If the regression coefficients the same factor form, we write them as: γ γ t = θb t (BB t +Ψ) 1 are assumed to adhere to 1-by-k Now B and Ψ depend upon the matrix z : E(x i z,θ)=θe{b t (BB t +Ψ) 1 z}z i At one extreme, the RHS expectation concentrates and γ inferring reduces entirely to inferring. One can use unlabeled data. 14 θ

15 The true γ may not lie in the column space of (BB t +Ψ) 1 B Assuming otherwise can lead one to incorrectly conclude that nothing has been learned about the causal effect. To protect against this possibility, we merely shrink back towards factor structure with a hierarchical prior: π(γ B,θ,Ψ) = N([BB t +Ψ] 1 Bθ t,vi) Hahn, Carvalho, Mukherjee (2012). Partial factor modeling: predictor dependent shrinkage for linear regression. 15

16 We can build an importance sampler which permits easy exact comparison between various priors on γ. y i z i,x i,γ,α,β,σ 2 y x N(x iβ + α(x i z i γ),σ 2 y x ) y i z i,x i,γ t(df = n + κ, S = I n + x t x) x i (x i,x i z i γ) The Woodbury identity makes this efficient to evaluate. 16

17 Modular posterior sampling of π(γ,α,β,σx,σ 2 2 x, z, y) y x : Draw M samples of γ from π(γ x, z). Resample with weights f(y γ,x, z). Sample α, β, σx,σ 2 2 conditional on γ y x : π(α, β, σ 2 x,σ 2 y x x, z, y,γ) 17

18 p = 60 n = 120 Example α =1/4 β =2 k =3 first stage signal-to-noise ratio: second stage signal-to-noise ratio: 1/3 20/3 18

19 The partial factor regression recovers a good approximation of the instrumental regression coefficients. 19

20 The straight regression model does not. 20

21 Factor posterior Ideal posterior α β β Draws from the diffuse straight-regression posterior are superimposed. 21

22 Posterior 95% credible intervals: Model 2.5% 97.5% Partial factor γ Pure regression known The straight-regression model punts on the sign of the causal effect. 22

23 Lessons: γ Knowing is only important via or, more E(x i z i,γ) generally. z i γ Factor models are not just principal component regression. Factor models shine when the relevant structure is hidden by idiosyncratic noise ( b j b t j relative to ). ψ j big The assumption of factor structure translates into tighter causal inferences. The partial factor model weakens the assumption, but still gives increased precision. 23

24 It works with binary predictors, too. Hahn, Scott and Carvalho (2012). A sparse factor-analytic probit model for congressional voting patterns. z i N(m, Σ), z i,j z i,j 0 if zi,j 0 1 if z i,j > 0. Each of the binary vectors is associated with an orthant in and assigned probability according to the corresponding multivariate Gaussian CDF. 2 p R p 24

25 We consider the same example as before: PF Probit Pure regression True versus estimated E(x i z) 25

26 Model 2.5% 97.5% Partial factor Pure regression known

27 The idea can also be extended to the multinomial probit model. Burgette, L. and Hahn, P.R. (2012). Symmetric Bayesian multinomial probit models. This extension will allow us to tackle the compulsory returns-to-schooling data in a completely new way. 27

28 0) Causal inference from observational data is an important interesting problem. 1) Predictive fidelity is necessary but not always sufficient for sound inferences. 2) Factor models prove useful in this context by leveraging marginal covariance information (from potentially unlabeled data). 3) Borrowing information towards predicting a low dimensional quantity suggest merely shrinking over likelihood-borrowing. 28

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

Bayesian instrumental variables: Likelihoods and priors 1

Bayesian instrumental variables: Likelihoods and priors 1 ian instrumental variables: Likelihoods and priors 1 I Hedibert F. Lopes Booth School of Business University of Chicago 1 Based on Lopes and Polson (2012) ian instrumental variables: priors and likelihoods.

More information

Sparse Factor-Analytic Probit Models

Sparse Factor-Analytic Probit Models Sparse Factor-Analytic Probit Models By JAMES G. SCOTT Department of Statistical Science, Duke University, Durham, North Carolina 27708-0251, U.S.A. james@stat.duke.edu PAUL R. HAHN Department of Statistical

More information

Bayesian partial factor regression

Bayesian partial factor regression Bayesian partial factor regression P. Richard Hahn Department of Statistical Science, Duke University Carlos Carvalho McCombs School of Business, The University of Texas, Austin Sayan Mukherjee Departments

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Multivariate Versus Multinomial Probit: When are Binary Decisions Made Separately also Jointly Optimal?

Multivariate Versus Multinomial Probit: When are Binary Decisions Made Separately also Jointly Optimal? Multivariate Versus Multinomial Probit: When are Binary Decisions Made Separately also Jointly Optimal? Dale J. Poirier and Deven Kapadia University of California, Irvine March 10, 2012 Abstract We provide

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

Will Penny. SPM for MEG/EEG, 15th May 2012

Will Penny. SPM for MEG/EEG, 15th May 2012 SPM for MEG/EEG, 15th May 2012 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule

More information

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1 Bayesian Graphical Models for Structural Vector Autoregressive Processes Daniel Ahelegbey, Monica Billio, and Roberto Cassin (2014) March 21, 2015 Bayesian Graphical Models for Structural Vector AutoregressiveMarch

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Will Penny. DCM short course, Paris 2012

Will Penny. DCM short course, Paris 2012 DCM short course, Paris 2012 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated to a

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Bayesian Multivariate Logistic Regression

Bayesian Multivariate Logistic Regression Bayesian Multivariate Logistic Regression Sean M. O Brien and David B. Dunson Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park, NC 1 Goals Brief review of

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

36-720: The Rasch Model

36-720: The Rasch Model 36-720: The Rasch Model Brian Junker October 15, 2007 Multivariate Binary Response Data Rasch Model Rasch Marginal Likelihood as a GLMM Rasch Marginal Likelihood as a Log-Linear Model Example For more

More information

Joint Gaussian Graphical Model Review Series I

Joint Gaussian Graphical Model Review Series I Joint Gaussian Graphical Model Review Series I Probability Foundations Beilun Wang Advisor: Yanjun Qi 1 Department of Computer Science, University of Virginia http://jointggm.org/ June 23rd, 2017 Beilun

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity

Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity P. Richard Hahn, Jared Murray, and Carlos Carvalho June 22, 2017 The problem setting We want to estimate

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables.

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Index Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Adaptive rejection metropolis sampling (ARMS), 98 Adaptive shrinkage, 132 Advanced Photo System (APS), 255 Aggregation

More information

Online Appendix to: Marijuana on Main Street? Estimating Demand in Markets with Limited Access

Online Appendix to: Marijuana on Main Street? Estimating Demand in Markets with Limited Access Online Appendix to: Marijuana on Main Street? Estating Demand in Markets with Lited Access By Liana Jacobi and Michelle Sovinsky This appendix provides details on the estation methodology for various speci

More information

Will Penny. SPM short course for M/EEG, London 2013

Will Penny. SPM short course for M/EEG, London 2013 SPM short course for M/EEG, London 2013 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han Math for Machine Learning Open Doors to Data Science and Artificial Intelligence Richard Han Copyright 05 Richard Han All rights reserved. CONTENTS PREFACE... - INTRODUCTION... LINEAR REGRESSION... 4 LINEAR

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Weakly informative priors

Weakly informative priors Department of Statistics and Department of Political Science Columbia University 23 Apr 2014 Collaborators (in order of appearance): Gary King, Frederic Bois, Aleks Jakulin, Vince Dorie, Sophia Rabe-Hesketh,

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Design of Text Mining Experiments. Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.

Design of Text Mining Experiments. Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt. Design of Text Mining Experiments Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.taddy/research Active Learning: a flavor of design of experiments Optimal : consider

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Sargur Srihari srihari@cedar.buffalo.edu 1 Topics 1. What are probabilistic graphical models (PGMs) 2. Use of PGMs Engineering and AI 3. Directionality in

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Large-scale Ordinal Collaborative Filtering

Large-scale Ordinal Collaborative Filtering Large-scale Ordinal Collaborative Filtering Ulrich Paquet, Blaise Thomson, and Ole Winther Microsoft Research Cambridge, University of Cambridge, Technical University of Denmark ulripa@microsoft.com,brmt2@cam.ac.uk,owi@imm.dtu.dk

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

BAYESIAN FACTOR MODEL SHRINKAGE FOR LINEAR IV REGRESSION WITH MANY INSTRUMENTS. 1. Introduction

BAYESIAN FACTOR MODEL SHRINKAGE FOR LINEAR IV REGRESSION WITH MANY INSTRUMENTS. 1. Introduction BAYESIAN FACTOR MODEL SHRINKAGE FOR LINEAR IV REGRESSION WITH MANY INSTRUMENTS P. RICHARD HAHN 1, JINGYU HE 2, AND HEDIBERT LOPES 3 Abstract. A Bayesian approach for the many instruments problem in linear

More information

Graphical Models 359

Graphical Models 359 8 Graphical Models Probabilities play a central role in modern pattern recognition. We have seen in Chapter 1 that probability theory can be expressed in terms of two simple equations corresponding to

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Expression Data Exploration: Association, Patterns, Factors & Regression Modelling

Expression Data Exploration: Association, Patterns, Factors & Regression Modelling Expression Data Exploration: Association, Patterns, Factors & Regression Modelling Exploring gene expression data Scale factors, median chip correlation on gene subsets for crude data quality investigation

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Bayesian Inference in the Multivariate Probit Model

Bayesian Inference in the Multivariate Probit Model Bayesian Inference in the Multivariate Probit Model Estimation of the Correlation Matrix by Aline Tabet A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science

More information

Weakly informative priors

Weakly informative priors Department of Statistics and Department of Political Science Columbia University 21 Oct 2011 Collaborators (in order of appearance): Gary King, Frederic Bois, Aleks Jakulin, Vince Dorie, Sophia Rabe-Hesketh,

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Comment on Article by Scutari

Comment on Article by Scutari Bayesian Analysis (2013) 8, Number 3, pp. 543 548 Comment on Article by Scutari Hao Wang Scutari s paper studies properties of the distribution of graphs ppgq. This is an interesting angle because it differs

More information

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract Bayesian analysis of a vector autoregressive model with multiple structural breaks Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus Abstract This paper develops a Bayesian approach

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Jonathan Gruhl March 18, 2010 1 Introduction Researchers commonly apply item response theory (IRT) models to binary and ordinal

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Eco517 Fall 2014 C. Sims FINAL EXAM

Eco517 Fall 2014 C. Sims FINAL EXAM Eco517 Fall 2014 C. Sims FINAL EXAM This is a three hour exam. You may refer to books, notes, or computer equipment during the exam. You may not communicate, either electronically or in any other way,

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Regressione. Ruggero Donida Labati

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Regressione. Ruggero Donida Labati SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA Sistemi di Elaborazione dell Informazione Regressione Ruggero Donida Labati Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy http://homes.di.unimi.it/donida

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

L 0 methods. H.J. Kappen Donders Institute for Neuroscience Radboud University, Nijmegen, the Netherlands. December 5, 2011.

L 0 methods. H.J. Kappen Donders Institute for Neuroscience Radboud University, Nijmegen, the Netherlands. December 5, 2011. L methods H.J. Kappen Donders Institute for Neuroscience Radboud University, Nijmegen, the Netherlands December 5, 2 Bert Kappen Outline George McCullochs model The Variational Garrote Bert Kappen L methods

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Bayesian causal forests: dealing with regularization induced confounding and shrinking towards homogeneous effects

Bayesian causal forests: dealing with regularization induced confounding and shrinking towards homogeneous effects Bayesian causal forests: dealing with regularization induced confounding and shrinking towards homogeneous effects P. Richard Hahn, Jared Murray, and Carlos Carvalho July 29, 2018 Regularization induced

More information

A Semi-Parametric Bayesian Approach to the Instrumental Variable Problem

A Semi-Parametric Bayesian Approach to the Instrumental Variable Problem A Semi-Parametric Bayesian Approach to the Instrumental Variable Problem by Tim Conley Chris Hansen Rob McCulloch Peter E. Rossi Graduate School of Business University of Chicago June 2006 Revised, December

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

Robust Predictions in Games with Incomplete Information

Robust Predictions in Games with Incomplete Information Robust Predictions in Games with Incomplete Information joint with Stephen Morris (Princeton University) November 2010 Payoff Environment in games with incomplete information, the agents are uncertain

More information

Coupled Hidden Markov Models: Computational Challenges

Coupled Hidden Markov Models: Computational Challenges .. Coupled Hidden Markov Models: Computational Challenges Louis J. M. Aslett and Chris C. Holmes i-like Research Group University of Oxford Warwick Algorithms Seminar 7 th March 2014 ... Hidden Markov

More information

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Rafdord M. Neal and Jianguo Zhang Presented by Jiwen Li Feb 2, 2006 Outline Bayesian view of feature

More information

Dynamic Generalized Linear Models

Dynamic Generalized Linear Models Dynamic Generalized Linear Models Jesse Windle Oct. 24, 2012 Contents 1 Introduction 1 2 Binary Data (Static Case) 2 3 Data Augmentation (de-marginalization) by 4 examples 3 3.1 Example 1: CDF method.............................

More information

Wageningen Summer School in Econometrics. The Bayesian Approach in Theory and Practice

Wageningen Summer School in Econometrics. The Bayesian Approach in Theory and Practice Wageningen Summer School in Econometrics The Bayesian Approach in Theory and Practice September 2008 Slides for Lecture on Qualitative and Limited Dependent Variable Models Gary Koop, University of Strathclyde

More information

A Study into Mechanisms of Attitudinal Scale Conversion: A Randomized Stochastic Ordering Approach

A Study into Mechanisms of Attitudinal Scale Conversion: A Randomized Stochastic Ordering Approach A Study into Mechanisms of Attitudinal Scale Conversion: A Randomized Stochastic Ordering Approach Zvi Gilula (Hebrew University) Robert McCulloch (Arizona State) Ya acov Ritov (University of Michigan)

More information

E cient Importance Sampling

E cient Importance Sampling E cient David N. DeJong University of Pittsburgh Spring 2008 Our goal is to calculate integrals of the form Z G (Y ) = ϕ (θ; Y ) dθ. Special case (e.g., posterior moment): Z G (Y ) = Θ Θ φ (θ; Y ) p (θjy

More information

Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown

Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown Sylvia Frühwirth-Schnatter and Hedibert Freitas Lopes July 7, 2010 Abstract We introduce a new and general set of identifiability

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Some Curiosities Arising in Objective Bayesian Analysis

Some Curiosities Arising in Objective Bayesian Analysis . Some Curiosities Arising in Objective Bayesian Analysis Jim Berger Duke University Statistical and Applied Mathematical Institute Yale University May 15, 2009 1 Three vignettes related to John s work

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

November 2002 STA Random Effects Selection in Linear Mixed Models

November 2002 STA Random Effects Selection in Linear Mixed Models November 2002 STA216 1 Random Effects Selection in Linear Mixed Models November 2002 STA216 2 Introduction It is common practice in many applications to collect multiple measurements on a subject. Linear

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Linear Models in Econometrics

Linear Models in Econometrics Linear Models in Econometrics Nicky Grant At the most fundamental level econometrics is the development of statistical techniques suited primarily to answering economic questions and testing economic theories.

More information

Exogeneity and Causality

Exogeneity and Causality Università di Pavia Exogeneity and Causality Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy. The econometric

More information

Recovering Social Networks by Observing Votes

Recovering Social Networks by Observing Votes Recovering Social Networks by Observing Votes Lev Reyzin work joint with Ben Fish and Yi Huang UIC, Department of Mathematics talk at ITA paper to appear in AAMAS 2016 February 2016 Set-up Hidden G: Set-up

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Gibbs Sampling in Endogenous Variables Models

Gibbs Sampling in Endogenous Variables Models Gibbs Sampling in Endogenous Variables Models Econ 690 Purdue University Outline 1 Motivation 2 Identification Issues 3 Posterior Simulation #1 4 Posterior Simulation #2 Motivation In this lecture we take

More information