THE finite element method (FEM ) has been widely used

Size: px
Start display at page:

Download "THE finite element method (FEM ) has been widely used"

Transcription

1 Frequencies of propagation of electromagnetic waves in a hexagonal waveguide Arti Vaish Harish Parthasarathy Abstract In this work, cut-off frequencies of propagation of electromagnetic waves in a hexagonal waveguide are calculated using two-dimensional (-D) finite element method. The numerical approach is a stard one involves six finite elements. A new type of hexagonal waveguide structure for the simple homogeneous dielectric case has been considered. The starting point is Maxwell s equations in conjunction to the exponential dependence of the fields on the Z- coordinates. For the homogeneous case, it results in the Helmholtz equations. Finally, finite element method has been used to derive approximate values of the possible propagation constant for each frequency. Keywords Finite-element-method, Variational principle, Eigenvector, Matrix Equation, frequencies of propagation, hexagonal waveguide. I. INTRODUCTION THE finite element method (FEM ) has been widely used over the decades in the analysis of waveguide components. It is because the propagation characteristics of arbitrarily shaped waveguides of is based on a spatial discretization of cross-section [1], [], [3], [6].This approximation allows hling of waveguide cross section geometries which are very similar to the real structures employed in practice. As a consequence, FEM constitutes a promising tool to characterize such problems [7]. Modern phased array radars imply the requirements for polarization agility of wideb array elements. Surface hexagonally poled lithium niobate for two dimensional non-linear interactions in optical waveguide structures has been reported [8], [9]. One possible choice for a radiating element with this property is the hexagonal waveguide. In this paper, a numerically efficient finite-element formulation is proposed to solve waveguides problems. Propagation modes obtained by this formulations may be used to analyse problems involving linear systems of arbitrary complex tensor permittivity permeability. The solution of these eigenvalue problems results in the approximate fields for all components of different eigenmodes in the waveguide which can further be used to obtain the corresponding eigenvalues [1], [11], [1]. A possible comparison of the proposed methodology with the available theoretical results has also been presented herein this paper to claim the accuracy reliability of the solution method. Arti Vaish Division of Electronics Communication Engineering at Manav Rachna International University, NCR INDIA. vaisharti@gmail.com. Division of Electronics Communication Engineering at Netaji Subhash Institute of Technology, University of Delhi, ND-78 Fig. 1. hexagonal cross section of the waveguide II. THE FINITE ELEMENT FORMULATION The basic idea of taking hexagonal cross-section dividing the cross-section in to finite number of elements has been taken from else [], [6]. In this paper, the equilateral hexagonal cross section of the waveguide is divided into a number of finite elements. An element is considered to be first-order triangular in shape. An schematics of a triangular finite element in the hexagonal waveguide is shown in figure 1. Consider a triangle having vertices(x 1,y 1 ),(x,y ),(x 3,y 3 ). We draw a vector u joining (x 1,y 1 ),(x,y ) another vector v joining (x 1,y 1 )(x 3,y 3 ). Let = u = (x x 1 ) +(y y 1 ) (1) = v = (x 3 x 1 ) +(y 3 y 1 ) () The unit vector along the two directions u v are û = u u = (x x 1,y y 1 ) (3) ˆv = v v = (x 3 x 1,y 3 y 1 ) (4) ISSN: Issue 1, Volume 1, January 11

2 any point(x, y) inside this triangle can be represented as so WSEAS TRANSACTIONS on COMPUTERS (x,y) = (x 1,y 1 )+u.û+v.ˆv = (x 1,y 1 )+ u(x x 1,y y 1 ) + v(x 3 x 1,y 3 y 1 ) (x x 1 ) = u(x x 1 ) (5) (y y 1 ) = u(y y 1 ) (6) Equations (5) (6) are two linear equations for the variable u v solving them gives us u, v as linear functions of x, y. The area measure is given by x 1 y 1 1 x y 1 x 3 y 3 1 Thus we find that a b = V 1 V c V 3 a = V 1(y y 3 )+V (y 3 y 1 )+V 3 (y 1 y ) b = V 1(x x 3 )+V (x 3 x 1 )+V 3 (x 1 x ) (1) (11) c = V 1(x.y 3 x 3.y )+V (x 3.y 1 x 1 y 3 )+V 3 (x 1.y x.y 1 ) (1) ds(u,v) = u v du.dv u v = sin(α) = x.y 3 x 3.y +x 3.y 1 x 1.y 3 +x 1.y x.y 1 (13) thus for x,y we have here angle α between the vectors u v defined as cos(α) = u.v. = (x x 1 )(x 3 x 1 )+(y y 1 )(y 3 y 1 ). (7) The integral of a function can be evaluated as I(φ) = 1 if φ = 1 then we get φ[x 1 + u(x x 1 ) y 1 + u(y y 1 ) ]sinα.dudv (8) I(φ) =. sinα which is the correct formula for the area of the triangle. Suppose we write for V(x,y) = ax+by +c x,y with as the area bounded by the triangle. a,b,c are chosen so that V at the vertices are given, i.e., (9) V(x,y) = ax+by +c = V 1 φ 1 (x,y)+v φ (x,y)+v 3 φ 3 (x,y) φ 1 (x,y) = (y y 3 )x+(x x 3 )y +(x.y 3 x 3.y ) (14) φ (x,y) = (y 3 y 1 )x+(x 3 x 1 )y +(x 3.y 1 x 1.y 3 ) (15) φ 3 (x,y) = (y 1 y )x+(x 1 x )y +(x 1.y x.y 1 ) (16) The following two integrals occur when one uses the finite element method first I 1 = V(x,y) dx.dy second I = V dx.dy TABLE I NODAL COORDINATES OF THE FINITE ELEMENT MESH OF FIGURE Thus, V(x 1,y 1 ) = V 1 V(x,y ) = V V(x 3,y 3 ) = V 3 S.No. Element no. Coordinates 1 Element 1 (.,.), (1.,1.73), (.,.) Element (.,.), (1.,-1.73), (.,.) 3 Element 3 (.,.), (-1.,-1.73), (1.,-1.73) 4 Element 4 (.,.), (-.,.), (-1.,-1.73) 5 Element 5 (.,.), (-1.,1.73), (-.,.) 6 Element 6 (.,.), (-1.,1.73), (1.,1.73) ISSN: Issue 1, Volume 1, January 11

3 T [ ] a(x x 1 )+b(y y 1 ) d [ ] 1 a(x3 x 1 )+b(y 3 y 1 ) uvdudv () T 3 [ ] a(x3 x 1 )+b(y 3 y 1 ) v dudv (3) Fig.. A finite element mesh (6 elements 7 nodes). The numbers shown in circles represent the elements. Now I 1 = V (x,y) dx.dy = (ax+by +c) dx.dy (17) By substituting the value of (x,y) in terms of (x i,y i )in equation(17), we get I 1 = V(x,y) dx.dy [a(x 1 + u(x x 1 ) )+b(y 1 + u(y y 1 ) )+c] dudv (18) The use of method of variable separation for u v results in the following I 1 = V(x,y) sinα d1 dx.dy = [u ( a(x x 1 )+b(y y 1 ) )+v ( a(x 3 x 1 )+b(y 3 y 1 ) )+c ] (19) c = ax 1 +by 1 +c Equation (19) can be written as I 1 = V(x,y) dx.dy = T 1 +T +T 3 +T 4 +T 5 +T 6 Here T 1 [ a(x x 1)+b(y y 1) ] u dudv () (1) T 4 T 5 T 6 [ C (a(x x 1 )+b(y y 1 )) [ C (a(x 3 x 1 )+b(y 3 y 1 )) C dudv The above integration for first element is given as follows I 1 = V(x,y) dx.dy = v v 1 v v v 1 ( 1.73)v v 1 ( 1.73)v v v 3 ] ududv (4) ] vdudv (6) v v 1v 3 (7) After calculating the above integrals for each element in the above stated manner, we will find the sum of these integrals over the elements in which we have divided the cross-section. Here we have divided the cross-section into 6 elements (Fig. ). Summation of these integrals will result in a matrix B of size 7 7. Here, III. CALCULATION OF INTEGRAL V V dudv = The Jacobian J is given by ( X ) X J = U V = Y U ) ( ) ] V + dxdy dxdy = Jdudv (9) Y V ( x x 1 y y 1 x 3 x 1 y 3 y 1 ). (3) (5) (8) ISSN: Issue 1, Volume 1, January 11

4 Now Finally Here dx.dy = (x x 1 )(x 3 x 1 ). du.dv (31) V dudv = ) ( ) ] V + (x x 1 )(x 3 x 1 ) dudv (3) ) ( ) ] V + = a +b (33) After substituting all the values in above equation integrate, we get WSEAS TRANSACTIONS on COMPUTERS V dudv =.57798v v 1 v v.57814(v 1 v 3 +v v 3 v 3 ) (34) Here v 1,v, v 3 v n are the nodal potential. Solution of integration of V dudv for all the 6 element, computed in same manner will result in a matrix A of size 7 7. Here V is the vector of vertex nodal field values. Solution of this matrix will give the eigen values.these eigen values are the propagation frequencies of the waveguide.using above method we can calculate the propagation frequencies of a waveguide of any type of cross-section. V. SIMULATION RESULTS In order to validate the procedure, the computed result is compared with those obtained from the theoretical analysis. Table compares the Eigenvalues of the fundamental frequencies of propagation of the hexagonal waveguide with the theoretical computed. MATLAB software has been used here for the simulations [13]. TABLE II EIGENVALUES OF THE FUNDAMENTAL FREQUENCIES OF PROPAGATION OF THE HEXAGONAL WAVEGUIDE S. No. eigen value(this work) eigen value(theoretical) i i IV. FINDING EIGEN VALUES OF THE MATRIX Now the process of finding eigen values of the matrix is as follows. (V T AV k V T BV) when minimized over V gives the quadratic form defined by V dxdy k V dxdy (35) here δ ( V, V )dxdy = (,δ V)dxdy = δv Vdxdy (36) δ V dxdy = V δv dxdy (37) Now from equation (33) δv Vdxdy k δv.vdxdy = (38) or δv( +k )Vdxdy = (39) ( +k )Vdxdy = (4) equation 38 when evaluated approximately using the finite element method gives AV k BV = (41) (A k B)V = (4) det(a k B) = (43) VI. CONCLUSION In this paper an advantageous finite-element- method for the hexagonal cross-sectional waveguide problem has been developed by which complex propagation characteristics may be obtained for arbitrarily shaped waveguide. The extension to higher order elements is straightforward. By suitable modifications of the method it is possible to treat other types of waveguides as well, e.g. dielectric waveguides with impedance walls open unbounded dielectric waveguides properly treating the region of infinity. VII. ACKNOWLEDGEMENT The authors gratefully acknowledge Prof. Raj Senani, Ar. Rajesh Ayodhyawasi Dr. Ram Prakash Bharti for their constant encouragement provision of facilities for this research work. REFERENCES [1] P.P.Silvester R.L.Ferrari, Finite Elements for Electrical Engineers, (Second edition),cambridge University Press, New York,199. [] M.N.O.Sadiku, Numerical Techniques in Electromagnetics, CRC press, 6. [3] Vaish Arti Harish Parthasarathy, Numerical computation of the modes of electromagnetic wave propagation in a non-homogeneous rectangular waveguide, IEEE Conference, INDICON-6,15-17 September6. [4] Arti Vaish Harish Parthasarathy, Analysis of a rectangular Waveguide using Finite Element Method, Progress in Electromagnetic Research C, page , 8. [5] Arti Vaish Harish Parthasarathy, Wave propagation in a waveguide having anisotropic permittivity using method of moments, International Journal of Tomography Statistics, Fall 9, Vol. 1, No. F9. [6] M.N.O.Sadiku, Elements of Electromagnetics, Oxford university press, 7. ISSN: Issue 1, Volume 1, January 11

5 [7] Y. Xu R.G. Bosisio, An efficient method for study of general bianisotropic waveguides, IEEE Trans. Microwave Theory Tech., vol. 43, pp , Apr [8] A. C. Busacca, C. L. Sones, R. W. Eason, S. Mailis, K. Gallo, R. T. Bratfalean N.G. Broderick Surface hexagonally poled lithium niobate waveguides, Optoelectronics research centre,. [9] A. Szameit, Y. V. Kartashov, V. A. Vysloukh, M. Heinrich, F. Dreisow, T. Pertsch, S. Nolte, A. Tnnermann, F. Lederer, L. Torner Angular surface solitons in sectorial hexagonal arrays, Optics letters, Vol. 33, No. 13, July 1, 8. [1] E.K.Miller (Ed.), Computational electromagnetics-a selected reprint volume, IEEE press,. [11] J.M.Jin, The finite element method in Electromagnetics, nd ed.,wiley, New York,6. [1] M. Koshiba K. Inoue, Simple efficient finite-element analysis of microwave optical waveguides, IEEE Trans. Microwave Theory Tech., vol. 4, pp , Feb [13] MATLAB(8) The Mathworks Worldwide.[Online] Available Arti Vaish received M.Tech. degree in Microwave engineering from the Rajiv Ghi Prodyogiki Vishwavidyalaya, Bhopal, INDIA, in 4, is currently working towards the Ph.D. degree. Her research interests include electromagnetic wave propagation in inhomogeneous anisotropic waveguide structures, numerical techniques in electromagnetic field problems design analysis of different types of microstrip patch antenna. She is working as Assistant Professor at Manav Rachna International University, Faridabad. Prof. Harish Parthasarathy received his B.Tech. degree in electrical engineering from IIT,Kanpur, in 199 his Ph.D. degree from IIT, Delhi in He completed his post doctoral programme from Indian Institute of Astrophysics in He has worked as an assistant professor at IIT, Bombay as a visiting faculty at IIT, Kanpur. Currently he is working as a Professor at Netaji Subhash Institute of Technology, New Delhi. His research interests include numerical techniques in electromagnetics, group representation theory stochastic processes. He has authored several books research papers on electromagnetics, signal processing, engineering mathematics physics. ISSN: Issue 1, Volume 1, January 11

Modal analysis of waveguide using method of moment

Modal analysis of waveguide using method of moment HAIT Journal of Science and Engineering B, Volume x, Issue x, pp. xxx-xxx Copyright C 27 Holon Institute of Technology Modal analysis of waveguide using method of moment Arti Vaish and Harish Parthasarathy

More information

Eigenvalue Analysis of Waveguides and Planar Transmission Lines Loaded with Full Tensor Anisotropic Materials

Eigenvalue Analysis of Waveguides and Planar Transmission Lines Loaded with Full Tensor Anisotropic Materials PIERS ONLINE, VOL. 5, NO. 5, 2009 471 Eigenvalue Analysis of Waveguides and Planar Transmission Lines Loaded with Full Tensor Anisotropic Materials C. S. Lavranos, D. G. Drogoudis, and G. A. Kyriacou Department

More information

Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines

Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines International Journal of Computing and Digital Systems ISSN (20-142X) Int. J. Com. Dig. Sys. 3, No.3 (Sep-2014) Finite Element Method Analysis of Symmetrical Coupled Microstrip Lines Sarhan M. Musa and

More information

Waveguide Propagation Modes and Quadratic Eigenvalue Problems

Waveguide Propagation Modes and Quadratic Eigenvalue Problems Waveguide Propagation Modes and Quadratic Eigenvalue Problems Prof. André Nicolet, Institut Fresnel, UMR CNRS 6133, Université Paul Cézanne, Marseille, France. Prof. Christophe Geuzaine, Mathematics Department,

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION October 4-6, 2007 - Chiinu, Rep.Moldova USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION Ionu- P. NICA, Valeriu Gh. DAVID, /tefan URSACHE Gh. Asachi Technical University Iai, Faculty

More information

Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction

Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction ISSN(Online): 30-9801 Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction M.Murali, Prof. G.S.N Raju Research Scholar, Dept.of ECE, Andhra University,

More information

New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics

New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures

A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures 1844 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 7, JULY 2002 A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures Yong-Jiu Zhao,

More information

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals PRAMANA c Indian Academy of Sciences Vol. 70, No. 1 journal of January 2008 physics pp. 153 161 Modelling and design of complete photonic band gaps in two-dimensional photonic crystals YOGITA KALRA and

More information

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie FDTD method and models in optical education Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du Xiaogang Lin, Nan Wan, Lingdong

More information

SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD

SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD Progress In Electromagnetics Research B, Vol. 24, 351 367, 2010 SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD S. J. Lai and B. Z. Wang Institute of Applied Physics University of

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Fourier Decomposition Analysis af Anisotropic Inhomogeneous Dielectric Waveguide Structures

Fourier Decomposition Analysis af Anisotropic Inhomogeneous Dielectric Waveguide Structures University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering August 2007 Fourier Decomposition Analysis af Anisotropic Inhomogeneous Dielectric Waveguide

More information

TM-Radiation From an Obliquely Flanged Parallel-Plate Waveguide

TM-Radiation From an Obliquely Flanged Parallel-Plate Waveguide 1534 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 11, NOVEMBER 2002 TM-Radiation From an Obliquely Flanged Parallel-Plate Waveguide Jae Yong Kwon, Member, IEEE, Jae Wook Lee, Associate Member,

More information

NUMERICAL electromagnetic modeling (EM) has had a

NUMERICAL electromagnetic modeling (EM) has had a 304 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 39, NO. 4, NOVEMBER 1997 A Hybrid FEM/MOM Technique for Electromagnetic Scattering Radiation from Dielectric Objects with Attached Wires Mohammad

More information

Effects of tool eccentricity on wave dispersion properties in borehole acoustic logging while drilling

Effects of tool eccentricity on wave dispersion properties in borehole acoustic logging while drilling Effects of tool eccentricity on wave dispersion properties in borehole acoustic logging while drilling Yibing Zheng and M. Nafi Toksöz Earth Resources Laboratory Dept. of Earth, Atmospheric, and Planetary

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Chap. 4. Electromagnetic Propagation in Anisotropic Media Chap. 4. Electromagnetic Propagation in Anisotropic Media - Optical properties depend on the direction of propagation and the polarization of the light. - Crystals such as calcite, quartz, KDP, and liquid

More information

NASA Contractor Report. Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements

NASA Contractor Report. Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements NASA Contractor Report Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements M. D.Deshpande VIGYAN Inc., Hampton, VA C. J. Reddy

More information

The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator

The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator Martin J. Gander and Achim Schädle Mathematics Section, University of Geneva, CH-, Geneva, Switzerland, Martin.gander@unige.ch

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

DIELECTRIC waveguides and dielectric-loaded metallic

DIELECTRIC waveguides and dielectric-loaded metallic IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 46, NO 7, JULY 1998 975 Transfer Matrix Function (TMF) for Wave Propagation in Dielectric Waveguides With Arbitrary Transverse Profiles Zion Menachem

More information

A Plane Wave Expansion of Spherical Wave Functions for Modal Analysis of Guided Wave Structures and Scatterers

A Plane Wave Expansion of Spherical Wave Functions for Modal Analysis of Guided Wave Structures and Scatterers IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 10, OCTOBER 2003 2801 A Plane Wave Expansion of Spherical Wave Functions for Modal Analysis of Guided Wave Structures and Scatterers Robert H.

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

AC : INDIVIDUALIZED MATLAB PROJECTS IN UNDERGRADUATE ELECTROMAGNETICS

AC : INDIVIDUALIZED MATLAB PROJECTS IN UNDERGRADUATE ELECTROMAGNETICS AC 2010-36: INDIVIDUALIZED MATLAB PROJECTS IN UNDERGRADUATE ELECTROMAGNETICS Stuart Wentworth, Auburn University Stu Wentworth received his Electrical Engineering doctorate from the University of Texas,

More information

1. Assistant Professor (Electronics and Communication Engineering) Delhi Technological University, Delhi from July 2010 to continue..

1. Assistant Professor (Electronics and Communication Engineering) Delhi Technological University, Delhi from July 2010 to continue.. Experience:- 1. Assistant Professor (Electronics and Communication Engineering) Delhi Technological University, Delhi from July 2010 to continue.. 2. Teaching cum Research Fellow in Netaji Subhas Institute

More information

Theoretical study of two-element array of equilateral triangular patch microstrip antenna on ferrite substrate

Theoretical study of two-element array of equilateral triangular patch microstrip antenna on ferrite substrate PRAMANA c Indian Academy of Sciences Vol. 65, No. 3 journal of September 2005 physics pp. 501 512 Theoretical study of two-element array of equilateral triangular patch microstrip antenna on ferrite substrate

More information

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures

Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures Copyright 216 Tech Science Press CMC, Vol.53, No.3, pp.132-14, 216 Analysis of Metamaterial Cloaks Using Circular Split Ring Resonator Structures Susan Thomas 1 and Dr. Balamati Choudhury 2 Abstract A

More information

FOR beamforming and emitter localization applications in

FOR beamforming and emitter localization applications in IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 11, NOVEMBER 1999 1829 Angle and Time of Arrival Statistics for Circular and Elliptical Scattering Models Richard B. Ertel and Jeffrey H.

More information

STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB

STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB Progress In Electromagnetics Research M, Vol. 11, 13 13, 1 STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB H. Y. Chen, P. H. Zhou, L. Chen,

More information

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Lecture 09 Wave propagation in anisotropic media (Contd.) So, we have seen the various aspects of

More information

2009 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC 2009) 73

2009 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC 2009) 73 Current Distribution of a Printed Dipole with Arbitrary Length Embedded in Layered Uniaxial Anisotropic Dielectrics Benjamin D. Braaten Electrical and Computer Engineering Department North Dakota State

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

More information

MATHEMATICAL MODEL BASED TRANSMISSION PARAMETERS OF AN ISOLATED MICROSTRIPLINE STRUCTURE

MATHEMATICAL MODEL BASED TRANSMISSION PARAMETERS OF AN ISOLATED MICROSTRIPLINE STRUCTURE International Journal of Research in Engineering, Technology and Science, Volume VI, Issue VIII, August 2016 www.ijrets.com, editor@ijrets.com, ISSN 2454-1915 MATHEMATICAL MODEL BASED TRANSMISSION PARAMETERS

More information

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS Progress In Electromagnetics Research Letters, Vol. 24, 69 76, 2011 EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS S. J. Lai 1, *, B. Z. Wang 1, and Y. Duan 2 1 Institute

More information

MATERIAL STUDY IN GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL

MATERIAL STUDY IN GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL 8 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 5 7, 0 0 6 MATERIAL STUDY IN 7.8-1.4 GHZ FREQUENCY DOMAIN OF A DIVALENT LIQUID CRYSTAL Daniela IONESCU

More information

Electromagnetic scattering from multiple sub-wavelength apertures in metallic screens using the surface integral equation method

Electromagnetic scattering from multiple sub-wavelength apertures in metallic screens using the surface integral equation method B. Alavikia and O. M. Ramahi Vol. 27, No. 4/April 2010/J. Opt. Soc. Am. A 815 Electromagnetic scattering from multiple sub-wavelength apertures in metallic screens using the surface integral equation method

More information

Efficiency and Bandwidth Improvement Using Metamaterial of Microstrip Patch Antenna

Efficiency and Bandwidth Improvement Using Metamaterial of Microstrip Patch Antenna Efficiency and Bandwidth Improvement Using Metamaterial of Microstrip Patch Antenna Aakash Mithari 1, Uday Patil 2 1Student Department of Electronics Technology Engg., Shivaji University, Kolhapur, Maharashtra,

More information

Suprabhat Vishwakarma 1, Bimal garg 2 1 Student, 2 Associate Professor. Electronics Department, Mitsgwalior (m.p.) India.

Suprabhat Vishwakarma 1, Bimal garg 2 1 Student, 2 Associate Professor. Electronics Department, Mitsgwalior (m.p.) India. A L-Band Rectangular Shape Inside a Pentagon Metamaterial Structure for Microwave Application Suprabhat Vishwakarma 1, Bimal garg 2 1 Student, 2 Associate Professor Electronics Department, Mitsgwalior

More information

Transmission-Reflection Method to Estimate Permittivity of Polymer

Transmission-Reflection Method to Estimate Permittivity of Polymer Transmission-Reflection Method to Estimate Permittivity of Polymer Chanchal Yadav Department of Physics & Electronics, Rajdhani College, University of Delhi, Delhi, India Abstract In transmission-reflection

More information

Spectral Domain Analysis of Open Planar Transmission Lines

Spectral Domain Analysis of Open Planar Transmission Lines Mikrotalasna revija Novembar 4. Spectral Domain Analysis of Open Planar Transmission Lines Ján Zehentner, Jan Mrkvica, Jan Macháč Abstract The paper presents a new code calculating the basic characteristics

More information

Vector Calculus. Dr. D. Sukumar

Vector Calculus. Dr. D. Sukumar Vector Calculus Dr. D. Sukumar Space co-ordinates Change of variable Cartesian co-ordinates < x < Cartesian co-ordinates < x < < y < Cartesian co-ordinates < x < < y < < z < Cylindrical Cylindrical Cylindrical

More information

Research Article Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment Method

Research Article Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment Method Antennas and Propagation Volume 2012, Article ID 181235, 5 pages doi:10.1155/2012/181235 Research Article Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment

More information

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures PIERS ONLINE, VOL. 4, NO. 5, 2008 536 Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures S. J. S. Sant Anna 1, 2, J. C. da S. Lacava 2, and D. Fernandes 2 1 Instituto

More information

Reduction of Numerical Dispersion in FDTD Method Through Artificial Anisotropy

Reduction of Numerical Dispersion in FDTD Method Through Artificial Anisotropy 582 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 4, APRIL 2000 Reduction of Numerical Dispersion in FDTD Method Through Artificial Anisotropy Jaakko S. Juntunen and Theodoros D. Tsiboukis,

More information

3 Constitutive Relations: Macroscopic Properties of Matter

3 Constitutive Relations: Macroscopic Properties of Matter EECS 53 Lecture 3 c Kamal Sarabandi Fall 21 All rights reserved 3 Constitutive Relations: Macroscopic Properties of Matter As shown previously, out of the four Maxwell s equations only the Faraday s and

More information

Guided and Leaky Modes of Planar Waveguides: Computation via High Order Finite Elements and Iterative Methods

Guided and Leaky Modes of Planar Waveguides: Computation via High Order Finite Elements and Iterative Methods PERS ONLNE, VOL. 6, NO. 7, 669 Guided and Leaky Modes of Planar Waveguides: Computation via High Order Finite Elements and terative Methods D. Stowell and J. Tausch Southern Methodist University, USA Abstract

More information

T [2] have been developed over the last few years in the

T [2] have been developed over the last few years in the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 3, MARCH 1995 647 Efficient Solution of the Differential Form of Maxwell s Equations in Rectangular Regions Luis Emilio Garcia-Castillo,

More information

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Dan Sievenpiper, Jiyeon Lee, and Dia a Bisharat January 11, 2016 1 Outline Arbitrary Anisotropic Surface Patterning Surface wave

More information

EVALUATION OF CAPACITANCE OF CONDUCTING BODIES FOR ELECTROMAGNETIC MODELING

EVALUATION OF CAPACITANCE OF CONDUCTING BODIES FOR ELECTROMAGNETIC MODELING EVALUATION OF CAPACITANCE OF CONDUCTING BODIES FOR ELECTROMAGNETIC MODELING M. Dhamodaran 1 and R. Dhanasekaran 2 1 Department of Electronics and Communication Engineering, Syed Ammal Engineering College,

More information

A. Bouzidi * and T. Aguili Syscom Laboratory, Engineer National School, B.P. 37, Le Belvedere 1002, Tunis, Tunisia

A. Bouzidi * and T. Aguili Syscom Laboratory, Engineer National School, B.P. 37, Le Belvedere 1002, Tunis, Tunisia Progress In Electromagnetics Research M, Vol., 41 55, 01 RCS PREDICTION FROM PLANAR NEAR-FIELD MEASUREMENTS A. Bouzidi * and T. Aguili Syscom Laboratory, Engineer National School, B.P. 37, Le Belvedere

More information

4.4 Microstrip dipole

4.4 Microstrip dipole 4.4 Microstrip dipole Basic theory Microstrip antennas are frequently used in today's wireless communication systems. Thanks to their low profile, they can be mounted to the walls of buildings, to the

More information

Progress In Electromagnetics Research, PIER 52, , 2005 FDTD ANALYSIS OF MICROSTRIP PATCH ANTENNA COVERED BY PLASMA SHEATH

Progress In Electromagnetics Research, PIER 52, , 2005 FDTD ANALYSIS OF MICROSTRIP PATCH ANTENNA COVERED BY PLASMA SHEATH Progress In Electromagnetics Research, PIER 52, 173 183, 25 FDTD ANALYSIS OF MICROSTRIP PATCH ANTENNA COVERED BY PLASMA SHEATH Z. H. Qian and R. S. Chen Department of Communication Engineering Nanjing

More information

Teaching Electromagnetic Waves in Effective and Enjoyable Fashion

Teaching Electromagnetic Waves in Effective and Enjoyable Fashion Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) Teaching Electromagnetic Waves in Effective and Enjoyable Fashion Raghunath K Shevgaonkar IIT Bombay Presented at IEEE-INAE

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

FULL-WAVE ANALYSIS OF DIELECTRIC RECTANGU- LAR WAVEGUIDES

FULL-WAVE ANALYSIS OF DIELECTRIC RECTANGU- LAR WAVEGUIDES Progress In Electromagnetics Research M, Vol. 13, 121 131, 2010 FULL-WAVE ANALYSIS OF DIELECTRIC RECTANGU- LAR WAVEGUIDES J. Sharma Electronics and Communication Department Northern India Engineering College

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

FORMULATION OF ANISOTROPIC MEDIUM IN SPATIAL NETWORK METHOD. N. Yoshida, S. Koike, N. Kukutsu, and T. Kashiwa

FORMULATION OF ANISOTROPIC MEDIUM IN SPATIAL NETWORK METHOD. N. Yoshida, S. Koike, N. Kukutsu, and T. Kashiwa Progress In Electromagnetics Research, PIER 13, 293 362, 1996 FORMULATION OF ANISOTROPIC MEDIUM IN SPATIAL NETWORK METHOD N. Yoshida, S. Koike, N. Kukutsu, and T. Kashiwa 1. Introduction 2. Spatial Network

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

A Finite Element Method for Waveguide Modes Using Transverse Electric and Magnetic Fields

A Finite Element Method for Waveguide Modes Using Transverse Electric and Magnetic Fields A Finite Element Method for Waveguide Modes Using Transverse Electric and Magnetic Fields Zihuan Zhang Master of Engineering Department of Electrical and Computer Engineering McGill University, Montreal

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

Microwave Engineering 3e Author - D. Pozar

Microwave Engineering 3e Author - D. Pozar Microwave Engineering 3e Author - D. Pozar Sections 3.6 3.8 Presented by Alex Higgins 1 Outline Section 3.6 Surface Waves on a Grounded Dielectric Slab Section 3.7 Stripline Section 3.8 Microstrip An Investigation

More information

Homogenous Optic-Null Medium Performs as Optical Surface Transformation

Homogenous Optic-Null Medium Performs as Optical Surface Transformation Progress In Electromagnetics Research, Vol. 151, 169 173, 2015 Homogenous Optic-Null Medium Performs as Optical Surface Transformation Fei Sun 1 and Sailing He1, 2, * Abstract An optical surface transformation

More information

Problem Formulation CHAPTER 2 PROBLEM FORMULATION. Three broad categories of techniques are utilized for the analysis of microstrip

Problem Formulation CHAPTER 2 PROBLEM FORMULATION. Three broad categories of techniques are utilized for the analysis of microstrip CHAPTER PROBLEM FORMULATION Three broad categories of techniques are utilized for the analysis of microstrip antennas [4, 18]. The simplest of these and the relatively basic analysis approach is the transmission

More information

Eigenfunction Expansions of Source-excited Electromagnetic Fields on Open Cylindrical Guiding Structures in Unbounded Gyrotropic Media

Eigenfunction Expansions of Source-excited Electromagnetic Fields on Open Cylindrical Guiding Structures in Unbounded Gyrotropic Media 128 Eigenfunction Expansions of Source-excited Electromagnetic Fields on Open Cylindrical Guiding Structures in Unbounded Gyrotropic Media A. V. Kudrin 1, E. Yu. Petrov 1, and T. M. Zaboronkova 2 1 University

More information

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell Microwave Science and Technology Volume 2, Article ID 3688, 6 pages doi:.55/2/3688 Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit

More information

SIMULATION OF ELECTROMECHANICAL PROPERTIES OF ORDERED CARBON NANOTUBE ARRAYS

SIMULATION OF ELECTROMECHANICAL PROPERTIES OF ORDERED CARBON NANOTUBE ARRAYS Materials Physics and Mechanics 27 (216) 113-117 Received: February 19, 216 SIMULATION OF ELECTROMECHANICAL PROPERTIES OF ORDERED CARBON NANOTUBE ARRAYS Viatcheslav Baraline *, Aliasandr Chashynsi Belarusian

More information

Design of a Superconducting Magnet for Lorentz Force Electrical Impedance Tomography (LFEIT)

Design of a Superconducting Magnet for Lorentz Force Electrical Impedance Tomography (LFEIT) EUCAS-15_1A-LS-P-06.06 1 Design of a Superconducting Magnet for Lorentz Force Electrical Impedance Tomography (LFEIT) Boyang Shen, Student Member, IEEE, Lin Fu, Jianzhao Geng, Heng Zhang, Xiuchang Zhang,

More information

Analysis of Generic Near-Field Interactions Using the Antenna Current Green s Function

Analysis of Generic Near-Field Interactions Using the Antenna Current Green s Function Progress In Electromagnetics Research C, Vol. 59, 1 9, 2015 Analysis of Generic Near-Field Interactions Using the Antenna Current Green s Function Said M. Mikki * and Yahia M. M. Antar Abstract We investigate

More information

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method Journal of Computer Science and Information Technology June 2014, Vol. 2, No. 2, pp. 01-08 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems

Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems M. Afonso, Joao Vasconcelos, Renato Mesquita, Christian Vollaire, Laurent Nicolas To cite this version:

More information

FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN

FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN Edited by S. RATNAJEEVAN H. HOOLE Professor of Engineering Harvey Mudd College Claremont, CA, USA and Senior Fellow, 1993/94 Department of Electrical Engineering

More information

ELEC 621 NUMERICAL TECHNIQUES IN ELECTROMAGNETICS

ELEC 621 NUMERICAL TECHNIQUES IN ELECTROMAGNETICS - 1 - ELEC 621 NUMERICAL TECHNIQUES IN ELECTROMAGNETICS Fall 2005 Wolfgang J.R. Hoefer, Professor Department of Electrical and Computer Engineering University of Victoria, Victoria, B.C. Tel. (250) 721-6030

More information

Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid

Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid 280 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001 Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid John B. Schneider,

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window

On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window Manjeet Kumar Digital Signal Processing Laboratory, Room No. 135, ECE Division, Netaji Subhas Institute of

More information

AN EXACT FORMULATION FOR THE REFLECTION COEFFICIENT FROM ANISOTROPIC MULTILAYER STRUCTURES WITH ARBITRARY BACKING

AN EXACT FORMULATION FOR THE REFLECTION COEFFICIENT FROM ANISOTROPIC MULTILAYER STRUCTURES WITH ARBITRARY BACKING Progress In Electromagnetics Research M, Vol. 30, 79 93, 2013 AN EXACT FORMULATION FOR THE REFLECTION COEFFICIENT FROM ANISOTROPIC MULTILAYER STRUCTURES WITH ARBITRARY BACKING Ali Abdolali *, Maryam Heidary,

More information

High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li

High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li International Power, Electronics and Materials Engineering Conference (IPEMEC 215) High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li Engineering University

More information

Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/ Asymmetric Planar Slab Waveguide Structure

Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/ Asymmetric Planar Slab Waveguide Structure ISSN 0974-9373 Vol. 15 No.1 (011) Journal of International Academy of Physical Sciences pp. 113-1 Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/

More information

Photonic band gap engineering in 2D photonic crystals

Photonic band gap engineering in 2D photonic crystals PRAMANA c Indian Academy of Sciences Vol. 67, No. 6 journal of December 2006 physics pp. 1155 1164 Photonic band gap engineering in 2D photonic crystals YOGITA KALRA and R K SINHA TIFAC-Center of Relevance

More information

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length

Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in 2D Plate With Infinite Length Australian Journal of Basic and Applied Sciences, 4(6): 173-181, 1 ISSN 1991-8178 Comparison of Homotopy-Perturbation Method and variational iteration Method to the Estimation of Electric Potential in

More information

FAST AND ACCURATE RADAR CROSS SECTION COM- PUTATION USING CHEBYSHEV APPROXIMATION IN BOTH BROAD FREQUENCY BAND AND ANGULAR DOMAINS SIMULTANEOUSLY

FAST AND ACCURATE RADAR CROSS SECTION COM- PUTATION USING CHEBYSHEV APPROXIMATION IN BOTH BROAD FREQUENCY BAND AND ANGULAR DOMAINS SIMULTANEOUSLY Progress In Electromagnetics Research Letters, Vol. 13, 121 129, 2010 FAST AND ACCURATE RADAR CROSS SECTION COM- PUTATION USING CHEBYSHEV APPROXIMATION IN BOTH BROAD FREQUENCY BAND AND ANGULAR DOMAINS

More information

Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications

Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications Veysel Demir, Ph.D. demir@ceet.niu.edu Department of Electrical Engineering, Northern Illinois

More information

ELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker

ELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker THEORY OF ELASTICITY AND FRACTURE MECHANICS y x Vijay G. Ukadgaonker Theory of Elasticity and Fracture Mechanics VIJAY G. UKADGAONKER Former Professor Indian Institute of Technology Bombay Delhi-110092

More information

Analytical Solution for Capacitance and Characteristic Impedance of CPW with Defected Structures in Signal line

Analytical Solution for Capacitance and Characteristic Impedance of CPW with Defected Structures in Signal line Progress In Electromagnetics Research Letters, Vol. 54, 79 84, 25 Analytical Solution for Capacitance and Characteristic Impedance of CPW with Defected Structures in Signal line Naibo Zhang, Zhongliang

More information

Integration simulation method concerning speed control of ultrasonic motor

Integration simulation method concerning speed control of ultrasonic motor Integration simulation method concerning speed control of ultrasonic motor R Miyauchi 1, B Yue 2, N Matsunaga 1 and S Ishizuka 1 1 Cybernet Systems Co., Ltd. 3 Kanda-neribeicho,Chiyoda-ku, Tokyo,101-0022,Japan

More information

NONLINEAR MAGNETO-OPTICAL EFFECTS IN DIELECTRICS EMBEDDED WITH FERROMAGNETIC NANOPARTICLES

NONLINEAR MAGNETO-OPTICAL EFFECTS IN DIELECTRICS EMBEDDED WITH FERROMAGNETIC NANOPARTICLES Development, 5-8 July, 9, Abuja, Nigeria NONLINEAR MAGNETO-OPTICAL EFFECTS IN DIELECTRICS EMBEDDED WITH FERROMAGNETIC NANOPARTICLES Arlene.P. Maclin, Professor of Engineering & Director, Center for Academic

More information

AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS

AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS Progress In Electromagnetics Research, PIER 1, 329 341, 2 AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS A-K. Hamid Department of Electrical/Electronics and Computer

More information

APPLICATION OF BILAYER ANISOTROPIC STRUC- TURES FOR DESIGNING LOW-PASS FILTERS AND PO- LARIZERS

APPLICATION OF BILAYER ANISOTROPIC STRUC- TURES FOR DESIGNING LOW-PASS FILTERS AND PO- LARIZERS Progress In Electromagnetics Research M, Vol. 29, 95 108, 2013 APPLICATION OF BILAYER ANISOTROPIC STRUC- TURES FOR DESIGNING LOW-PASS FILTERS AND PO- LARIZERS Amir Raeesi *, Ali Abdolali, and Hossein Mirzaei

More information

Boundary Element Method for the Helmholtz Equation

Boundary Element Method for the Helmholtz Equation Journal of Mathematical Extension Vol. 9, No. 4, (205), 65-79 ISSN: 735-8299 URL: http://www.ijmex.com Boundary Element Method for the Helmholtz Equation A. Mesforush Shahrood University Z. Mehraban Shahrood

More information

FDTD implementations for electromagnetic shields

FDTD implementations for electromagnetic shields FDTD implementations for electromagnetic shields S.Ursache 1, M. Branzila 1, C. Bratescu 1, R. Burlacu 1 1 Technical University of Iasi, Faculty of Electrical Engineering, Bd. Profesor Dimitrie Mangeron,

More information

Research Article Design of a Minimized Complementary Illusion Cloak with Arbitrary Position

Research Article Design of a Minimized Complementary Illusion Cloak with Arbitrary Position Antennas and Propagation Volume 25, Article ID 932495, 7 pages http://dx.doi.org/.55/25/932495 Research Article Design of a Minimized Complementary Illusion Cloak with Arbitrary Position Yan Shi, Lin Zhang,

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

N. Sarikaya Department of Aircraft Electrical and Electronics Civil Aviation School Erciyes University Kayseri 38039, Turkey

N. Sarikaya Department of Aircraft Electrical and Electronics Civil Aviation School Erciyes University Kayseri 38039, Turkey Progress In Electromagnetics Research B, Vol. 6, 225 237, 2008 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE COMPUTATION OF THE CHARACTERISTIC IMPEDANCE AND THE EFFECTIVE PERMITTIVITY OF THE MICRO-COPLANAR

More information

Statistical Analysis of Voltage and Current Fluctuations in a Transmission Line with Distributed Parameters Varying Randomly with Space and Time

Statistical Analysis of Voltage and Current Fluctuations in a Transmission Line with Distributed Parameters Varying Randomly with Space and Time International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 8 (2014), pp. 851-855 International Research Publication House http://www.irphouse.com Statistical Analysis

More information