Continuation methods for non-linear analysis

Size: px
Start display at page:

Download "Continuation methods for non-linear analysis"

Transcription

1 Continuation methods for non-linear analysis FR : Méthodes de pilotage du chargement Code_Aster, Salome-Meca course material GNU FDL licence (

2 Outline Definition of continuation methods Theoretical elements for continuation methods Solving non-linear problems with continuation methods Using continuation methods in Code_Aster 2 - Code_Aster and Salome-Meca course material GNU FDL Licence

3 Definition of continuation methods 3 - Code_Aster and Salome-Meca course material GNU FDL Licence

4 Continuation method What? Linear mechanical problem definition: Unknowns: displacement, Lagrange multiplier for boundary conditions Loadings : displacement (Dirichlet), forces (Neumann) Unique solution (elliptical differential equation) : Non-linear problem definition: Unknowns: displacement, Lagrange multiplier for boundary conditions, temperature, pressure, stress and internal variables Loadings : displacement (Dirichlet), forces (Neumann), contact/friction Parameterization: t is not real time (quasi-static problem) Sequence of linearized solutions General non-linear continuation method Ku F si det K 0 Some external loading and prescribed displacements are partially unknowns by user: directions are known, intensity are unknown -> continuation method 4 - Code_Aster and Salome-Meca course material GNU FDL Licence

5 Continuation methods Example 1 : tensile stress test of the notched specimen Isotropic fragile damage law (ENDO_ISOT_BETON) 5 - Code_Aster and Salome-Meca course material GNU FDL Licence

6 Continuation method Where? Where to use : 1. External loading and prescribed displacements are partially unknowns by user: direction, application are known, intensity are unknown 2. Solution of an unstable problem => impossibility to follow system evolution continuously => Newton method fails 1 Experimental setup controlled by extensometer Damage of the notched bar B η.f F 2 sound state Applied force at point A is controlled by displacement at point B A completely damaged state u 6 - Code_Aster and Salome-Meca course material GNU FDL Licence

7 Continuation method Loading control Nooru-Mohamed concrete fracture test : 1) Loading is applied via rigid mobile platform by piston displacement 2) Efforts are controlled on the stable effort control cell 3) Unstable concrete fracture Rigid mobile platform Hydraulic Piston Tested Sample Effort control cell 2m 7 - Code_Aster and Salome-Meca course material GNU FDL Licence

8 Continuation method Instability = snap-back I II Bi-material with close characteristics In 1d tensile test weak-chain is damaged first l 1 l 2 Simplified damage law : Bar I Bar II e Solution post peak : equilibrium => stress equality l 1 Ee E( e e ) ; e e 1 f E( l l e ) /( l l ) 2 f 1 2 l 1 l l l l l / E l ( e / E) Global post peak force-displacement response : f l 2 2 e c e f Snap-back if l 1 > l 2 Ee si e ec E( e f e) si e ec l 1 << l 2 l 8 - Code_Aster and Salome-Meca course material GNU FDL Licence

9 Continuation method Instability = snap-back Damage of the bar l 1 Global force-displacement response : Simplified damage law : Elastic domain softening e Snap-back l e c e f Ee si e ec E( e f e) si e ec Impossibility to follow the solution after this charge level 9 - Code_Aster and Salome-Meca course material GNU FDL Licence

10 Continuation methods : General FU curve F General form of the force-displacement curve Example : Snap-through for shell buckling F u u BC Prescription: forces Multiplicity: one force -> several displacements BC Prescription: displacements Multiplicity: one displacement -> several forces Horizontal tangent matrices: singular (slope vanishing) 10 - Code_Aster and Salome-Meca course material GNU FDL Licence

11 Continuation method Why? Continuation method in non-linear problems: Choosing a solution for incomplete model ext. F pilo F F. F ext ext ext impo pilo Yield-point analysis : critical loading Follow physical solution for ill defined problem : 1 K n u n R n si det K n 0 Multiple solutions coming from computation From constitutive laws. Non-elliptic condition as softening, damage, geo-mechanic laws : ENDO_SCALAIRE,ENDO_ISOT_BETON,ENDO_ORTH_BETON,CZM_EXP,ROUSSELIER, VENDOCHAB, From equilibrium equations: buckling, structural instabilities From Coulomb s friction Code_Aster and Salome-Meca course material GNU FDL Licence

12 Continuation methods Choosing single solution for partially defined loading Partially unknown loadings: direction, application are known, intensity are unknown Unknown force or displacement (intensity) u η.f Goal: u Parameter: intensity of force Direction of force: known! Yield-point analysis η.p Goal: all domain is plastified Parameter: intensity of pressure Yield-point analysis 12 - Code_Aster and Salome-Meca course material GNU FDL Licence

13 Solving mechanical problems with continuation 13 - Code_Aster and Salome-Meca course material GNU FDL Licence

14 Solving linear problem with continuation Electric pylon stability control Boundary conditions: known and unknown parts of prescribed forces u η.f Goal: u Parameter: intensity of force Direction of force: known! Linear Elasticity : Formal solution : Ku F where F F. F ext ext ext ext impo pilo u K F. K F u. u 1 ext 1 ext impo pilo impo pilo Cable length control new equation for u u. u Δτ impo pilo crit 14 - Code_Aster and Salome-Meca course material GNU FDL Licence

15 Solving non-linear problems with continuation How to find unknown load parameter? Continuation equation: Build on displacements, strain or stress Should be easy to solve (linear, quadratic) Using only one scalar parameter Continuation methods list by goal function: Degree of freedom: DDL_IMPO Norm of displacement: LONG_ARC Displacement jump: SAUT_IMPO (XFEM) Norm of displacement jump: SAUT_LONG_ARC (XFEM) Work of exterior forces (yield-point analysis): ANA_LIM Strain increment: DEFORMATION Elastic prediction: PRED_ELAS u u. u Δτ P impo pilo crit u t C 17 - Code_Aster and Salome-Meca course material GNU FDL Licence

16 Solving non-linear problems with continuation Continuation by degree of freedom - dof (DDL_IMPO) Equation Using rules: P u u Control displacement increment of one dof The controlled node must be important for movement C is a constant given by user in STAT_NON_LINE dof t C B η.f A Good goal: what is for a given vertical displacement of A node? Bad goal: what is for a given displacement of B node? B doesn t move! 18 - Code_Aster and Salome-Meca course material GNU FDL Licence

17 Solving non-linear problems with continuation Continuation by norm of displacement (LONG_ARC) Extended RIKS method (1972) Equation P u u t C Using rules: Control norm displacement increment of several dof and several nodes The controlled nodes must be important for movement C is a constant given by user in STAT_NON_LINE Resulted equation is quadratic: two solutions -> need selection criterion RESIDU, ANGL_INCR_DEPL, NORM_INCR_DEPL (see documentation) 19 - Code_Aster and Salome-Meca course material GNU FDL Licence

18 Solving non-linear problems with continuation Continuation by norm of displacement (LONG_ARC) Extended RIKS method F A u Arc-length: construct successive circles to follow loading path Very useful for complex path (snap-through for instance) B 2 t P u u uimpo. upilo C 2 Quadratic equation for 20 - Code_Aster and Salome-Meca course material GNU FDL Licence

19 Solving non-linear problems with continuation Continuation by strain increment (DEFORMATION) Equation Using rules At least, one point where strain is increasing No indication on plasticity state g g εi 1 : Δε Δt Pu = Max = gauss g ε i1 C g εi 1 Δε g Need a reference state with deformation ( method to establish this state Strains at the previous load step Increment of strains at the current step g 0 ε 1 i ): first computation without continuation Impossibility to follow the snap-back solutions : impossible loading-unloading transition Code_Aster and Salome-Meca course material GNU FDL Licence

20 Solving non-linear problems with continuation Continuation method by elastic prediction (PRED_ELAS) Available for Yield function constitutive laws : plasticity, damage Equations : Δt P u = Max g 1, g g gauss di ε i1 Δε = gauss C g Δt g g Pu = Max gauss i 1, i 1 0 gauss d ε Δε = C g ε i 1 g Δε g di 1 Strains at the previous load step Increment of strains at the current step Damage at the previous step for elasto-plasticity laws for damage laws t control either magnitude of Yield function overflow, or damage increment 23 - Code_Aster and Salome-Meca course material GNU FDL Licence

21 Solving non-linear problems with continuation Continuation method by elastic prediction (PRED_ELAS) Using rules At least, one point which passes through initial yield surface Depend on behavior law: ENDO_SCALAIRE, ENDO_FRAGILE, ENDO_ISOT_BETON, ENDO_ORTH_BETON, VMIS_ISOT_*, CZM_* and BETON_DOUBLE_DP Criterion C : increasing ratio of damage or strain Resultant equation should have two solutions -> need selection criterion RESIDU, ANGL_INCR_DEPL, NORM_INCR_DEPL (see documentation) 24 - Code_Aster and Salome-Meca course material GNU FDL Licence

22 Using continuation methods in Code_Aster 25 - Code_Aster and Salome-Meca course material GNU FDL Licence

23 Using continuation methods in Code_Aster As continuation methods is using parameter for determination of loading path, you must avoid direct or indirect using of time in your model: No dynamic (only STAT_NON_LINE where t is pseudo-time) No time for loadings: no FONC_MULT, no AFFE_CHAR_MECA_F with parameter INST No «command variables» as temperature in AFFE_MATERIAU/AFFE_VARC Contact/friction is not possible except for specific XFEM methods (with CZM, see documentation) or discrete element (DIS_CHOC) Line search is possible only for some continuation methods 26 - Code_Aster and Salome-Meca course material GNU FDL Licence

24 Using continuation methods in Code_Aster Definition of loads in AFFE_CHAR_MECA Definition of continuation load in STAT_NON_LINE/EXCIT EXCIT/TYPE_CHARGE='FIXE_PILO' Definition of the parameters for continuation method in STAT_NON_LINE/PILOTAGE Post-processing : parameter could been found in result (ETA_PILOTAGE) 27 - Code_Aster and Salome-Meca course material GNU FDL Licence

25 Continuation method : command file Fixed charge Drived charge Pseudo-time Resulting charge application Continuation parameters 28 - Code_Aster and Salome-Meca course material GNU FDL Licence

26 Continuation methods : PRED_ELAS Example 1 : tensile stress test of the notched specimen Isotropic fragile damage law (ENDO_ISOT_BETON) 29 - Code_Aster and Salome-Meca course material GNU FDL Licence

27 Continuation methods : PRED_ELAS Example 2 : Impact on damaged concrete Anisotropic fragile damage law (ENDO_ORTH_BETON) 30 - Code_Aster and Salome-Meca course material GNU FDL Licence

28 Continuation methods : PRED_ELAS Example 3 : tensile stress test for the perforated plate Cohesive Zone Model (CZM) 31 - Code_Aster and Salome-Meca course material GNU FDL Licence

29 Continuation methods : LONG_ARC Example 4 F F A B Buckling of a shell/column u 32 - Code_Aster and Salome-Meca course material GNU FDL Licence

30 Applied pressure, Pa Continuation methods : DDL_IMPO Example 5 : stability of the gravity dam upstream opening,m Cohesive Zone Model (JOINT_MECA_RUPT) 33 - Code_Aster and Salome-Meca course material GNU FDL Licence

31 Using continuation methods in Code_Aster Documentation: General documentation about non-linear solver [R ] General documentation about continuation methods [R ] Using continuation method, syntax in [U ] Examples: See [V ], forma03d test-case for general example See [V ], ssna119b test-case for fragile damage (Elastic prediction) See [V ], ssnv124 test-case for yield-point analysis See [V ], ssns101 test-case for shell buckling (Riks method) 34 - Code_Aster and Salome-Meca course material GNU FDL Licence

32 End of presentation Is something missing or unclear in this document? Or feeling happy to have read such a clear tutorial? Please, we welcome any feedbacks about Code_Aster training materials. Do not hesitate to share with us your comments on the Code_Aster forum dedicated thread Code_Aster and Salome-Meca course material GNU FDL Licence

Contact and friction. Code_Aster, Salome-Meca course material GNU FDL licence (

Contact and friction. Code_Aster, Salome-Meca course material GNU FDL licence ( Contact and friction Code_Aster, Salome-Meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html) Outline Introduction Frictional Contact problems : Definition Numerical treatment Pairing

More information

Fracture mechanics. code_aster, salome_meca course material GNU FDL licence (

Fracture mechanics. code_aster, salome_meca course material GNU FDL licence ( Fracture mechanics code_aster, salome_meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html) Why fracture mechanics? 2 - code_aster and salome_meca course material GNU FDL Licence

More information

Fonctionnalités de Code_Aster version 12

Fonctionnalités de Code_Aster version 12 Fonctionnalités de Code_Aster version 12 Outline Version 12 in a nutshell Fracture mechanics Non-linear constitutive laws Linear and non-linear dynamics Numerical methods Architecture, ergonomics, performances

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Functions and formulas. Code_Aster, Salome-Meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html)

Functions and formulas. Code_Aster, Salome-Meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html) Functions and formulas Code_Aster, Salome-Meca course material GNU FDL licence (http://wwwgnuorg/copyleft/fdlhtml) Definitions FONCTION : tabulated (discrete) function depending on one parameter NAPPE

More information

Nonlinear analysis in ADINA Structures

Nonlinear analysis in ADINA Structures Nonlinear analysis in ADINA Structures Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Topics presented Types of nonlinearities Materially nonlinear only Geometrically nonlinear analysis Deformation-dependent

More information

Computational Inelasticity FHLN05. Assignment A non-linear elasto-plastic problem

Computational Inelasticity FHLN05. Assignment A non-linear elasto-plastic problem Computational Inelasticity FHLN05 Assignment 2017 A non-linear elasto-plastic problem General instructions A written report should be submitted to the Division of Solid Mechanics no later than October

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 17, 2017, Lesson 5 1 Politecnico di Milano, February 17, 2017, Lesson 5 2 Outline

More information

1 Nonlinear deformation

1 Nonlinear deformation NONLINEAR TRUSS 1 Nonlinear deformation When deformation and/or rotation of the truss are large, various strains and stresses can be defined and related by material laws. The material behavior can be expected

More information

Theoretical Manual Theoretical background to the Strand7 finite element analysis system

Theoretical Manual Theoretical background to the Strand7 finite element analysis system Theoretical Manual Theoretical background to the Strand7 finite element analysis system Edition 1 January 2005 Strand7 Release 2.3 2004-2005 Strand7 Pty Limited All rights reserved Contents Preface Chapter

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Realization of a study civil engineer with cables of prestressing

Realization of a study civil engineer with cables of prestressing Titre : Réalisation d'une étude génie civil avec câbles de[...] Date : 11/07/2012 Page : 1/13 Realization of a study civil engineer with cables of prestressing Summarized: The purpose of this document

More information

On Nonlinear Buckling and Collapse Analysis using Riks Method

On Nonlinear Buckling and Collapse Analysis using Riks Method Visit the SIMULIA Resource Center for more customer examples. On Nonlinear Buckling and Collapse Analysis using Riks Method Mingxin Zhao, Ph.D. UOP, A Honeywell Company, 50 East Algonquin Road, Des Plaines,

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Implicit integration and clarifies nonlinear relations of behaviors

Implicit integration and clarifies nonlinear relations of behaviors Titre : Intégration implicite et explicite des relations d[...] Date : 25/09/2013 Page : 1/14 Implicit integration and clarifies nonlinear relations of behaviors Summary This document describes two methods

More information

GEO E1050 Finite Element Method Autumn Lecture. 9. Nonlinear Finite Element Method & Summary

GEO E1050 Finite Element Method Autumn Lecture. 9. Nonlinear Finite Element Method & Summary GEO E1050 Finite Element Method Autumn 2016 Lecture. 9. Nonlinear Finite Element Method & Summary To learn today The lecture should give you overview of how non-linear problems in Finite Element Method

More information

Leaf Spring (Material, Contact, geometric nonlinearity)

Leaf Spring (Material, Contact, geometric nonlinearity) 00 Summary Summary Nonlinear Static Analysis - Unit: N, mm - Geometric model: Leaf Spring.x_t Leaf Spring (Material, Contact, geometric nonlinearity) Nonlinear Material configuration - Stress - Strain

More information

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg Course in Nonlinear FEM Geometric nonlinearity Nonlinear FEM Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity it continued

More information

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering

More information

Direct calculation of critical points in parameter sensitive systems

Direct calculation of critical points in parameter sensitive systems Direct calculation of critical points in parameter sensitive systems Behrang Moghaddasie a, Ilinca Stanciulescu b, a Department of Civil Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111,

More information

6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS

6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS 6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS Blondet et al. [25] carried out a cyclic test on an adobe wall to reproduce its seismic response and damage pattern under in-plane loads. The displacement

More information

After lecture 16 you should be able to

After lecture 16 you should be able to Lecture 16: Design of paper and board packaging Advanced concepts: FEM, Fracture Mechanics After lecture 16 you should be able to describe the finite element method and its use for paper- based industry

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Contact analysis for the modelling of anchors in concrete structures H. Walter*, L. Baillet** & M. Brunet* *Laboratoire de Mecanique des Solides **Laboratoire de Mecanique des Contacts-CNRS UMR 5514 Institut

More information

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4 MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

Damping. Code_Aster, Salome-Meca course material GNU FDL licence (

Damping. Code_Aster, Salome-Meca course material GNU FDL licence ( Dampin Code_Aster, Salome-Meca course material GNU FDL licence (http://www.nu.or/copyleft/fdl.html) Outline Dampin in dynamic analysis Types of modelin Gettin started with Code_Aster for dynamic analysis

More information

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case Gianni Dal Maso, Gianluca Orlando (SISSA) Rodica Toader (Univ. Udine) R. Toader

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

SSNS106 Damage of a reinforced concrete plate under requests varied with model GLRC_DM

SSNS106 Damage of a reinforced concrete plate under requests varied with model GLRC_DM Titre : SSNS106 - Endommagement d une plaque plane sous so[...] Date : 01/03/2013 Page : 1/67 SSNS106 Damage of a reinforced concrete plate under requests varied with model GLRC_DM Summarized: This test

More information

MSC Nastran N is for NonLinear as in SOL400. Shekhar Kanetkar, PhD

MSC Nastran N is for NonLinear as in SOL400. Shekhar Kanetkar, PhD MSC Nastran N is for NonLinear as in SOL400 Shekhar Kanetkar, PhD AGENDA What is SOL400? Types of Nonlinearities Contact Defining Contact Moving Rigid Bodies Friction in Contact S2S Contact CASI Solver

More information

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

Powerful Modelling Techniques in Abaqus to Simulate

Powerful Modelling Techniques in Abaqus to Simulate Powerful Modelling Techniques in Abaqus to Simulate Necking and Delamination of Laminated Composites D. F. Zhang, K.M. Mao, Md. S. Islam, E. Andreasson, Nasir Mehmood, S. Kao-Walter Email: sharon.kao-walter@bth.se

More information

Model-independent approaches for the XFEM in fracture mechanics

Model-independent approaches for the XFEM in fracture mechanics Model-independent approaches for the XFEM in fracture mechanics Safdar Abbas 1 Alaskar Alizada 2 and Thomas-Peter Fries 2 1 Aachen Institute for Computational Engineering Science (AICES), RWTH Aachen University,

More information

The Finite Element Method for Mechonics of Solids with ANSYS Applicotions

The Finite Element Method for Mechonics of Solids with ANSYS Applicotions The Finite Element Method for Mechonics of Solids with ANSYS Applicotions ELLIS H. DILL 0~~F~~~~"P Boca Raton London New Vork CRC Press is an imprint 01 the Taylor & Francis Group, an Informa business

More information

Topics in Ship Structures

Topics in Ship Structures Topics in Ship Structures 8 Elastic-lastic Fracture Mechanics Reference : Fracture Mechanics by T.L. Anderson Lecture Note of Eindhoven University of Technology 17. 1 by Jang, Beom Seon Oen INteractive

More information

4 NON-LINEAR ANALYSIS

4 NON-LINEAR ANALYSIS 4 NON-INEAR ANAYSIS arge displacement elasticity theory, principle of virtual work arge displacement FEA with solid, thin slab, and bar models Virtual work density of internal forces revisited 4-1 SOURCES

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS.

THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS. THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS. THE CASE OF A TERRACE UNIT. John N Karadelis 1. INTRODUCTION. Aim to replicate the behaviour of reinforced concrete in a multi-scale

More information

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels METNET Workshop October 11-12, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika Chuda-Kowalska, Robert Studziński, Andrzej Garstecki Poznan University

More information

Chapter 2 Finite Element Formulations

Chapter 2 Finite Element Formulations Chapter 2 Finite Element Formulations The governing equations for problems solved by the finite element method are typically formulated by partial differential equations in their original form. These are

More information

The Finite Element Method II

The Finite Element Method II [ 1 The Finite Element Method II Non-Linear finite element Use of Constitutive Relations Xinghong LIU Phd student 02.11.2007 [ 2 Finite element equilibrium equations: kinematic variables Displacement Strain-displacement

More information

Finite Element Solutions for Geotechnical Engineering

Finite Element Solutions for Geotechnical Engineering Release Notes Release Date: January, 2016 Product Ver.: GTSNX 2016 (v1.1) Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering Enhancements

More information

Variational phase field model for dynamic brittle fracture

Variational phase field model for dynamic brittle fracture Variational phase field model for dynamic brittle fracture Bleyer J., Roux-Langlois C., Molinari J-F. EMMC 15, September 8th, 2016 1 / 18 Outline Mechanisms of dynamic fracture Variational phase-field

More information

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses Settlement and Bearing Capacity of a Strip Footing Nonlinear Analyses Outline 1 Description 2 Nonlinear Drained Analysis 2.1 Overview 2.2 Properties 2.3 Loads 2.4 Analysis Commands 2.5 Results 3 Nonlinear

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Università degli Studi di Bari. mechanics 1. Load system determination. Joint load. Stress-strain distribution. Biological response 2/45 3/45

Università degli Studi di Bari. mechanics 1. Load system determination. Joint load. Stress-strain distribution. Biological response 2/45 3/45 Università degli Studi di Bari mechanics 1 Load system determination Joint load Stress-strain distribution Biological response 2/45 3/45 ? 4/45 The human body machine Energy transformation Work development

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics Tobias Gasch, PhD Student Co-author: Prof. Anders Ansell Comsol Conference 2016 Munich 2016-10-12 Contents Introduction Isotropic damage

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

SSNV137 - Cable of prestressed in a Summarized concrete straight beam

SSNV137 - Cable of prestressed in a Summarized concrete straight beam Titre : SSNV137 - Câble de précontrainte dans une poutre d[...] Date : 23/10/2012 Page : 1/10 SSNV137 - Cable of prestressed in a Summarized concrete straight beam One considers a concrete straight beam,

More information

Fonctionnalités de la version 11. Nouveautés de la version 12

Fonctionnalités de la version 11. Nouveautés de la version 12 Fonctionnalités de la version 11 Nouveautés de la version 12 Version 11 and version 12 in a nutshell Fracture mechanics Non-linear constitutive laws Linear and non-linear dynamics Numerical methods Architecture,

More information

Seismic stability safety evaluation of gravity dam with shear strength reduction method

Seismic stability safety evaluation of gravity dam with shear strength reduction method Water Science and Engineering, 2009, 2(2): 52-60 doi:10.3882/j.issn.1674-2370.2009.02.006 http://kkb.hhu.edu.cn e-mail: wse@hhu.edu.cn Seismic stability safety evaluation of gravity dam with shear strength

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015 The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015 Institute of Structural Engineering Method of Finite Elements II 1 Constitutive

More information

Boundary element analysis of FRP-concrete delamination

Boundary element analysis of FRP-concrete delamination Boundary element analysis of FRP-concrete delamination F. Freddi 1, A. Salvadori 2 &M.Savoia 3 1 Department of Civil Engineering., University of Parma, Italy 2 Department of Civil Engineering., University

More information

MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN LAYERED STRUCTURES USING GEOMETRICALLY NONLINEAR BEAM FINITE ELEMENTS

MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN LAYERED STRUCTURES USING GEOMETRICALLY NONLINEAR BEAM FINITE ELEMENTS PROCEEDINGS Proceedings of the 25 th UKACM Conference on Computational Mechanics 12-13 April 217, University of Birmingham Birmingham, United Kingdom MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN

More information

A dissipation-based arc-length method for robust simulation of brittle and ductile failure

A dissipation-based arc-length method for robust simulation of brittle and ductile failure INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng (2008) Published online in Wiley InterScience (www.interscience.wiley.com)..2447 A dissipation-based arc-length method

More information

Fluid driven cohesive crack propagation in quasi-brittle materials

Fluid driven cohesive crack propagation in quasi-brittle materials Fluid driven cohesive crack propagation in quasi-brittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129

More information

Nonlinear FEM. Critical Points. NFEM Ch 5 Slide 1

Nonlinear FEM. Critical Points. NFEM Ch 5 Slide 1 5 Critical Points NFEM Ch 5 Slide Assumptions for this Chapter System is conservative: total residual is the gradient of a total potential energy function r(u,λ) = (u,λ) u Consequence: the tangent stiffness

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework University of Liège Aerospace & Mechanical Engineering MS3: Abstract 131573 - CFRAC2017 Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition

More information

Multi-scale approach of the mechanical behavior of RC structures Application to nuclear plant containment buildings

Multi-scale approach of the mechanical behavior of RC structures Application to nuclear plant containment buildings Multi-scale approach of the mechanical behavior of RC structures Application to nuclear plant containment buildings Martin DAVID June 19, 2012 1 Industrial context EDF is responsible for numerous reinforced

More information

Überblick von NX Nastran Multistep Nonlinear Solutions 401 und 402 Global Simcenter Portfolio Development Linz, 5.10.

Überblick von NX Nastran Multistep Nonlinear Solutions 401 und 402 Global Simcenter Portfolio Development Linz, 5.10. Überblick von NX Nastran Multistep Nonlinear Solutions 401 und 402 Martin.Kuessner@siemens.com Global Simcenter Portfolio Development Linz, 5.10.2018 Unrestricted Siemens AG 2018 Realize innovation. Simulation

More information

Virtual Work and Variational Principles

Virtual Work and Variational Principles Virtual Work and Principles Mathematically, the structural analysis problem is a boundary value problem (BVP). Forces, displacements, stresses, and strains are connected and computed within the framework

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY PART A INTEGRATED CIRCUIT An integrated circuit can be thought of as a very complex maze of electronic components and metallic connectors. These connectors

More information

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS

ALGORITHM FOR NON-PROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9 Chenjie Yu, P.C.J. Hoogenboom and J.G. Rots DOI 10.21012/FC9.288 ALGORITHM FOR NON-PROPORTIONAL LOADING

More information

Code_Aster. SSNP161 Biaxial tests of Kupfer

Code_Aster. SSNP161 Biaxial tests of Kupfer Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Kupfer Summary: Kupfer [1] is interested to characterize the performances of the concrete under biaxial loadings.

More information

Computational Materials Modeling FHLN05 Computer lab

Computational Materials Modeling FHLN05 Computer lab Motivation Computational Materials Modeling FHLN05 Computer lab In the basic Finite Element (FE) course, the analysis is restricted to materials where the relationship between stress and strain is linear.

More information

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials 14 th International LS-DYNA Users Conference Session: Constitutive Modeling *MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials Jesper Karlsson 1, Mikael Schill 1, Johan Tryding

More information

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski GEO E050 Finite Element Method Mohr-Coulomb and other constitutive models Wojciech Sołowski To learn today. Reminder elasticity 2. Elastic perfectly plastic theory: concept 3. Specific elastic-perfectly

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

CAEFEM v9.5 Information

CAEFEM v9.5 Information CAEFEM v9.5 Information Concurrent Analysis Corporation, 50 Via Ricardo, Thousand Oaks, CA 91320 USA Tel. (805) 375 1060, Fax (805) 375 1061 email: info@caefem.com or support@caefem.com Web: http://www.caefem.com

More information

Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface

Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface Transaction A: Civil Engineering Vol. 16, No. 6, pp. 512{519 c Sharif University of Technology, December 2009 Research Note Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS E. D.

More information

DISPENSA FEM in MSC. Nastran

DISPENSA FEM in MSC. Nastran DISPENSA FEM in MSC. Nastran preprocessing: mesh generation material definitions definition of loads and boundary conditions solving: solving the (linear) set of equations components postprocessing: visualisation

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

NUMERICAL MODELING OF INSTABILITIES IN SAND

NUMERICAL MODELING OF INSTABILITIES IN SAND NUMERICAL MODELING OF INSTABILITIES IN SAND KIRK ELLISON March 14, 2008 Advisor: Jose Andrade Masters Defense Outline of Presentation Randomized porosity in FEM simulations Liquefaction in FEM simulations

More information

ISSUES IN MATHEMATICAL MODELING OF STATIC AND DYNAMIC LIQUEFACTION AS A NON-LOCAL INSTABILITY PROBLEM. Ronaldo I. Borja Stanford University ABSTRACT

ISSUES IN MATHEMATICAL MODELING OF STATIC AND DYNAMIC LIQUEFACTION AS A NON-LOCAL INSTABILITY PROBLEM. Ronaldo I. Borja Stanford University ABSTRACT ISSUES IN MATHEMATICAL MODELING OF STATIC AND DYNAMIC LIQUEFACTION AS A NON-LOCAL INSTABILITY PROBLEM Ronaldo I. Borja Stanford University ABSTRACT The stress-strain behavior of a saturated loose sand

More information

Particle flow simulation of sand under biaxial test

Particle flow simulation of sand under biaxial test 5th International Conference on Civil Engineering and Transportation (ICCET 2015) Particle flow simulation of sand under biaxial test Xiao-li Dong1,2, a *,Wei-hua Zhang1,a 1 Beijing City University, China

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Advanced model for soft soils. Modified Cam-Clay (MCC)

Advanced model for soft soils. Modified Cam-Clay (MCC) Advanced model for soft soils. Modified Cam-Clay (MCC) c ZACE Services Ltd August 2011 1 / 62 2 / 62 MCC: Yield surface F (σ,p c ) = q 2 + M 2 c r 2 (θ) p (p p c ) = 0 Compression meridian Θ = +π/6 -σ

More information

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup, Introduction to Finite Element Analysis Using MATLAB and Abaqus Amar Khennane Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Constitutive models: Incremental plasticity Drücker s postulate

Constitutive models: Incremental plasticity Drücker s postulate Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity - plastic flow law associated with the limit (loading) surface Prager

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

ANSYS Explicit Dynamics Update. Mai Doan

ANSYS Explicit Dynamics Update. Mai Doan ANSYS Explicit Dynamics Update Mai Doan Mai.Doan@ansys.com +1 512 687 9523 1/32 ANSYS Explicit Dynamics Update Outline Introduction Solve Problems that were Difficult or Impossible in the Past Structural

More information

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES A Thesis by WOORAM KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

More information

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach Ludovic Noels Computational & Multiscale Mechanics of

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection

Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection Simulating a press fit condition in SOLIDWORKS Simulation can be very challenging when there is a large amount

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

STRAIN LOCALIZATION AS BIFURCATION ELASTO-PLASTIC SOFTENING MATERIALS

STRAIN LOCALIZATION AS BIFURCATION ELASTO-PLASTIC SOFTENING MATERIALS Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS-2, edited by Folker H. Wittmann, AEDIFICA TIO Publishers, D-79104 Frei burg (1995) STRAIN LOCALIZATION AS BIFURCATION ELASTO-PLASTIC SOFTENING

More information

Comparison of Models for Finite Plasticity

Comparison of Models for Finite Plasticity Comparison of Models for Finite Plasticity A numerical study Patrizio Neff and Christian Wieners California Institute of Technology (Universität Darmstadt) Universität Augsburg (Universität Heidelberg)

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

COMPRESSIVE BEHAVIOR OF IMPACT DAMAGED COMPOSITE LAMINATES

COMPRESSIVE BEHAVIOR OF IMPACT DAMAGED COMPOSITE LAMINATES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPRESSIVE BEHAVIOR OF IMPACT DAMAGED COMPOSITE LAMINATES Hiroshi Suemasu*, Wataru Sasaki**, Yuuichiro Aoki***, Takashi Ishikawa**** *Department of

More information

The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics The Finite Element Method for Solid and Structural Mechanics Sixth edition O.C. Zienkiewicz, CBE, FRS UNESCO Professor of Numerical Methods in Engineering International Centre for Numerical Methods in

More information