5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where:

Size: px
Start display at page:

Download "5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where:"

Transcription

1 Grammar Automata and Languages Grammar Prof. Mohamed Hamada oftware Engineering Lab. The University of Aizu Japan Regular Grammar Context-free Grammar Context-sensitive Grammar Left-linear Grammar right-linear Grammar 2 Today s Topics Right-Linear Left-Linear Regular Derivation: Leftmost & Rightmost A grammar G is defined as G = (V, T, P, where: V : Finite set of variables/non-terminals (We use capital letters A,B,C, for variables) T : Alphabet/Finite set of terminals (We use small letters b,c, for terminals) P : Finite set of rules/productions : tart symbol V V T = φ Rule : α β + α (V T), β (V T) * Derivation Tree 3 Each grammar G defines a language L(G), which is the set of strings in T* (=Σ*) that G can generate from. It is all about the production rules. 4 1

2 Given a grammar G = (V, T, P, For a string w=uxv we can apply the production rule xày to w so we get a string z=uyv. In this case we write w z, which reads w drives z. If w 1 w 2 w n, we say that w 1 drives w n and we write w 1 * w n 5 Example Given a grammar G = (V, T,P, V={A, B, C} T={ b, x} = A And P is: AaBxàaBAaBb CaBxàaBAaCb ABCàλ 6 Let G=(V, Τ, P, be a grammar. w ( V T)* is a sentential form, if * G w w T* is a sentence, if The language of G, L(G) = { w * T* w G } * G w ome Remarks The language L(G) = { w T* : * w } contains only strings of terminals, not variables. Notation: We summarize several rules for one variable: A B A 01 by A B 01 AA A AA 7 8 2

3 Example Given the grammar: G = {{ },{ b},{ λ, ab}, Right-Linear A Grammar G= (V, T,P, is called rightlinear grammar if every production is of the form A à xb, or A à x where A,B V, x T* The language generated by this grammar is: n n L( G) = { a b n 0} 9 Example: The grammar x à 0x 1y y à 0x 1z z à 0x 1z λ Is a right-linear grammar. 10 Left-Linear Regular A Grammar G= (V, T,P, is called leftlinear grammar if every production is of the form A à Bx, or A à x where A,B V, x T* Example: The grammar x à x0 y1 y à x0 z1 z à x0 z1 λ Is a left-linear grammar. 11 A Grammar G= (V, T,P, is called regular grammar if its is left- or right-linear Example: The grammar x à x0 y1 y à x0 z1 z à x0 z1 λ Is a left-linear grammar, hence is Regular Grammar Example: The grammar x à 0x 1y y à 0x 1z z à 0x 1z λ Is a right-linear grammar, Hence is Regular Grammar 12 3

4 Example 1 Write a grammar that generate the language: L = { w { b}* length( w) is EVEN} Example 2 E λ aae abe bae bbe E λ ao bo O ae be Write a grammar that generate the language: L = { w { b}* w has EVEN number of b's} E λ ae bo O ao be Example 3 Write a grammar that generate the language: L = { w { b, c}* w does not contain abc} reset b reset c reset a seena λ seena a seena c reset b seenab λ seenab a seena 13 b reset λ 14 CFG = (V, T, P, 15 V : Finite set of variables/non-terminals T : Alphabet/Finite set of terminals P : Finite set of rules/productions : tart symbol V V T = φ Rule : A ω A V ω (V T) * 16 4

5 Context-freeness: An A-rule can be applied whenever A occurs in a string, irrespective of the context (that is, nonterminals and terminals around A). Derivation One-step Derivation uav A ω uωv w is derivable from v in CFG, if there is a finite sequence of rule applications such that: v w... w = n w 1 17 In this case we can write this derivation as v * w 18 Derivation The derivation as v * w is called: Leftmost derivation: if in every step the leftmost variable is selected for reduction Rightmost derivation: if in every step the rightmost variable is selected for reduction Example 1 Let G = ({}, {b},,p) with for P: a and bb, and λ. ome derivations from this grammar: aa aaaa aabbaa aabbaa bb baab baab, and so on. In general. ww R for w {b}*. 19 L(G)={ww R : w {b}*} 20 5

6 Example 2 G = ({, A, B},{ b}, { AB, A aa λ, B Bb λ}, L( G) = L( a * b*) Leftmost Derivation : AB aab ab abb ab Rightmost Derivation : AB ABb Ab aab ab 21 Example 3 Take the CFG 0 1 ( ( ( ( (, which generates all proper Boolean formulas that use 0, 1,,,, ( and ). Then (0) ((0) (1)) can be derived in the following ways [leftmost] ( ( (0) ( (0) (( () (0) ((0) () (0) ((0) (1)) [rightmost] ( ( ( (( () ( (( (1)) ( ((0) (1)) (0) ((0) (1)) [something else] ( ( (0) ( (0) (( () (0) (( (1)) (0) ((0) (0)) 22 Example 4 Consider the CFG: G = {{ },{ b},{ λ, ab}, Derivation of aabb is ab aabb aabb Example 5 Consider the CFG G: L( B) = { b aa aba B bb b m n L( = { a b m > 0} m a n n > 0 m > 0} 23 L(G)= L( 24 6

7 Example 6 Consider the CFG G 1 : The language generated by G 1 is: aa B B bb λ n m n L( G1) = { a b a n 0 m 0} Consider the CFG G 2 : The language generated by G 2 is: abc λ n n L( G2 ) = {( ab) c n 0} 25 Example 7 G 1 : Consider the CFGs G 1 and G 2 : AB A aa a B bb λ n L( = { a b L( = L( a + m m 0 n > 0} * b ) G 2 : The language generated by G 1 and G 2 is: L(G 1 ) = L(G 2 ) = L( a ab B bb λ 26 Example 8 Write a CFG to generate the language: AbAbA A aa λ a * ba * ba * a B B ba A aa bc C ac λ Left to right generation of string. Exercise 1 WRITE A CFG FOR THE EMPTY ET G = { {}, Σ,, }

8 Exercise 2 What is the CFG ({},{(,)}, P, that produces the language of correct parentheses like (), (()), or ()(())? ( λ Example Consider the CFG G=({,Z},{0,1}, P, with P: 01 0Z1 Z 0Z λ What is the language generated by G? Answer: L(G) = {0 i 1 j i j } pecifically, yields the 0 j+k 1 j according to: 01 0 j 1 j 0 j Z1 j 0 j 0Z1 j 0 j+k Z1 j 0 j+k ε1 j = 0 j+k 1 j Exercise Can you make Context Free for the following? a) { 0 n 1 n : n 0} b) { 0 n 1 m : n,m 0} c) Arithmetic b,c formulas like a+b c+a (without ()) Answers: a) 01 λ b) 0 R and R 1R λ c) a b c + 31 Derivation Tree For a CFG G=(V,T,,P) a derivation tree has the following properties: 1) The root is labeled 2) Each leaf is from T {λ} 3) Each interior node is from V 4) If node has label A V and ( its children a 1 a n (from L to R), then P must have the rule ) ( ) A a 1 a n (with a j V T {λ}) 5) A leaf labeled λ is a single child (has no siblings). 0 ( 0 ) ( 1 ) For partial derivation trees we have: 2a) Each leaf is from V T {λ} Example 32 8

9 Derivation Tree: Example Take the CFG 0 1 ( ( ( ( (, which generates all proper Boolean formulas that use 0, 1,,,, ( and ). The derivation * (0) ((0) (1)) can be expressed by the following derivation tree: 0 ( ) ( ) ( ) ( ) Derivation Tree: Notes Application of a production rule A x is represented by node A with children x. (Note that the tree is ordered: the ordering of the nodes matters.) The root has variable. The yield of is expressed by the leaves of the tree. 0 ( ) ( ) ( ) ( ) Derivation Tree: Notes Looking at a tree you see the derivation without the unnecessary information about its order. Theorem: Let G be a CFG. We have w L(G) if and only if there exists a derivation tree of G with yield w. Also, y is a sentential form of G if and only if there exists a partial derivation tree for G. Remember: the root always has to be. Example 1 Consider the CFG G: G = {{ },{ b},{ λ, ab}, The derivation of aabb is: ab aabb aabb Derivation tree is a b a λ b

10 Example 2 A 0A1 00A11 00B11 00#11 A A A B 0 0 # Example 3 <EXPR> <EXPR> + <EXPR> <EXPR> <EXPR> * <EXPR> <EXPR> ( <EXPR> ) <EXPR> a Build a parse tree for a + a * a <EXPR> <EXPR> <EXPR> <EXPR> <EXPR> a + a * a 38 Exercise WRITE A CFG FOR EVEN-LENGTH PALINDROME over Σ={b,c,d}? aa for all a Σ λ 39 10

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grammars and Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Lecture 11 Context-Free Languages

Lecture 11 Context-Free Languages Lecture 11 Context-Free Languages COT 4420 Theory of Computation Chapter 5 Context-Free Languages n { a b : n n { ww } 0} R Regular Languages a *b* ( a + b) * Example 1 G = ({S}, {a, b}, S, P) Derivations:

More information

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where Recitation 11 Notes Context Free Grammars Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x A V, and x (V T)*. Examples Problem 1. Given the

More information

Chapter 5: Context-Free Languages

Chapter 5: Context-Free Languages Chapter 5: Context-Free Languages Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter

More information

Context-Free Grammar

Context-Free Grammar Context-Free Grammar CFGs are more powerful than regular expressions. They are more powerful in the sense that whatever can be expressed using regular expressions can be expressed using context-free grammars,

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 22 CFG (1) Example: Grammar G telescope : Productions: S NP VP NP

More information

Context-Free Grammars and Languages. Reading: Chapter 5

Context-Free Grammars and Languages. Reading: Chapter 5 Context-Free Grammars and Languages Reading: Chapter 5 1 Context-Free Languages The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free

More information

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26 Parsing Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 26 Table of contents 1 Context-Free Grammars 2 Simplifying CFGs Removing useless symbols Eliminating

More information

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write:

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write: Languages A language is a set (usually infinite) of strings, also known as sentences Each string consists of a sequence of symbols taken from some alphabet An alphabet, V, is a finite set of symbols, e.g.

More information

Context-Free Grammars. 2IT70 Finite Automata and Process Theory

Context-Free Grammars. 2IT70 Finite Automata and Process Theory Context-Free Grammars 2IT70 Finite Automata and Process Theory Technische Universiteit Eindhoven May 18, 2016 Generating strings language L 1 = {a n b n n > 0} ab L 1 if w L 1 then awb L 1 production rules

More information

5 Context-Free Languages

5 Context-Free Languages CA320: COMPUTABILITY AND COMPLEXITY 1 5 Context-Free Languages 5.1 Context-Free Grammars Context-Free Grammars Context-free languages are specified with a context-free grammar (CFG). Formally, a CFG G

More information

Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y.

Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y. CSE2001, Fall 2006 1 Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y. S 00S1 A - xay, where x = 2 y.

More information

Context Free Languages (CFL) Language Recognizer A device that accepts valid strings. The FA are formalized types of language recognizer.

Context Free Languages (CFL) Language Recognizer A device that accepts valid strings. The FA are formalized types of language recognizer. Context Free Languages (CFL) Language Recognizer A device that accepts valid strings. The FA are formalized types of language recognizer. Language Generator: Context free grammars are language generators,

More information

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis Context-free grammars Derivations Parse Trees Left-recursive grammars Top-down parsing non-recursive predictive parsers construction of parse tables Bottom-up parsing shift/reduce parsers LR parsers GLR

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

Automata Theory CS F-08 Context-Free Grammars

Automata Theory CS F-08 Context-Free Grammars Automata Theory CS411-2015F-08 Context-Free Grammars David Galles Department of Computer Science University of San Francisco 08-0: Context-Free Grammars Set of Terminals (Σ) Set of Non-Terminals Set of

More information

Theory of Computation - Module 3

Theory of Computation - Module 3 Theory of Computation - Module 3 Syllabus Context Free Grammar Simplification of CFG- Normal forms-chomsky Normal form and Greibach Normal formpumping lemma for Context free languages- Applications of

More information

Context Free Grammars

Context Free Grammars Automata and Formal Languages Context Free Grammars Sipser pages 101-111 Lecture 11 Tim Sheard 1 Formal Languages 1. Context free languages provide a convenient notation for recursive description of languages.

More information

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar TAFL 1 (ECS-403) Unit- III 3.1 Definition of CFG (Context Free Grammar) and problems 3.2 Derivation 3.3 Ambiguity in Grammar 3.3.1 Inherent Ambiguity 3.3.2 Ambiguous to Unambiguous CFG 3.4 Simplification

More information

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor 60-354, Theory of Computation Fall 2013 Asish Mukhopadhyay School of Computer Science University of Windsor Pushdown Automata (PDA) PDA = ε-nfa + stack Acceptance ε-nfa enters a final state or Stack is

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science C1. Formal Languages and Grammars Malte Helmert University of Basel March 14, 2016 Introduction Example: Propositional Formulas from the logic part: Definition (Syntax of Propositional

More information

This lecture covers Chapter 5 of HMU: Context-free Grammars

This lecture covers Chapter 5 of HMU: Context-free Grammars This lecture covers Chapter 5 of HMU: Context-free rammars (Context-free) rammars (Leftmost and Rightmost) Derivations Parse Trees An quivalence between Derivations and Parse Trees Ambiguity in rammars

More information

Pushdown Automata. Reading: Chapter 6

Pushdown Automata. Reading: Chapter 6 Pushdown Automata Reading: Chapter 6 1 Pushdown Automata (PDA) Informally: A PDA is an NFA-ε with a infinite stack. Transitions are modified to accommodate stack operations. Questions: What is a stack?

More information

CPS 220 Theory of Computation Pushdown Automata (PDA)

CPS 220 Theory of Computation Pushdown Automata (PDA) CPS 220 Theory of Computation Pushdown Automata (PDA) Nondeterministic Finite Automaton with some extra memory Memory is called the stack, accessed in a very restricted way: in a First-In First-Out fashion

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic and Theory of Computing Fuhua (Frank) Cheng Department of Computer Science University of Kentucky 1 Table of Contents: Week 1: Preliminaries (set algebra, relations, functions) (read Chapters

More information

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages Context Free Languages Automata Theory and Formal Grammars: Lecture 6 Context Free Languages Last Time Decision procedures for FAs Minimum-state DFAs Today The Myhill-Nerode Theorem The Pumping Lemma Context-free

More information

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions CFG Simplification (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions 1 Eliminating useless symbols 1. A symbol X is generating if there exists: X * w, for

More information

Context-Free Grammars: Normal Forms

Context-Free Grammars: Normal Forms Context-Free Grammars: Normal Forms Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

C1.1 Introduction. Theory of Computer Science. Theory of Computer Science. C1.1 Introduction. C1.2 Alphabets and Formal Languages. C1.

C1.1 Introduction. Theory of Computer Science. Theory of Computer Science. C1.1 Introduction. C1.2 Alphabets and Formal Languages. C1. Theory of Computer Science March 20, 2017 C1. Formal Languages and Grammars Theory of Computer Science C1. Formal Languages and Grammars Malte Helmert University of Basel March 20, 2017 C1.1 Introduction

More information

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata. Code No: R09220504 R09 Set No. 2 II B.Tech II Semester Examinations,December-January, 2011-2012 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

FLAC Context-Free Grammars

FLAC Context-Free Grammars FLAC Context-Free Grammars Klaus Sutner Carnegie Mellon Universality Fall 2017 1 Generating Languages Properties of CFLs Generation vs. Recognition 3 Turing machines can be used to check membership in

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 17 april Classrum Edition

ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 17 april Classrum Edition ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK 7 april 23 Classrum Edition CONTEXT FREE LANGUAGES & PUSH-DOWN AUTOMATA CONTEXT-FREE GRAMMARS, CFG Problems Sudkamp Problem. (3.2.) Which language generates the

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 10 : Context-Free Grammars

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 10 : Context-Free Grammars COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lec. 10 : Context-Free Grammars COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite

More information

CPS 220 Theory of Computation

CPS 220 Theory of Computation CPS 22 Theory of Computation Review - Regular Languages RL - a simple class of languages that can be represented in two ways: 1 Machine description: Finite Automata are machines with a finite number of

More information

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF)

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF) CS5371 Theory of Computation Lecture 7: Automata Theory V (CFG, CFL, CNF) Announcement Homework 2 will be given soon (before Tue) Due date: Oct 31 (Tue), before class Midterm: Nov 3, (Fri), first hour

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 5 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 5.1.a (q 0, ab, Z 0 ) (q 1, b,

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner. Tel Aviv University. November 28, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Context-Free Languages and Push Down Automata Professor Daniel Leeds dleeds@fordham.edu JMH 332 Languages: Regular and Beyond Regular: Captured by Regular Operations a b

More information

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis 1 Introduction Parenthesis Matching Problem Describe the set of arithmetic expressions with correctly matched parenthesis. Arithmetic expressions with correctly matched parenthesis cannot be described

More information

Computational Models - Lecture 4 1

Computational Models - Lecture 4 1 Computational Models - Lecture 4 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 3/8, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

Context-Free Grammars and Languages. We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs.

Context-Free Grammars and Languages. We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs. Context-Free Grammars and Languages We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs. Contex-Free Languages (CFL s) played a central role natural languages

More information

CS A Term 2009: Foundations of Computer Science. Homework 2. By Li Feng, Shweta Srivastava, and Carolina Ruiz.

CS A Term 2009: Foundations of Computer Science. Homework 2. By Li Feng, Shweta Srivastava, and Carolina Ruiz. CS3133 - A Term 2009: Foundations of Computer Science Prof. Carolina Ruiz Homework 2 WPI By Li Feng, Shweta Srivastava, and Carolina Ruiz Chapter 4 Problem 1: (10 Points) Exercise 4.3 Solution 1: S is

More information

CPSC 313 Introduction to Computability

CPSC 313 Introduction to Computability CPSC 313 Introduction to Computability Grammars in Chomsky Normal Form (Cont d) (Sipser, pages 109-111 (3 rd ed) and 107-109 (2 nd ed)) Renate Scheidler Fall 2018 Chomsky Normal Form A context-free grammar

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (-NFA) Definition A nondeterministic finite automaton

More information

Introduction and Motivation. Introduction and Motivation. Introduction to Computability. Introduction and Motivation. Theory. Lecture5: Context Free

Introduction and Motivation. Introduction and Motivation. Introduction to Computability. Introduction and Motivation. Theory. Lecture5: Context Free ntroduction to Computability Theory Lecture5: Context Free Languages Prof. Amos sraeli 1 ntroduction and Motivation n our study of RL-s we Covered: 1. Motivation and definition of regular languages. 2.

More information

Introduction to Theory of Computing

Introduction to Theory of Computing CSCI 2670, Fall 2012 Introduction to Theory of Computing Department of Computer Science University of Georgia Athens, GA 30602 Instructor: Liming Cai www.cs.uga.edu/ cai 0 Lecture Note 3 Context-Free Languages

More information

Computational Models - Lecture 4 1

Computational Models - Lecture 4 1 Computational Models - Lecture 4 1 Handout Mode Iftach Haitner. Tel Aviv University. November 21, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Context-free Grammars and Languages

Context-free Grammars and Languages Context-free Grammars and Languages COMP 455 002, Spring 2019 Jim Anderson (modified by Nathan Otterness) 1 Context-free Grammars Context-free grammars provide another way to specify languages. Example:

More information

Context-free Languages and Pushdown Automata

Context-free Languages and Pushdown Automata Context-free Languages and Pushdown Automata Finite Automata vs CFLs E.g., {a n b n } CFLs Regular From earlier results: Languages every regular language is a CFL but there are CFLs that are not regular

More information

Solutions to Problem Set 3

Solutions to Problem Set 3 V22.0453-001 Theory of Computation October 8, 2003 TA: Nelly Fazio Solutions to Problem Set 3 Problem 1 We have seen that a grammar where all productions are of the form: A ab, A c (where A, B non-terminals,

More information

Simplification of CFG and Normal Forms. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Simplification of CFG and Normal Forms. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Simplification of CFG and Normal Forms Wen-Guey Tzeng Computer Science Department National Chiao Tung University Normal Forms We want a cfg with either Chomsky or Greibach normal form Chomsky normal form

More information

Simplification of CFG and Normal Forms. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Simplification of CFG and Normal Forms. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Simplification of CFG and Normal Forms Wen-Guey Tzeng Computer Science Department National Chiao Tung University Normal Forms We want a cfg with either Chomsky or Greibach normal form Chomsky normal form

More information

Solution Scoring: SD Reg exp.: a(a

Solution Scoring: SD Reg exp.: a(a MA/CSSE 474 Exam 3 Winter 2013-14 Name Solution_with explanations Section: 02(3 rd ) 03(4 th ) 1. (28 points) For each of the following statements, circle T or F to indicate whether it is True or False.

More information

Chapter 6. Properties of Regular Languages

Chapter 6. Properties of Regular Languages Chapter 6 Properties of Regular Languages Regular Sets and Languages Claim(1). The family of languages accepted by FSAs consists of precisely the regular sets over a given alphabet. Every regular set is

More information

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA.

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA. Outline CS21 Decidability and Tractability Lecture 5 January 16, 219 and Languages equivalence of NPDAs and CFGs non context-free languages January 16, 219 CS21 Lecture 5 1 January 16, 219 CS21 Lecture

More information

Homework 4. Chapter 7. CS A Term 2009: Foundations of Computer Science. By Li Feng, Shweta Srivastava, and Carolina Ruiz

Homework 4. Chapter 7. CS A Term 2009: Foundations of Computer Science. By Li Feng, Shweta Srivastava, and Carolina Ruiz CS3133 - A Term 2009: Foundations of Computer Science Prof. Carolina Ruiz Homework 4 WPI By Li Feng, Shweta Srivastava, and Carolina Ruiz Chapter 7 Problem: Chap 7.1 part a This PDA accepts the language

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Context-Free Languages and Push Down Automata Professor Daniel Leeds dleeds@fordham.edu JMH 332 Languages: Regular and Beyond Regular: a b c b d e a Not-regular: c n bd

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: FORMAL LANGUAGES AND AUTOMATA THEORY Class : CSE II PART A (SHORT ANSWER QUESTIONS) UNIT- I 1 Explain transition diagram, transition

More information

Context-Free Languages

Context-Free Languages CS:4330 Theory of Computation Spring 2018 Context-Free Languages Non-Context-Free Languages Haniel Barbosa Readings for this lecture Chapter 2 of [Sipser 1996], 3rd edition. Section 2.3. Proving context-freeness

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014 Q.2 a. Show by using Mathematical Induction that n i= 1 i 2 n = ( n + 1) ( 2 n + 1) 6 b. Define language. Let = {0; 1} denote an alphabet. Enumerate five elements of the following languages: (i) Even binary

More information

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules).

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). 1a) G = ({R, S, T}, {0,1}, P, S) where P is: S R0R R R0R1R R1R0R T T 0T ε (S generates the first 0. R generates

More information

Solution. S ABc Ab c Bc Ac b A ABa Ba Aa a B Bbc bc.

Solution. S ABc Ab c Bc Ac b A ABa Ba Aa a B Bbc bc. Section 12.4 Context-Free Language Topics Algorithm. Remove Λ-productions from grammars for langauges without Λ. 1. Find nonterminals that derive Λ. 2. For each production A w construct all productions

More information

Notes for Comp 497 (454) Week 10

Notes for Comp 497 (454) Week 10 Notes for Comp 497 (454) Week 10 Today we look at the last two chapters in Part II. Cohen presents some results concerning the two categories of language we have seen so far: Regular languages (RL). Context-free

More information

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen Pushdown automata Twan van Laarhoven Institute for Computing and Information Sciences Intelligent Systems Version: fall 2014 T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata

More information

The Pumping Lemma for Context Free Grammars

The Pumping Lemma for Context Free Grammars The Pumping Lemma for Context Free Grammars Chomsky Normal Form Chomsky Normal Form (CNF) is a simple and useful form of a CFG Every rule of a CNF grammar is in the form A BC A a Where a is any terminal

More information

Chapter 16: Non-Context-Free Languages

Chapter 16: Non-Context-Free Languages Chapter 16: Non-Context-Free Languages Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter

More information

CSC 4181Compiler Construction. Context-Free Grammars Using grammars in parsers. Parsing Process. Context-Free Grammar

CSC 4181Compiler Construction. Context-Free Grammars Using grammars in parsers. Parsing Process. Context-Free Grammar CSC 4181Compiler Construction Context-ree Grammars Using grammars in parsers CG 1 Parsing Process Call the scanner to get tokens Build a parse tree from the stream of tokens A parse tree shows the syntactic

More information

Homework 4 Solutions. 2. Find context-free grammars for the language L = {a n b m c k : k n + m}. (with n 0,

Homework 4 Solutions. 2. Find context-free grammars for the language L = {a n b m c k : k n + m}. (with n 0, Introduction to Formal Language, Fall 2016 Due: 21-Apr-2016 (Thursday) Instructor: Prof. Wen-Guey Tzeng Homework 4 Solutions Scribe: Yi-Ruei Chen 1. Find context-free grammars for the language L = {a n

More information

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ.

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ. 1. Trees; context free grammars. 1.1. Trees. Definition 1.1. By a tree we mean an ordered triple T = (N, ρ, p) (i) N is a finite set; (ii) ρ N ; (iii) p : N {ρ} N ; (iv) if n N + and ν dmn p n then p n

More information

Talen en Compilers. Johan Jeuring , period 2. October 29, Department of Information and Computing Sciences Utrecht University

Talen en Compilers. Johan Jeuring , period 2. October 29, Department of Information and Computing Sciences Utrecht University Talen en Compilers 2015-2016, period 2 Johan Jeuring Department of Information and Computing Sciences Utrecht University October 29, 2015 12. LL parsing 12-1 This lecture LL parsing Motivation Stack-based

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation Bottom-up parsing Pumping Theorem for CFLs Recap: Going One Way Lemma: Each context-free language is accepted by some PDA. Proof (by construction): The idea: Let the stack

More information

Lecture 12 Simplification of Context-Free Grammars and Normal Forms

Lecture 12 Simplification of Context-Free Grammars and Normal Forms Lecture 12 Simplification of Context-Free Grammars and Normal Forms COT 4420 Theory of Computation Chapter 6 Normal Forms for CFGs 1. Chomsky Normal Form CNF Productions of form A BC A, B, C V A a a T

More information

EXAM. CS331 Compiler Design Spring Please read all instructions, including these, carefully

EXAM. CS331 Compiler Design Spring Please read all instructions, including these, carefully EXAM Please read all instructions, including these, carefully There are 7 questions on the exam, with multiple parts. You have 3 hours to work on the exam. The exam is open book, open notes. Please write

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Theory of Regular Expressions DFAs and NFAs Reminders Project 1 due Sep. 24 Homework 1 posted Exam 1 on Sep. 25 Exam topics list posted Practice homework

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and A. Kissinger Institute for Computing and Information Sciences Version: fall 2015 H. Geuvers & A. Kissinger Version: fall 2015 Talen en Automaten 1 / 23

More information

The View Over The Horizon

The View Over The Horizon The View Over The Horizon enumerable decidable context free regular Context-Free Grammars An example of a context free grammar, G 1 : A 0A1 A B B # Terminology: Each line is a substitution rule or production.

More information

(NB. Pages are intended for those who need repeated study in formal languages) Length of a string. Formal languages. Substrings: Prefix, suffix.

(NB. Pages are intended for those who need repeated study in formal languages) Length of a string. Formal languages. Substrings: Prefix, suffix. (NB. Pages 22-40 are intended for those who need repeated study in formal languages) Length of a string Number of symbols in the string. Formal languages Basic concepts for symbols, strings and languages:

More information

CS 373: Theory of Computation. Fall 2010

CS 373: Theory of Computation. Fall 2010 CS 373: Theory of Computation Gul Agha Mahesh Viswanathan Fall 2010 1 1 Normal Forms for CFG Normal Forms for Grammars It is typically easier to work with a context free language if given a CFG in a normal

More information

download instant at Assume that (w R ) R = w for all strings w Σ of length n or less.

download instant at  Assume that (w R ) R = w for all strings w Σ of length n or less. Chapter 2 Languages 3. We prove, by induction on the length of the string, that w = (w R ) R for every string w Σ. Basis: The basis consists of the null string. In this case, (λ R ) R = (λ) R = λ as desired.

More information

Introduction to Formal Languages, Automata and Computability p.1/42

Introduction to Formal Languages, Automata and Computability p.1/42 Introduction to Formal Languages, Automata and Computability Pushdown Automata K. Krithivasan and R. Rama Introduction to Formal Languages, Automata and Computability p.1/42 Introduction We have considered

More information

Chapter 4: Context-Free Grammars

Chapter 4: Context-Free Grammars Chapter 4: Context-Free Grammars 4.1 Basics of Context-Free Grammars Definition A context-free grammars, or CFG, G is specified by a quadruple (N, Σ, P, S), where N is the nonterminal or variable alphabet;

More information

Properties of Context-free Languages. Reading: Chapter 7

Properties of Context-free Languages. Reading: Chapter 7 Properties of Context-free Languages Reading: Chapter 7 1 Topics 1) Simplifying CFGs, Normal forms 2) Pumping lemma for CFLs 3) Closure and decision properties of CFLs 2 How to simplify CFGs? 3 Three ways

More information

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Salil Vadhan October 4, 2012 Reading: Sipser, 2.2. Another example of a CFG (with proof) L = {x {a, b} : x has the same # of a s and

More information

Notes for Comp 497 (Comp 454) Week 10 4/5/05

Notes for Comp 497 (Comp 454) Week 10 4/5/05 Notes for Comp 497 (Comp 454) Week 10 4/5/05 Today look at the last two chapters in Part II. Cohen presents some results concerning context-free languages (CFL) and regular languages (RL) also some decidability

More information

Sheet 1-8 Dr. Mostafa Aref Format By : Mostafa Sayed

Sheet 1-8 Dr. Mostafa Aref Format By : Mostafa Sayed Sheet -8 Dr. Mostafa Aref Format By : Mostafa Sayed 09 Introduction Assignment. For = {a, } a) Write 0 strings of the following languages i) All strings with no more than one a,,, a, a, a, a, a, a, a ii)

More information

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols Finite Automata and Formal Languages TMV026/DIT321 LP4 2012 Lecture 13 Ana Bove May 7th 2012 Overview of today s lecture: Normal Forms for Context-Free Languages Pumping Lemma for Context-Free Languages

More information

UNIT II REGULAR LANGUAGES

UNIT II REGULAR LANGUAGES 1 UNIT II REGULAR LANGUAGES Introduction: A regular expression is a way of describing a regular language. The various operations are closure, union and concatenation. We can also find the equivalent regular

More information

Pushdown Automata: Introduction (2)

Pushdown Automata: Introduction (2) Pushdown Automata: Introduction Pushdown automaton (PDA) M = (K, Σ, Γ,, s, A) where K is a set of states Σ is an input alphabet Γ is a set of stack symbols s K is the start state A K is a set of accepting

More information

Plan for 2 nd half. Just when you thought it was safe. Just when you thought it was safe. Theory Hall of Fame. Chomsky Normal Form

Plan for 2 nd half. Just when you thought it was safe. Just when you thought it was safe. Theory Hall of Fame. Chomsky Normal Form Plan for 2 nd half Pumping Lemma for CFLs The Return of the Pumping Lemma Just when you thought it was safe Return of the Pumping Lemma Recall: With Regular Languages The Pumping Lemma showed that if a

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and J. Rot Institute for Computing and Information Sciences Version: fall 2016 H. Geuvers & J. Rot Version: fall 2016 Talen en Automaten 1 / 24 Outline Grammars

More information

Properties of Context-Free Languages

Properties of Context-Free Languages Properties of Context-Free Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions?

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions? Before We Start The Pumping Lemma Any questions? The Lemma & Decision/ Languages Future Exam Question What is a language? What is a class of languages? Context Free Languages Context Free Languages(CFL)

More information

Formal Languages, Grammars and Automata Lecture 5

Formal Languages, Grammars and Automata Lecture 5 Formal Languages, Grammars and Automata Lecture 5 Helle Hvid Hansen helle@cs.ru.nl http://www.cs.ru.nl/~helle/ Foundations Group Intelligent Systems Section Institute for Computing and Information Sciences

More information

CONTEXT FREE GRAMMAR AND

CONTEXT FREE GRAMMAR AND CONTEXT FREE GRAMMAR AND PARSING STATIC ANALYSIS - PARSING Source language Scanner (lexical analysis) tokens Parser (syntax analysis) Syntatic structure Semantic Analysis (IC generator) Syntatic/sema ntic

More information