Solitons optiques à quelques cycles dans des guides

Size: px
Start display at page:

Download "Solitons optiques à quelques cycles dans des guides"

Transcription

1 Solitons optiques à quelques cycles dans des guides couplés Hervé Leblond 1, Dumitru Mihalache 2, David Kremer 3, Said Terniche 1,4 1 Laboratoire de Photonique d Angers LϕA EA 4464, Université d Angers. 2 Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest. 3 Laboratoire MOLTECH-Anjou, CNRS UMR 6200, Université d Angers. 4 Laboratoire Electronique Quantique, USTHB, Alger. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés1 Hulubei Nation / 29

2 1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés2 Hulubei Nation / 29

3 Solitary wave vs envelope solitons Envelope soliton: the usual optical soliton in the ps range Pulse duration L λ wavelength Typical model: NonLinear Schrödinger equation (NLS) It is a soliton if it propagates without deformation on D L, due to nonlinearity. In linear regime: spread out by dispersion. Solitary wave soliton: the hydrodynamical soliton A single oscillation Typical model: Korteweg-de Vries equation (KdV) Few-cycle optical solitons: L λ The slowly varying envelope approximation is not valid Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés3 Hulubei Nation / 29

4 Solitary wave vs envelope solitons Envelope soliton: the usual optical soliton in the ps range Pulse duration L λ wavelength Typical model: NonLinear Schrödinger equation (NLS) It is a soliton if it propagates without deformation on D L, due to nonlinearity. In linear regime: spread out by dispersion. Solitary wave soliton: the hydrodynamical soliton A single oscillation Typical model: Korteweg-de Vries equation (KdV) Few-cycle optical solitons: L λ The slowly varying envelope approximation is not valid Generalized NLS equation We seek a different approach based on KdV-type models Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés3 Hulubei Nation / 29

5 Solitary wave vs envelope solitons Envelope soliton: the usual optical soliton in the ps range Pulse duration L λ wavelength Typical model: NonLinear Schrödinger equation (NLS) Solitary wave soliton: the hydrodynamical soliton Few-cycle optical solitons: L λ A single oscillation Typical model: Korteweg-de Vries equation (KdV) The slowly varying envelope approximation is not valid Generalized NLS equation We seek a different approach based on KdV-type models Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés3 Hulubei Nation / 29

6 The mkdv model A two-level model with resonance frequency ω UV transition only, with (1/τ p ) ω 1/ τ p ω = Long-wave approximation modified Korteweg-de Vries (mkdv) equation E ζ = 1 d 3 k 3 E 6 dω 3 ω=0 τ 3 6π nc χ(3) (ω; ω,ω, ω) E 3 ω=0 τ H. Leblond and F. Sanchez, Phys. Rev. A 67, (2003) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés4 Hulubei Nation / 29

7 Waveguide description The evolution of the electric field E: In (1+1) dimensions: The modified Korteweg-de Vries (mkdv) equation ζ E + β 3 τ E + γ τ E 3 = 0 Nonlinear coefficient γ = 1 2nc χ(3), Dispersion parameter β = ( n ), 2c Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

8 Waveguide description The evolution of the electric field E: We generalize to (2+1) dimensions: The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ζ E + β 3 τ E + γ τ E 3 V 2 τ 2 ξ Edτ = 0 Nonlinear coefficient γ = 1 2nc χ(3), Dispersion parameter β = ( n ), 2c Linear velocity: V = c n. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

9 Waveguide description The evolution of the electric field E: A waveguide: c g c x cladding core cladding The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ζ E + β α 3 τ E + γ α τ E 3 V α 2 τ 2 ξ Edτ = 0 with α = g in the core and α = c in the cladding. Nonlinear coefficient γ α = 1 2n α c χ(3) α, Dispersion parameter β α = ( n α), 2c Linear velocity: V α = c. n α Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

10 Waveguide description The evolution of the electric field E: A waveguide: c g c cladding core cladding The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ζ E + β α τ 3 E + γ α τ E τ E V τ α ξ 2 V α 2 Edτ = 0 with α = g in the core and α = c in the cladding. Velocities : V g < V c Nonlinear coefficient γ α = 1 2n α c χ(3) α, Dispersion parameter β α = ( n α), 2c Linear velocity: V α = c. n α x Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

11 Waveguide description The evolution of the electric field E: A waveguide: c g c cladding core cladding The cubic generalized Kadomtsev-Petviashvili (CGKP) equation In dimensionless form: z u = A α t 3 u + B α t u 3 + v α t u + W t α x 2 udt 2 with α = g in the core and α = c in the cladding. Relative inverse velocities : v g > v c Nonlinear coefficient γ α = 1 2n α c χ(3) α, Dispersion parameter β α = ( n α), 2c Linear velocity: V α = c. n α Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29 x

12 Nonlinear propagation in linear guide We solve the CGKP equation starting from u(x,t,z = 0) = A cos(ωt)f (x)e t2 /w 2, { cos(kx x), for x a, f (x) = Ce κ x is a linear mode profile, for x > a, Normalized coefficients A 1 = A 2 = B 1 = B 2 = W 1 = W 2 = 1, we assume that - Temporal compression occurs - Spatial defocusing occurs, (else it collapses!) - Dispersion and nonlinearity are identical in core and cladding. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés6 Hulubei Nation / 29

13 Guided wave profiles (Normalized so that the total power is 1. v 2 = 3, w = 2.) The pulse is less confined in nonlinear (blue, and red) than in linear (pink and cyan) regime. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés7 Hulubei Nation / 29

14 Nonlinear waveguide Wave guided and confined by using nonlinear velocity: a higher nonlinear coefficient in the cladding than that in the core. Guided profiles of the nonlinear waveguide. Normalized so that the total power is 1. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés8 Hulubei Nation / 29

15 Two-cycle soliton of the nonlinear waveguide -2-1 x t B 2 B 1 = 1. H. Leblond and D. Mihalache, Phys. Rev. A 88, (2013) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés9 Hulubei Nation / 29

16 1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 10 Nation / 29

17 2D waveguiding structure: two cores 1 and 2 and dielectric cladding The generalized Kadomtsev-Petviashvili (GKP) equation (dimensionless) z u = A α 3 t u + B α t u 3 + V α t u + w α 2 α = g in the cores 1 and 2, α = c in the cladding. t 2 x udt, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 11 Nation / 29

18 We seek for a solution as u = R(t,z)f 1 (x)e iϕ + S(t,z)f 2 (x)e iϕ, i.e., two interacting modes. f j, (j = 1, 2): linear mode profiles of individual guides, R(t,z), S(t,z): longitudinal wave profiles, ϕ = ωt βz. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 Involve overlap integrals I 1 = f 1f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx ( g j dx is the integral over the core j = 1 or 2.) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 12 Nation / 29

19 We seek for a solution as u = R(t,z)f 1 (x)e iϕ + S(t,z)f 2 (x)e iϕ, i.e., two interacting modes. f j, (j = 1, 2): linear mode profiles of individual guides, R(t,z), S(t,z): longitudinal wave profiles, ϕ = ωt βz. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 Involve overlap integrals I 1 = f 1f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx ( g j dx is the integral over the core j = 1 or 2.) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 12 Nation / 29

20 We seek for a solution as u = R(t,z)f 1 (x)e iϕ + S(t,z)f 2 (x)e iϕ, i.e., two interacting modes. f j, (j = 1, 2): linear mode profiles of individual guides, R(t,z), S(t,z): longitudinal wave profiles, ϕ = ωt βz. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 Involve overlap integrals I 1 = f 1f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx ( g j dx is the integral over the core j = 1 or 2.) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 12 Nation / 29

21 We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

22 We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

23 We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

24 We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

25 Nonlinear coupling An analogous procedure, treating the nonlinear term as a perturbation, allows to derive the nonlinear coupling terms The complete final system is z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) H. Leblond, and S. Terniche, Phys. Rev. A 93, (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

26 Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

27 Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

28 Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

29 Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, (2016) eblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

30 We assume a purely linear and non-dispersive coupling z u = t (u 3 ) 3 t u C t v, z v = t (v 3 ) 3 t v C t u, We look for stationary states (vector solitons) in this model The stationary states oscillate with t and z:. few-cycle solitons are breathers. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 15 Nation / 29

31 A typical example of few-cycle vector soliton (Dotted lines: u, solid lines: v. Left: at z = 0, right: at z = 60. < A u >= 1.837). Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 16 Nation / 29

32 Evolution of soliton s maximum amplitude during propagation. max t ( u ) max t ( v ) z Soliton with < A u >= Two types of oscillations: Fast: phase - group velocity mismatch Slower: periodic energy exchange, as in linear regime. z Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 17 Nation / 29

33 Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

34 Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

35 Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

36 Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

37 Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

38 Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

39 Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

40 Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

41 Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E u R A 0 < A u >, etc., with A 0 = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

42 Evolution of the ratio v/u Almost constant vs t v u Soliton with < A u >= t Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 20 Nation / 29

43 Evolution of the ratio v/u Or θ = arctan v u. Oscillates almost harmonically with z. Amplitudes of oscillations vs field u amplitude: θ, <θ> (degree) <A u > Black line: mean value < θ >; green line: θ. Crosses: raw numerical data; solid lines: linear or parabolic fits. S. Terniche, H. Leblond, D. Mihalache, and A. Kellou, submitted to Phys.Rev. A Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 21 Nation / 29

44 1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 22 Nation / 29

45 c g c g c g c g c g c g c g c x... n = 3 n = 2 n = 1 n = 0 n = 1 n = 2 n = 3... A set of coupled waveguides within the same model, as: Initial data z u n = a t (u 3 n) b 3 t u n c t (u n 1 + u n+1 ), ) u n (z = 0,t) = A 0 sin(ωt + ϕ) exp ( n2 x 2 t2 τ 2 ; We fix ϕ 0 = 0, x = 1, λ = 1, and we vary A 0 and τ. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 23 Nation / 29

46 Formation of a solitons from a Gaussian pulse Input -40 t n z=0, fwhm = 3.5. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 24 Nation / 29

47 Formation of a solitons from a Gaussian pulse Low amplitude output: diffraction and dispersion -40 t n z = 0.72, A 0 = 0.2, fwhm = 3.5. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 24 Nation / 29

48 Formation of a solitons from a Gaussian pulse High amplitude output: space-time localization -40 t n z = 288, A 0 = 2.06, fwhm = 3.5. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 24 Nation / 29

49 An energy threshold for soliton formation? Domain for soliton formation fwhm A 0 Blue: soliton; red: dispersion-diffraction. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 25 Nation / 29

50 An energy threshold for soliton formation? Domain for soliton formation A 0 2 fwhm A 0 Blue: soliton; red: dispersion-diffraction. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 25 Nation / 29

51 Two kind of solitons: { breathing and fundamental. localized in space and time Breathing soliton: oscillating wave packet t n max u = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 26 Nation / 29

52 Two kind of solitons: breathing and fundamental. { localized in space and time Breathing soliton: oscillating wave packet 3 2 u t max u = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 26 Nation / 29

53 { localized in space and time Fundamental soliton: single humped t n max u = Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 27 Nation / 29

54 { localized in space and time Fundamental soliton: single humped u max u = t Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 27 Nation / 29

55 Thank you for your attention. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 28 Nation / 29

56 1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 29 Nation / 29

13.1 Ion Acoustic Soliton and Shock Wave

13.1 Ion Acoustic Soliton and Shock Wave 13 Nonlinear Waves In linear theory, the wave amplitude is assumed to be sufficiently small to ignore contributions of terms of second order and higher (ie, nonlinear terms) in wave amplitude In such a

More information

Relation between Periodic Soliton Resonance and Instability

Relation between Periodic Soliton Resonance and Instability Proceedings of Institute of Mathematics of NAS of Ukraine 004 Vol. 50 Part 1 486 49 Relation between Periodic Soliton Resonance and Instability Masayoshi TAJIRI Graduate School of Engineering Osaka Prefecture

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

LINEAR DISPERSIVE WAVES

LINEAR DISPERSIVE WAVES LINEAR DISPERSIVE WAVES Nathaniel Egwu December 16, 2009 Outline 1 INTRODUCTION Dispersion Relations Definition of Dispersive Waves 2 SOLUTION AND ASYMPTOTIC ANALYSIS The Beam Equation General Solution

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Circular dispersive shock waves in colloidal media

Circular dispersive shock waves in colloidal media University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part B Faculty of Engineering and Information Sciences 6 Circular dispersive shock waves in colloidal

More information

SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS

SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS HOURIA TRIKI 1, ABDUL-MAJID WAZWAZ 2, 1 Radiation Physics Laboratory, Department of Physics, Faculty of

More information

Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica

Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica American Journal of Applied Sciences (): -6, 4 ISSN 546-99 Science Publications, 4 Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica Frederick Osman

More information

Optical Solitons. Lisa Larrimore Physics 116

Optical Solitons. Lisa Larrimore Physics 116 Lisa Larrimore Physics 116 Optical Solitons An optical soliton is a pulse that travels without distortion due to dispersion or other effects. They are a nonlinear phenomenon caused by self-phase modulation

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

Long-time solutions of the Ostrovsky equation

Long-time solutions of the Ostrovsky equation Long-time solutions of the Ostrovsky equation Roger Grimshaw Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, U.K. Karl Helfrich Woods Hole

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

The Nonlinear Schrodinger Equation

The Nonlinear Schrodinger Equation Catherine Sulem Pierre-Louis Sulem The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse Springer Preface v I Basic Framework 1 1 The Physical Context 3 1.1 Weakly Nonlinear Dispersive Waves

More information

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups PROC. ITB Eng. Science Vol. 35 B, No., 3, 39-53 39 A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups W. N. Tan,* & Andonowati Fakulti Sains, Universiti Teknologi Malaysia

More information

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath International Letters of Chemistry, Physics and Astronomy Submitted: 6-- ISSN: 99-3843, Vol. 64, pp 59-7 Accepted: 6--5 doi:.85/www.scipress.com/ilcpa.64.59 Online: 6--5 6 SciPress Ltd., Switzerland Simulation

More information

Diagonalization of the Coupled-Mode System.

Diagonalization of the Coupled-Mode System. Diagonalization of the Coupled-Mode System. Marina Chugunova joint work with Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaborators: Mason A. Porter, California Institute

More information

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas S. Mahmood Theoretical Plasma Physics Division, PINSTECH Islamabad Collaborators: H. Saleem National Center for Physics,

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

Rare events in dispersion-managed nonlinear lightwave systems

Rare events in dispersion-managed nonlinear lightwave systems Rare events in dispersion-managed nonlinear lightwave systems Elaine Spiller Jinglai Li, Gino Biondini, and William Kath State University of New York at Buffalo Department of Mathematics Nonlinear Physics:

More information

36. Nonlinear optics: χ(2) processes

36. Nonlinear optics: χ(2) processes 36. Nonlinear optics: χ() processes The wave equation with nonlinearity Second-harmonic generation: making blue light from red light approximations: SVEA, zero pump depletion phase matching quasi-phase

More information

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat Superposition of waves (review PHYS 58 Fourier optics SJSU Spring Eradat Superposition of waves Superposition of waves is the common conceptual basis for some optical phenomena such as: Polarization Interference

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

SPECIAL TYPES OF ELASTIC RESONANT SOLITON SOLUTIONS OF THE KADOMTSEV PETVIASHVILI II EQUATION

SPECIAL TYPES OF ELASTIC RESONANT SOLITON SOLUTIONS OF THE KADOMTSEV PETVIASHVILI II EQUATION Romanian Reports in Physics 70, 102 (2018) SPECIAL TYPES OF ELASTIC RESONANT SOLITON SOLUTIONS OF THE KADOMTSEV PETVIASHVILI II EQUATION SHIHUA CHEN 1,*, YI ZHOU 1, FABIO BARONIO 2, DUMITRU MIHALACHE 3

More information

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS NONLINEAR OPTICS Ch. 1 INTRODUCTION TO NONLINEAR OPTICS Nonlinear regime - Order of magnitude Origin of the nonlinearities - Induced Dipole and Polarization - Description of the classical anharmonic oscillator

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Lecture #8 Non-linear phononics

Lecture #8 Non-linear phononics Lecture #8 Non-linear phononics Dr. Ari Salmi www.helsinki.fi/yliopisto 10.4.2018 1 Last lecture High pressure phononics can give insight into phase transitions in materials SASER can be used to generate

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions

Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions PRAMANA c Indian Academy of Sciences Vol. 73, No. 5 journal of November 2009 physics pp. 913 926 Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions HAMID REZA

More information

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology What Is a Soliton? by Peter S. Lomdahl A bout thirty years ago a remarkable discovery was made here in Los Alamos. Enrico Fermi, John Pasta, and Stan Ulam were calculating the flow of energy in a onedimensional

More information

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS HONG WANG 1,*, JING HUANG 1,2, XIAOPING REN 1, YUANGHANG WENG 1, DUMITRU MIHALACHE 3, YINGJI

More information

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10 Optics and Optical Design Chapter 5: Electromagnetic Optics Lectures 9 & 1 Cord Arnold / Anne L Huillier Electromagnetic waves in dielectric media EM optics compared to simpler theories Electromagnetic

More information

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber Chapter 3 Ultra-short pulse propagation in dispersion-managed birefringent optical fiber 3.1 Introduction This chapter deals with the real world physical systems, where the inhomogeneous parameters of

More information

Dispersive Equations and Nonlinear Waves

Dispersive Equations and Nonlinear Waves Herbert Koch Daniel Tataru Monica Vi an Dispersive Equations and Nonlinear Waves Generalized Korteweg-de Vries, Nonlinear Schrodinger, Wave and Schrodinger Maps ^ Birkhauser Contents Preface xi Nonlinear

More information

Nonlinear Wave Dynamics in Nonlocal Media

Nonlinear Wave Dynamics in Nonlocal Media SMR 1673/27 AUTUMN COLLEGE ON PLASMA PHYSICS 5-30 September 2005 Nonlinear Wave Dynamics in Nonlocal Media J.J. Rasmussen Risoe National Laboratory Denmark Nonlinear Wave Dynamics in Nonlocal Media Jens

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

Four-wave mixing in PCF s and tapered fibers

Four-wave mixing in PCF s and tapered fibers Chapter 4 Four-wave mixing in PCF s and tapered fibers The dramatically increased nonlinear response in PCF s in combination with single-mode behavior over almost the entire transmission range and the

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves I m surfing the giant life wave. -William Shatner David J. Starling Penn State Hazleton PHYS 213 There are three main types of waves in physics: (a) Mechanical waves: described by Newton s laws and propagate

More information

The Generation of Ultrashort Laser Pulses II

The Generation of Ultrashort Laser Pulses II The Generation of Ultrashort Laser Pulses II The phase condition Trains of pulses the Shah function Laser modes and mode locking 1 There are 3 conditions for steady-state laser operation. Amplitude condition

More information

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers General pulse propagation equation Optical pulse propagation just as any other optical

More information

Bifurcations of solitons and their stability

Bifurcations of solitons and their stability 1 Bifurcations of solitons and their stability E. A. Kuznetsov 1,2,3 & F. Dias 4,5 1 P.N. Lebedev Physical Institute, 119991 Moscow, Russia 2 L.D. Landau Institute for Theoretical Physics, 119334 Moscow,

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Michail D. Todorov. Faculty of Applied Mathematics and Informatics Technical University of Sofia, Bulgaria

Michail D. Todorov. Faculty of Applied Mathematics and Informatics Technical University of Sofia, Bulgaria Wave Equations and Quasi-Particle Concept of Dynamics of Solitary Waves: Integrability vs. Consistency, Nonlinearity vs. Dispersion, Adiabatic Approximation Michail D. Todorov Faculty of Applied Mathematics

More information

Derivation of the General Propagation Equation

Derivation of the General Propagation Equation Derivation of the General Propagation Equation Phys 477/577: Ultrafast and Nonlinear Optics, F. Ö. Ilday, Bilkent University February 25, 26 1 1 Derivation of the Wave Equation from Maxwell s Equations

More information

Waves on deep water, II Lecture 14

Waves on deep water, II Lecture 14 Waves on deep water, II Lecture 14 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A +

More information

Nonlinear Optics (NLO)

Nonlinear Optics (NLO) Nonlinear Optics (NLO) (Manual in Progress) Most of the experiments performed during this course are perfectly described by the principles of linear optics. This assumes that interacting optical beams

More information

LECTURE 4 WAVE PACKETS

LECTURE 4 WAVE PACKETS LECTURE 4 WAVE PACKETS. Comparison between QM and Classical Electrons Classical physics (particle) Quantum mechanics (wave) electron is a point particle electron is wavelike motion described by * * F ma

More information

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Lecture 3 Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria SS25

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

A Three Dimensional Simulation of Solitary Waves in the Laser Wake

A Three Dimensional Simulation of Solitary Waves in the Laser Wake A Three Dimensional Simulation of Solitary Waves in the Laser Wake T. Esirkepov 1 ' 2, K. Nishihara 2, S. Bulanov 3, F. Pegoraro 4, F. Kamenets 1, N. Knyazev 1 1 Moscow Institute of Physics that arises

More information

Modulational instability of few cycle pulses in optical fibers

Modulational instability of few cycle pulses in optical fibers Modulational instability of few cycle pulses in optical fibers Amarendra K. Sarma* Department of Physics, Indian Institute of Technology Guwahati,Guwahati-78139,Assam,India. *Electronic address: aksarma@iitg.ernet.in

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

Optical Beam Instability and Coherent Spatial Soliton Experiments

Optical Beam Instability and Coherent Spatial Soliton Experiments Optical Beam Instability and Coherent Spatial Soliton Experiments George Stegeman, School of Optics/CREOL, University of Central Florida 1D Kerr Systems Homogeneous Waveguides Discrete Kerr Arrays Joachim

More information

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator N.M. Ryskin, O.S. Khavroshin and V.V. Emelyanov Dept. of Nonlinear Physics Saratov State

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

The superposition of algebraic solitons for the modified Korteweg-de Vries equation

The superposition of algebraic solitons for the modified Korteweg-de Vries equation Title The superposition of algebraic solitons for the modified Korteweg-de Vries equation Author(s) Chow, KW; Wu, CF Citation Communications in Nonlinear Science and Numerical Simulation, 14, v. 19 n.

More information

OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS

OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS Romanian Reports in Physics, Vol. 6, Supplement, P. 1254 1266, 2011 Dedicated to Professor Marin Ivaşcu s 80 th Anniversary OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS H. LEBLOND

More information

Instabilities of dispersion-managed solitons in the normal dispersion regime

Instabilities of dispersion-managed solitons in the normal dispersion regime PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000 Instabilities of dispersion-managed solitons in the normal dispersion regime Dmitry E. Pelinovsky* Department of Mathematics, University of Toronto,

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Pulse propagation in random waveguides with turning points and application to imaging

Pulse propagation in random waveguides with turning points and application to imaging Pulse propagation in random waveguides with turning points and application to imaging Liliana Borcea Mathematics, University of Michigan, Ann Arbor and Josselin Garnier Centre de Mathématiques Appliquées,

More information

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. Chapter 3 Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. 73 3.1 Introduction The study of linear and nonlinear wave propagation

More information

Numerical Study of Oscillatory Regimes in the KP equation

Numerical Study of Oscillatory Regimes in the KP equation Numerical Study of Oscillatory Regimes in the KP equation C. Klein, MPI for Mathematics in the Sciences, Leipzig, with C. Sparber, P. Markowich, Vienna, math-ph/"#"$"%& C. Sparber (generalized KP), personal-homepages.mis.mpg.de/klein/

More information

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Stable One-Dimensional

More information

Integration of Bi-Hamiltonian Systems by Using the Dressing Method

Integration of Bi-Hamiltonian Systems by Using the Dressing Method Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 319 324 Integration of Bi-Hamiltonian Systems by Using the Dressing Method Yuriy BERKELA Carpathian Biosphere Reserve, Rakhiv,

More information

Modèles stochastiques pour la propagation dans les fibres optiques

Modèles stochastiques pour la propagation dans les fibres optiques Modèles stochastiques pour la propagation dans les fibres optiques A. de Bouard CMAP, Ecole Polytechnique joint works with R. Belaouar, A. Debussche, M. Gazeau Nonlinear fiber optics in communications

More information

OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS

OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS H. LEBLOND 1, D. MIHALACHE 1 Laboratoire de Photonique d Angers, EA 4464, Université d Angers, Bd Lavoisier, F-49000 Angers, France

More information

Wave Properties of Particles Louis debroglie:

Wave Properties of Particles Louis debroglie: Wave Properties of Particles Louis debroglie: If light is both a wave and a particle, why not electrons? In 194 Louis de Broglie suggested in his doctoral dissertation that there is a wave connected with

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

EP225 Note No. 4 Wave Motion

EP225 Note No. 4 Wave Motion EP5 Note No. 4 Wave Motion 4. Sinusoidal Waves, Wave Number Waves propagate in space in contrast to oscillations which are con ned in limited regions. In describing wave motion, spatial coordinates enter

More information

Routes to spatiotemporal chaos in Kerr optical frequency combs 1, a)

Routes to spatiotemporal chaos in Kerr optical frequency combs 1, a) Routes to spatiotemporal chaos in Kerr optical frequency combs 1, a) Aurélien Coillet 1 and Yanne K. Chembo FEMTO-ST Institute [CNRS UMR6174], Optics Department, 16 Route de Gray, 23 Besançon cedex, France.

More information

12. Nonlinear optics I

12. Nonlinear optics I 1. Nonlinear optics I What are nonlinear-optical effects and why do they occur? Maxwell's equations in a medium Nonlinear-optical media Second-harmonic generation Conservation laws for photons ("Phasematching")

More information

Lecture17: Generalized Solitary Waves

Lecture17: Generalized Solitary Waves Lecture17: Generalized Solitary Waves Lecturer: Roger Grimshaw. Write-up: Andrew Stewart and Yiping Ma June 24, 2009 We have seen that solitary waves, either with a pulse -like profile or as the envelope

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Exam 3 results Class Average - 57 (Approximate grade

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Wavepackets Wavepackets Group velocity Group velocity Consider two waves at different frequencies 1 and 2 and suppose that the wave velocity

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

LINEAR AND NONLINEAR LIGHT BULLETS: RECENT THEORETICAL AND EXPERIMENTAL STUDIES

LINEAR AND NONLINEAR LIGHT BULLETS: RECENT THEORETICAL AND EXPERIMENTAL STUDIES Dedicated to Academician Aureliu Săndulescu s 80 th Anniversary LINEAR AND NONLINEAR LIGHT BULLETS: RECENT THEORETICAL AND EXPERIMENTAL STUDIES D. MIHALACHE Horia Hulubei National Institute for Physics

More information

Solitons : An Introduction

Solitons : An Introduction Solitons : An Introduction p. 1/2 Solitons : An Introduction Amit Goyal Department of Physics Panjab University Chandigarh Solitons : An Introduction p. 2/2 Contents Introduction History Applications Solitons

More information

A Propagating Wave Packet The Group Velocity

A Propagating Wave Packet The Group Velocity Lecture 7 A Propagating Wave Packet The Group Velocity Phys 375 Overview and Motivation: Last time we looked at a solution to the Schrödinger equation (SE) with an initial condition (,) that corresponds

More information

ASYMMETRIC SOLITONS IN PARITY-TIME-SYMMETRIC DOUBLE-HUMP SCARFF-II POTENTIALS

ASYMMETRIC SOLITONS IN PARITY-TIME-SYMMETRIC DOUBLE-HUMP SCARFF-II POTENTIALS ASYMMETRIC SOLITONS IN PARITY-TIME-SYMMETRIC DOUBLE-HUMP SCARFF-II POTENTIALS PENGFEI LI 1, DUMITRU MIHALACHE 2, LU LI 1, 1 Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China E-mail

More information

Head-on collisions of electrostatic solitons in nonthermal plasmas

Head-on collisions of electrostatic solitons in nonthermal plasmas Head-on collisions of electrostatic solitons in nonthermal plasmas Frank Verheest 1,2, Manfred A Hellberg 2 and Willy A. Hereman 3 1 Sterrenkundig Observatorium, Universiteit Gent, Belgium 2 School of

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 20: Nonlinear Optics in Glass-Fundamentals Denise Krol Department of Applied Science University of California,

More information

Nonlinear Gamow Vectors in nonlocal optical propagation

Nonlinear Gamow Vectors in nonlocal optical propagation VANGUARD Grant 664782 Nonlinear Gamow Vectors in nonlocal optical propagation M.C. Braidotti 1,2, S. Gentilini 1,2, G. Marcucci 3, E. Del Re 1,3 and C. Conti 1,3 1 Institute for Complex Systems (ISC-CNR),

More information

Collisionless Shocks and the Earth s Bow Shock

Collisionless Shocks and the Earth s Bow Shock Collisionless Shocks and the Earth s Bow Shock Jean-Luc Thiffeault AST 381 Gas Dynamics 17 November 1994 1 Introduction The mean free path for particle collisions in the solar wind at the boundary of the

More information

Nonlinear Waves, Solitons and Chaos

Nonlinear Waves, Solitons and Chaos Nonlinear Waves, Solitons and Chaos Eryk Infeld Institute for Nuclear Studies, Warsaw George Rowlands Department of Physics, University of Warwick 2nd edition CAMBRIDGE UNIVERSITY PRESS Contents Foreword

More information

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems ISSN 139-5113 Nonlinear Analysis: Modelling Control, 017, Vol., No. 3, 334 346 https://doi.org/10.15388/na.017.3.4 Group analysis, nonlinear self-adjointness, conservation laws, soliton solutions for the

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information