Restructuring the Symmetric QR Algorithm for Performance. Field Van Zee Gregorio Quintana-Orti Robert van de Geijn

Size: px
Start display at page:

Download "Restructuring the Symmetric QR Algorithm for Performance. Field Van Zee Gregorio Quintana-Orti Robert van de Geijn"

Transcription

1 Restructuring the Symmetric QR Algorithm for Performance Field Van Zee regorio Quintana-Orti Robert van de eijn 1

2 For details: Field Van Zee, Robert van de eijn, and regorio Quintana-Orti. Restructuring the QR algorithm for Performance. ACM TOMS. Accepted (pending minor modifications) This work was supported by l UTAustin-Portugal Colab program l Microsoft l NSF under grants OCI , CCF , and OCI Any opinions, findings and conclusions or recommendations expressed in this materialare those of the author(s) and do not necessarily reflect the views of the NationalScience Foundation (NSF). 2

3 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 3

4 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 4

5 Symmetric EVD/SVD: 50+ Years of Progress l Recent progress focuses a lot on the mathematics side Divide & Conquer (Cuppen s) algorithm (D&C) Method of Relatively Robust Representations (MRRR) l Occasional revisit of Jacobi s method l Progress on QR has been for non-symmetric problem. Aggressive Early Deflation Multishift 5

6 Two Insights l WHEN COMPUTIN THE DENSE EVD (all eigenvalues and vectors), D&C and MRRR have hidden O(n 3 ) cost l QR becomes competitive if rotations are applied in batches Classical QR: cast in terms of vector-vector operations Batched application: cast in terms of computation that reuses data in cache, like matrix-matrix operations. 6

7 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 7

8 The Hidden Cost of D&C and MRRR l Start with symmetric, dense A l Reduce to tridiagonal form: l Compute Spectral Decomposition of T: l Backtransform: 8

9 Reduction to Tridiagonal Form 9

10 Reduction to Tridiagonal Form 10

11 Reduction to Tridiagonal Form 11

12 Reduction to Tridiagonal Form 12

13 Backtransformation 13

14 Backtransformation 14

15 Backtransformation 15

16 Backtransformation 16

17 Cost of QR algorithm l Start with symmetric, dense A l Reduce to tridiagonal form: l Form Q A l Compute Spectral Decomposition of T while updating Q A 17

18 Form Q A 18

19 Form Q A 19

20 Form Q A 20

21 Form Q A 21

22 Form Q A 22

23 Cost l Backtransformation: 2 n 3 flops l Form Q A : 4/3 n 3 flops l Hidden cost of MRRR and D&C: 2/3 n 3 flops EVD OF A DENSE MATRIX!!! (All eigenvalues and eigenvectors) 23

24 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 24

25 Classical QR algorithm 25

26 26

27 T 27

28 T 28

29 T 29

30 T 30

31 T 31

32 T 32

33 T 33

34 T 34

35 T 35

36 T 36

37 T 37

38 T 38

39 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 39

40 Accumulating Rotations (LAPACK) T 40

41 Accumulating Rotations (LAPACK) T 41

42 Accumulating Rotations (LAPACK) T 42

43 Accumulating Rotations (LAPACK) T 43

44 Accumulating Rotations (LAPACK) Apply one sweep worth of rotations. Makes application like level-2 BLAS 44

45 Accumulating Rotations (libflame) T 45

46 Accumulating Rotations (libflame) T 46

47 Accumulating Rotations (libflame) T 47

48 Accumulating Rotations (libflame) T 48

49 Accumulating Rotations (libflame) T 49

50 Accumulating Rotations (libflame) T 50

51 Accumulating Rotations (libflame) T 51

52 Accumulating Rotations (libflame) T 52

53 Accumulating Rotations (libflame) T 53

54 Accumulating Rotations (libflame) T 54

55 Accumulating Rotations (libflame) T 55

56 Accumulating Rotations (libflame) T 56

57 Applying Rotations (libflame) 57

58 Applying Rotations (libflame) 58

59 Optimization l Applying a batch of ivens rotations: O(n 2 b) operations on O(n 2 ) data. Can attain level-3 BLAS performance 59

60 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 60

61 Predicted Performance Conventional QR / MRRR (real) Restructured QR / MRRR (real) 61

62 Predicted performance (EVD) Conventional QR / MRRR (complex) Restructured QR / MRRR (complex) 62

63 Observed Performance l Target architecture: l Single core of a Dell PowerEdge R900 server l 16 megabyte L2 cache/core. l Single core peak of FLOPS. 63

64 Application of ivens rotations Theoretical Peak for dgemm dgemm Theoretical peak for ivens Kernel Observed 64

65 EVD performance (relative to netlib MRRR) MKL MRRR Netlib MRRR Restructured QR 65

66 66

67 libflame SVD Performance libflame SVD Netlib via DC 67

68 EVD Parallel Performance (24 cores) Performance on clarksville (24 cores) Standardized FLOPS LAPACK QR LAPACK DC LAPACK MRRR Ideal MRRR libflame var1 libflame var2 var2a (vertical wspace in backtrans.) var2r (outside BLAS parallelism) Infinitely fast MRRR tridiag EVD LAPACK MRRR restructured QR Matrix size 68

69 Is your favorite graph missing? l The paper has an electronic appendix with tons of performance graphs. 69

70 Overview l 50+ years of progress l The hidden costs of MRRR and D&C l QR algorithm basics l Accumulating and applying rotations l Performance l Conclusion 70

71 Conclusion l The QR algorithm lives! l Future directions: Parallelization (multi)pu Aggressive early deflation 71

Restructuring the QR Algorithm for High-Performance Application of Givens Rotations

Restructuring the QR Algorithm for High-Performance Application of Givens Rotations Restructuring the QR Algorithm for High-Performance Application of Givens Rotations FLAME Working Note #60 Field G. Van Zee Robert A. van de Geijn Department of Computer Science The University of Texas

More information

The Algorithm of Multiple Relatively Robust Representations for Multi-Core Processors

The Algorithm of Multiple Relatively Robust Representations for Multi-Core Processors Aachen Institute for Advanced Study in Computational Engineering Science Preprint: AICES-2010/09-4 23/September/2010 The Algorithm of Multiple Relatively Robust Representations for Multi-Core Processors

More information

Jacobi-Based Eigenvalue Solver on GPU. Lung-Sheng Chien, NVIDIA

Jacobi-Based Eigenvalue Solver on GPU. Lung-Sheng Chien, NVIDIA Jacobi-Based Eigenvalue Solver on GPU Lung-Sheng Chien, NVIDIA lchien@nvidia.com Outline Symmetric eigenvalue solver Experiment Applications Conclusions Symmetric eigenvalue solver The standard form is

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

Saving Energy in the LU Factorization with Partial Pivoting on Multi-Core Processors

Saving Energy in the LU Factorization with Partial Pivoting on Multi-Core Processors 20th Euromicro International Conference on Parallel, Distributed and Network-Based Special Session on Energy-aware Systems Saving Energy in the on Multi-Core Processors Pedro Alonso 1, Manuel F. Dolz 2,

More information

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Key Terms Symmetric matrix Tridiagonal matrix Orthogonal matrix QR-factorization Rotation matrices (plane rotations) Eigenvalues We will now complete

More information

Binding Performance and Power of Dense Linear Algebra Operations

Binding Performance and Power of Dense Linear Algebra Operations 10th IEEE International Symposium on Parallel and Distributed Processing with Applications Binding Performance and Power of Dense Linear Algebra Operations Maria Barreda, Manuel F. Dolz, Rafael Mayo, Enrique

More information

Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers

Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers UT College of Engineering Tutorial Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers Stan Tomov 1, George Bosilca 1, and Cédric

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Accelerating computation of eigenvectors in the dense nonsymmetric eigenvalue problem

Accelerating computation of eigenvectors in the dense nonsymmetric eigenvalue problem Accelerating computation of eigenvectors in the dense nonsymmetric eigenvalue problem Mark Gates 1, Azzam Haidar 1, and Jack Dongarra 1,2,3 1 University of Tennessee, Knoxville, TN, USA 2 Oak Ridge National

More information

Notes on the Symmetric QR Algorithm

Notes on the Symmetric QR Algorithm Notes on the Symmetric QR Algorithm Robert A van de Geijn Department of Computer Science The University of Texas Austin, TX 78712 rvdg@csutexasedu November 4, 2014 The QR algorithm is a standard method

More information

Strassen s Algorithm for Tensor Contraction

Strassen s Algorithm for Tensor Contraction Strassen s Algorithm for Tensor Contraction Jianyu Huang, Devin A. Matthews, Robert A. van de Geijn The University of Texas at Austin September 14-15, 2017 Tensor Computation Workshop Flatiron Institute,

More information

Accelerating computation of eigenvectors in the nonsymmetric eigenvalue problem

Accelerating computation of eigenvectors in the nonsymmetric eigenvalue problem Accelerating computation of eigenvectors in the nonsymmetric eigenvalue problem Mark Gates 1, Azzam Haidar 1, and Jack Dongarra 1,2,3 1 University of Tennessee, Knoxville, TN, USA 2 Oak Ridge National

More information

The Future of LAPACK and ScaLAPACK

The Future of LAPACK and ScaLAPACK The Future of LAPACK and ScaLAPACK Jason Riedy, Yozo Hida, James Demmel EECS Department University of California, Berkeley November 18, 2005 Outline Survey responses: What users want Improving LAPACK and

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

TOWARD HIGH PERFORMANCE TILE DIVIDE AND CONQUER ALGORITHM FOR THE DENSE SYMMETRIC EIGENVALUE PROBLEM

TOWARD HIGH PERFORMANCE TILE DIVIDE AND CONQUER ALGORITHM FOR THE DENSE SYMMETRIC EIGENVALUE PROBLEM TOWARD HIGH PERFORMANCE TILE DIVIDE AND CONQUER ALGORITHM FOR THE DENSE SYMMETRIC EIGENVALUE PROBLEM AZZAM HAIDAR, HATEM LTAIEF, AND JACK DONGARRA Abstract. Classical solvers for the dense symmetric eigenvalue

More information

Solving large scale eigenvalue problems

Solving large scale eigenvalue problems arge scale eigenvalue problems, Lecture 5, March 23, 2016 1/30 Lecture 5, March 23, 2016: The QR algorithm II http://people.inf.ethz.ch/arbenz/ewp/ Peter Arbenz Computer Science Department, ETH Zürich

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Algorithm 853: an Efficient Algorithm for Solving Rank-Deficient Least Squares Problems

Algorithm 853: an Efficient Algorithm for Solving Rank-Deficient Least Squares Problems Algorithm 853: an Efficient Algorithm for Solving Rank-Deficient Least Squares Problems LESLIE FOSTER and RAJESH KOMMU San Jose State University Existing routines, such as xgelsy or xgelsd in LAPACK, for

More information

Orthogonal iteration to QR

Orthogonal iteration to QR Notes for 2016-03-09 Orthogonal iteration to QR The QR iteration is the workhorse for solving the nonsymmetric eigenvalue problem. Unfortunately, while the iteration itself is simple to write, the derivation

More information

Sparse BLAS-3 Reduction

Sparse BLAS-3 Reduction Sparse BLAS-3 Reduction to Banded Upper Triangular (Spar3Bnd) Gary Howell, HPC/OIT NC State University gary howell@ncsu.edu Sparse BLAS-3 Reduction p.1/27 Acknowledgements James Demmel, Gene Golub, Franc

More information

Saving Energy in Sparse and Dense Linear Algebra Computations

Saving Energy in Sparse and Dense Linear Algebra Computations Saving Energy in Sparse and Dense Linear Algebra Computations P. Alonso, M. F. Dolz, F. Igual, R. Mayo, E. S. Quintana-Ortí, V. Roca Univ. Politécnica Univ. Jaume I The Univ. of Texas de Valencia, Spain

More information

Parallel Eigensolver Performance on the HPCx System

Parallel Eigensolver Performance on the HPCx System Parallel Eigensolver Performance on the HPCx System Andrew Sunderland, Elena Breitmoser Terascaling Applications Group CCLRC Daresbury Laboratory EPCC, University of Edinburgh Outline 1. Brief Introduction

More information

Parallel Eigensolver Performance on High Performance Computers

Parallel Eigensolver Performance on High Performance Computers Parallel Eigensolver Performance on High Performance Computers Andrew Sunderland Advanced Research Computing Group STFC Daresbury Laboratory CUG 2008 Helsinki 1 Summary (Briefly) Introduce parallel diagonalization

More information

On aggressive early deflation in parallel variants of the QR algorithm

On aggressive early deflation in parallel variants of the QR algorithm On aggressive early deflation in parallel variants of the QR algorithm Bo Kågström 1, Daniel Kressner 2, and Meiyue Shao 1 1 Department of Computing Science and HPC2N Umeå University, S-901 87 Umeå, Sweden

More information

Week6. Gaussian Elimination. 6.1 Opening Remarks Solving Linear Systems. View at edx

Week6. Gaussian Elimination. 6.1 Opening Remarks Solving Linear Systems. View at edx Week6 Gaussian Elimination 61 Opening Remarks 611 Solving Linear Systems View at edx 193 Week 6 Gaussian Elimination 194 61 Outline 61 Opening Remarks 193 611 Solving Linear Systems 193 61 Outline 194

More information

A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI FACTORIZATION

A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI FACTORIZATION SIAM J MATRIX ANAL APPL Vol 0, No 0, pp 000 000 c XXXX Society for Industrial and Applied Mathematics A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI FACTORIZATION WEI XU AND SANZHENG QIAO Abstract This paper

More information

Computing least squares condition numbers on hybrid multicore/gpu systems

Computing least squares condition numbers on hybrid multicore/gpu systems Computing least squares condition numbers on hybrid multicore/gpu systems M. Baboulin and J. Dongarra and R. Lacroix Abstract This paper presents an efficient computation for least squares conditioning

More information

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform Edgar Solomonik University of Illinois at Urbana-Champaign September 21, 2016 Fast

More information

A PARALLEL EIGENSOLVER FOR DENSE SYMMETRIC MATRICES BASED ON MULTIPLE RELATIVELY ROBUST REPRESENTATIONS

A PARALLEL EIGENSOLVER FOR DENSE SYMMETRIC MATRICES BASED ON MULTIPLE RELATIVELY ROBUST REPRESENTATIONS SIAM J. SCI. COMPUT. Vol. 27, No. 1, pp. 43 66 c 2005 Society for Industrial and Applied Mathematics A PARALLEL EIGENSOLVER FOR DENSE SYMMETRIC MATRICES BASED ON MULTIPLE RELATIVELY ROBUST REPRESENTATIONS

More information

Design of Scalable Dense Linear Algebra Libraries for Multithreaded Architectures: the LU Factorization

Design of Scalable Dense Linear Algebra Libraries for Multithreaded Architectures: the LU Factorization Design of Scalable Dense Linear Algebra Libraries for Multithreaded Architectures: the LU Factorization Gregorio Quintana-Ortí, Enrique S. Quintana-Ortí, Ernie Chan 2, Robert A. van de Geijn 2, and Field

More information

Families of Algorithms for Reducing a Matrix to Condensed Form

Families of Algorithms for Reducing a Matrix to Condensed Form Families of Algorithms for Reducing a Matrix to Condensed Form FIELD G. VAN ZEE, The University of Texas at Austin ROBERT A. VAN DE GEIJN, The University of Texas at Austin GREGORIO QUINTANA-ORTí, Universidad

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Algorithms Notes for 2016-10-31 There are several flavors of symmetric eigenvalue solvers for which there is no equivalent (stable) nonsymmetric solver. We discuss four algorithmic ideas: the workhorse

More information

Direct Methods for Matrix Sylvester and Lyapunov Equations

Direct Methods for Matrix Sylvester and Lyapunov Equations Direct Methods for Matrix Sylvester and Lyapunov Equations D. C. Sorensen and Y. Zhou Dept. of Computational and Applied Mathematics Rice University Houston, Texas, 77005-89. USA. e-mail: {sorensen,ykzhou}@caam.rice.edu

More information

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization)

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) Schodinger equation: Hψ = Eψ Choose a basis set of wave functions Two cases: Orthonormal

More information

Parallel Algorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem

Parallel Algorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem Parallel lgorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem FLME Working Note #56 Jack Poulson Robert. van de Geijn Jeffrey Bennighof February, 2 bstract We discuss the parallel

More information

Parallel Eigensolver Performance on High Performance Computers 1

Parallel Eigensolver Performance on High Performance Computers 1 Parallel Eigensolver Performance on High Performance Computers 1 Andrew Sunderland STFC Daresbury Laboratory, Warrington, UK Abstract Eigenvalue and eigenvector computations arise in a wide range of scientific

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Direct methods for symmetric eigenvalue problems

Direct methods for symmetric eigenvalue problems Direct methods for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 4, 2008 1 Theoretical background Posing the question Perturbation theory

More information

Preface to Second Edition... vii. Preface to First Edition...

Preface to Second Edition... vii. Preface to First Edition... Contents Preface to Second Edition..................................... vii Preface to First Edition....................................... ix Part I Linear Algebra 1 Basic Vector/Matrix Structure and

More information

Index. Copyright (c)2007 The Society for Industrial and Applied Mathematics From: Matrix Methods in Data Mining and Pattern Recgonition By: Lars Elden

Index. Copyright (c)2007 The Society for Industrial and Applied Mathematics From: Matrix Methods in Data Mining and Pattern Recgonition By: Lars Elden Index 1-norm, 15 matrix, 17 vector, 15 2-norm, 15, 59 matrix, 17 vector, 15 3-mode array, 91 absolute error, 15 adjacency matrix, 158 Aitken extrapolation, 157 algebra, multi-linear, 91 all-orthogonality,

More information

Parallel Algorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem

Parallel Algorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem Parallel lgorithms for Reducing the Generalized Hermitian-Definite Eigenvalue Problem JCK POULSON The University of Texas at ustin and ROBERT. VN DE GEIJN The University of Texas at ustin We discuss the

More information

Divide and Conquer Symmetric Tridiagonal Eigensolver for Multicore Architectures

Divide and Conquer Symmetric Tridiagonal Eigensolver for Multicore Architectures Divide and Conquer Symmetric Tridiagonal Eigensolver for Multicore Architectures Grégoire Pichon, Azzam Haidar, Mathieu Faverge, Jakub Kurzak To cite this version: Grégoire Pichon, Azzam Haidar, Mathieu

More information

Algorithms for Reducing a Matrix to Condensed Form

Algorithms for Reducing a Matrix to Condensed Form lgorithms for Reducing a Matrix to Condensed Form FLME Working Note #53 Field G. Van Zee Robert. van de Geijn Gregorio Quintana-Ortí G. Joseph Elizondo October 3, 2 Revised January 3, 22 bstract In a recent

More information

A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures. F Tisseur and J Dongarra

A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures. F Tisseur and J Dongarra A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures F Tisseur and J Dongarra 999 MIMS EPrint: 2007.225 Manchester Institute for Mathematical

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

A hybrid Hermitian general eigenvalue solver

A hybrid Hermitian general eigenvalue solver Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe A hybrid Hermitian general eigenvalue solver Raffaele Solcà *, Thomas C. Schulthess Institute fortheoretical Physics ETHZ,

More information

Performance Analysis and Design of a Hessenberg Reduction using Stabilized Blocked Elementary Transformations for New Architectures

Performance Analysis and Design of a Hessenberg Reduction using Stabilized Blocked Elementary Transformations for New Architectures Performance Analysis and Design of a Hessenberg Reduction using Stabilized Blocked Elementary Transformations for New Architectures Khairul Kabir University of Tennessee kkabir@vols.utk.edu Azzam Haidar

More information

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM

PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM Proceedings of ALGORITMY 25 pp. 22 211 PRECONDITIONING IN THE PARALLEL BLOCK-JACOBI SVD ALGORITHM GABRIEL OKŠA AND MARIÁN VAJTERŠIC Abstract. One way, how to speed up the computation of the singular value

More information

COMP6237 Data Mining Covariance, EVD, PCA & SVD. Jonathon Hare

COMP6237 Data Mining Covariance, EVD, PCA & SVD. Jonathon Hare COMP6237 Data Mining Covariance, EVD, PCA & SVD Jonathon Hare jsh2@ecs.soton.ac.uk Variance and Covariance Random Variables and Expected Values Mathematicians talk variance (and covariance) in terms of

More information

Exponentials of Symmetric Matrices through Tridiagonal Reductions

Exponentials of Symmetric Matrices through Tridiagonal Reductions Exponentials of Symmetric Matrices through Tridiagonal Reductions Ya Yan Lu Department of Mathematics City University of Hong Kong Kowloon, Hong Kong Abstract A simple and efficient numerical algorithm

More information

1. Introduction. Applying the QR algorithm to a real square matrix A yields a decomposition of the form

1. Introduction. Applying the QR algorithm to a real square matrix A yields a decomposition of the form BLOCK ALGORITHMS FOR REORDERING STANDARD AND GENERALIZED SCHUR FORMS LAPACK WORKING NOTE 171 DANIEL KRESSNER Abstract. Block algorithms for reordering a selected set of eigenvalues in a standard or generalized

More information

D. Gimenez, M. T. Camara, P. Montilla. Aptdo Murcia. Spain. ABSTRACT

D. Gimenez, M. T. Camara, P. Montilla. Aptdo Murcia. Spain.   ABSTRACT Accelerating the Convergence of Blocked Jacobi Methods 1 D. Gimenez, M. T. Camara, P. Montilla Departamento de Informatica y Sistemas. Univ de Murcia. Aptdo 401. 0001 Murcia. Spain. e-mail: fdomingo,cpmcm,cppmmg@dif.um.es

More information

PERFORMANCE AND ACCURACY OF LAPACK S SYMMETRIC TRIDIAGONAL EIGENSOLVERS

PERFORMANCE AND ACCURACY OF LAPACK S SYMMETRIC TRIDIAGONAL EIGENSOLVERS SIAM J. SCI. COMPUT. Vol. 30, No. 3, pp. 1508 1526 c 2008 Society for Industrial and Applied Mathematics PERFORMANCE AND ACCURACY OF LAPACK S SYMMETRIC TRIDIAGONAL EIGENSOLVERS JAMES W. DEMMEL, OSNI A.

More information

Cuppen s Divide and Conquer Algorithm

Cuppen s Divide and Conquer Algorithm Chapter 4 Cuppen s Divide and Conquer Algorithm In this chapter we deal with an algorithm that is designed for the efficient solution of the symmetric tridiagonal eigenvalue problem a b (4) x λx, b a bn

More information

Linear algebra & Numerical Analysis

Linear algebra & Numerical Analysis Linear algebra & Numerical Analysis Eigenvalues and Eigenvectors Marta Jarošová http://homel.vsb.cz/~dom033/ Outline Methods computing all eigenvalues Characteristic polynomial Jacobi method for symmetric

More information

High Relative Precision of Eigenvalues Calculated with Jacobi Methods

High Relative Precision of Eigenvalues Calculated with Jacobi Methods High Relative Precision of Eigenvalues Calculated with Jacobi Methods ANA JULIA VIAMONE*, RUI RALHA ** *Departamento de Inovação, Ciência e ecnologia Universidade Portucalense Rua Dr. Ant. Bernardino de

More information

Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the SVD

Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the SVD Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the SVD Yuji Nakatsukasa PhD dissertation University of California, Davis Supervisor: Roland Freund Householder 2014 2/28 Acknowledgment

More information

THE QR ALGORITHM REVISITED

THE QR ALGORITHM REVISITED THE QR ALGORITHM REVISITED DAVID S. WATKINS Abstract. The QR algorithm is still one of the most important methods for computing eigenvalues and eigenvectors of matrices. Most discussions of the QR algorithm

More information

A NOVEL PARALLEL QR ALGORITHM FOR HYBRID DISTRIBUTED MEMORY HPC SYSTEMS

A NOVEL PARALLEL QR ALGORITHM FOR HYBRID DISTRIBUTED MEMORY HPC SYSTEMS A NOVEL PARALLEL QR ALGORITHM FOR HYBRID DISTRIBUTED MEMORY HPC SYSTEMS ROBERT GRANAT, BO KÅGSTRÖM, AND DANIEL KRESSNER Abstract A novel variant of the parallel QR algorithm for solving dense nonsymmetric

More information

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Jos M. Badía 1, Peter Benner 2, Rafael Mayo 1, Enrique S. Quintana-Ortí 1, Gregorio Quintana-Ortí 1, A. Remón 1 1 Depto.

More information

Updating an LU factorization with Pivoting. FLAME Working Note #21

Updating an LU factorization with Pivoting. FLAME Working Note #21 Updating an LU factorization with Pivoting FLAM Working Note # nrique S. Quintana-Ortí epartamento de Ingeniería y Ciencia de Computadores Universidad Jaume I Campus Riu Sec.7 Castellón, Spain quintana@icc.uji.es

More information

Domain Decomposition-based contour integration eigenvalue solvers

Domain Decomposition-based contour integration eigenvalue solvers Domain Decomposition-based contour integration eigenvalue solvers Vassilis Kalantzis joint work with Yousef Saad Computer Science and Engineering Department University of Minnesota - Twin Cities, USA SIAM

More information

Level-3 BLAS on a GPU

Level-3 BLAS on a GPU Level-3 BLAS on a GPU Picking the Low Hanging Fruit Francisco Igual 1 Gregorio Quintana-Ortí 1 Robert A. van de Geijn 2 1 Departamento de Ingeniería y Ciencia de los Computadores. University Jaume I. Castellón

More information

Parallelization of the Molecular Orbital Program MOS-F

Parallelization of the Molecular Orbital Program MOS-F Parallelization of the Molecular Orbital Program MOS-F Akira Asato, Satoshi Onodera, Yoshie Inada, Elena Akhmatskaya, Ross Nobes, Azuma Matsuura, Atsuya Takahashi November 2003 Fujitsu Laboratories of

More information

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems Noname manuscript No. (will be inserted by the editor) Power Profiling of Cholesky and QR Factorizations on Distributed s George Bosilca Hatem Ltaief Jack Dongarra Received: date / Accepted: date Abstract

More information

An Implementation of the MRRR Algorithm on a Data-Parallel Coprocessor

An Implementation of the MRRR Algorithm on a Data-Parallel Coprocessor An Implementation of the MRRR Algorithm on a Data-Parallel Coprocessor Christian Lessig Abstract The Algorithm of Multiple Relatively Robust Representations (MRRR) is one of the most efficient and accurate

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

1 Eigenvalues and eigenvectors

1 Eigenvalues and eigenvectors 1 Eigenvalues and eigenvectors 1.1 Introduction A non-zero column-vector v is called the eigenvector of a matrix A with the eigenvalue λ, if Av = λv. (1) If an n n matrix A is real and symmetric, A T =

More information

An Implementation of the MRRR Algorithm on a Data-Parallel Coprocessor

An Implementation of the MRRR Algorithm on a Data-Parallel Coprocessor An Implementation of the MRRR Algorithm on a Data-Parallel Coprocessor Christian Lessig Abstract The Algorithm of Multiple Relatively Robust Representations (MRRRR) is one of the most efficient and most

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 17 1 / 26 Overview

More information

Lecture 2: Numerical linear algebra

Lecture 2: Numerical linear algebra Lecture 2: Numerical linear algebra QR factorization Eigenvalue decomposition Singular value decomposition Conditioning of a problem Floating point arithmetic and stability of an algorithm Linear algebra

More information

Tensor Network Computations in Quantum Chemistry. Charles F. Van Loan Department of Computer Science Cornell University

Tensor Network Computations in Quantum Chemistry. Charles F. Van Loan Department of Computer Science Cornell University Tensor Network Computations in Quantum Chemistry Charles F. Van Loan Department of Computer Science Cornell University Joint work with Garnet Chan, Department of Chemistry and Chemical Biology, Cornell

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

Performance Evaluation of Some Inverse Iteration Algorithms on PowerXCell T M 8i Processor

Performance Evaluation of Some Inverse Iteration Algorithms on PowerXCell T M 8i Processor Performance Evaluation of Some Inverse Iteration Algorithms on PowerXCell T M 8i Processor Masami Takata 1, Hiroyuki Ishigami 2, Kini Kimura 2, and Yoshimasa Nakamura 2 1 Academic Group of Information

More information

More Gaussian Elimination and Matrix Inversion

More Gaussian Elimination and Matrix Inversion Week7 More Gaussian Elimination and Matrix Inversion 7 Opening Remarks 7 Introduction 235 Week 7 More Gaussian Elimination and Matrix Inversion 236 72 Outline 7 Opening Remarks 235 7 Introduction 235 72

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

The geometric mean algorithm

The geometric mean algorithm The geometric mean algorithm Rui Ralha Centro de Matemática Universidade do Minho 4710-057 Braga, Portugal email: r ralha@math.uminho.pt Abstract Bisection (of a real interval) is a well known algorithm

More information

Eigenvalue problems and optimization

Eigenvalue problems and optimization Notes for 2016-04-27 Seeking structure For the past three weeks, we have discussed rather general-purpose optimization methods for nonlinear equation solving and optimization. In practice, of course, we

More information

arxiv: v2 [math.na] 7 Dec 2016

arxiv: v2 [math.na] 7 Dec 2016 HOUSEHOLDER QR FACTORIZATION WITH RANDOMIZATION FOR COLUMN PIVOTING HQRRP PER-GUNNAR MARTINSSON, GREGORIO QUINTANA ORTí, NATHAN HEAVNER, AND ROBERT VAN DE GEIJN arxiv:1512.02671v2 [math.na] 7 Dec 2016

More information

Efficient Evaluation of Matrix Polynomials

Efficient Evaluation of Matrix Polynomials Efficient Evaluation of Matrix Polynomials Niv Hoffman 1, Oded Schwartz 2, and Sivan Toledo 1(B) 1 Tel-Aviv University, Tel Aviv, Israel stoledo@tau.ac.il 2 The Hebrew University of Jerusalem, Jerusalem,

More information

Accelerating Model Reduction of Large Linear Systems with Graphics Processors

Accelerating Model Reduction of Large Linear Systems with Graphics Processors Accelerating Model Reduction of Large Linear Systems with Graphics Processors P. Benner 1, P. Ezzatti 2, D. Kressner 3, E.S. Quintana-Ortí 4, Alfredo Remón 4 1 Max-Plank-Institute for Dynamics of Complex

More information

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12,

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 74 6 Summary Here we summarize the most important information about theoretical and numerical linear algebra. MORALS OF THE STORY: I. Theoretically

More information

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu Minisymposia 9 and 34: Avoiding Communication in Linear Algebra Jim Demmel UC Berkeley bebop.cs.berkeley.edu Motivation (1) Increasing parallelism to exploit From Top500 to multicores in your laptop Exponentially

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Why the QR Factorization can be more Accurate than the SVD

Why the QR Factorization can be more Accurate than the SVD Why the QR Factorization can be more Accurate than the SVD Leslie V. Foster Department of Mathematics San Jose State University San Jose, CA 95192 foster@math.sjsu.edu May 10, 2004 Problem: or Ax = b for

More information

Preconditioned Parallel Block Jacobi SVD Algorithm

Preconditioned Parallel Block Jacobi SVD Algorithm Parallel Numerics 5, 15-24 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.) Chapter 2: Matrix Algebra ISBN 961-633-67-8 Preconditioned Parallel Block Jacobi SVD Algorithm Gabriel Okša 1, Marián Vajteršic

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures. Mark Gates. February 2012

MAGMA. Matrix Algebra on GPU and Multicore Architectures. Mark Gates. February 2012 MAGMA Matrix Algebra on GPU and Multicore Architectures Mark Gates February 2012 1 Hardware trends Scale # cores instead of clock speed Hardware issue became software issue Multicore Hybrid 1.E+07 1e7

More information

Making electronic structure methods scale: Large systems and (massively) parallel computing

Making electronic structure methods scale: Large systems and (massively) parallel computing AB Making electronic structure methods scale: Large systems and (massively) parallel computing Ville Havu Department of Applied Physics Helsinki University of Technology - TKK Ville.Havu@tkk.fi 1 Outline

More information

Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation

Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation Peter Benner 1, Enrique S. Quintana-Ortí 2, Gregorio Quintana-Ortí 2 1 Fakultät für Mathematik Technische Universität

More information

Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm

Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 19, 2010 Today

More information

Eigenvalue problems. Eigenvalue problems

Eigenvalue problems. Eigenvalue problems Determination of eigenvalues and eigenvectors Ax x, where A is an N N matrix, eigenvector x 0, and eigenvalues are in general complex numbers In physics: - Energy eigenvalues in a quantum mechanical system

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

A Divide-and-Conquer Method for the Takagi Factorization

A Divide-and-Conquer Method for the Takagi Factorization A Divide-and-Conquer Method for the Takagi Factorization Wei Xu 1 and Sanzheng Qiao 1, Department of Computing and Software, McMaster University Hamilton, Ont, L8S 4K1, Canada. 1 xuw5@mcmaster.ca qiao@mcmaster.ca

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

GPU accelerated Arnoldi solver for small batched matrix

GPU accelerated Arnoldi solver for small batched matrix 15. 09. 22 GPU accelerated Arnoldi solver for small batched matrix Samsung Advanced Institute of Technology Hyung-Jin Kim Contents - Eigen value problems - Solution - Arnoldi Algorithm - Target - CUDA

More information

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

Sakurai-Sugiura algorithm based eigenvalue solver for Siesta. Georg Huhs

Sakurai-Sugiura algorithm based eigenvalue solver for Siesta. Georg Huhs Sakurai-Sugiura algorithm based eigenvalue solver for Siesta Georg Huhs Motivation Timing analysis for one SCF-loop iteration: left: CNT/Graphene, right: DNA Siesta Specifics High fraction of EVs needed

More information