into regions of equal measure and small diameter p. 1/2

Size: px
Start display at page:

Download "into regions of equal measure and small diameter p. 1/2"

Transcription

1 into regions of equal measure and small diameter Paul Leopardi School of Mathematics, University of New South Wales For presentation at Vanderbilt University, Nashville, November 2004 into regions of equal measure and small diameter p 1/2

2

3 The sphere Definition 1 For dimension is defined as, the unit sphere embedded in Definition 2 Spherical polar coordinates describe a point using one longitude,, and colatitudes,, for of into regions of equal measure and small diameter p 3/2

4 Equal-measure partitions Definition 3 Let be a measurable set and a measure with An equal-measure partition of for is a nonempty finite set measurable subsets of, such that for each with, of and into regions of equal measure and small diameter p 4/2

5 Diameter bounded sets of partitions Definition 4 The diameter of a region is defined by where is the Euclidean distance Definition 5 A set diameter bound, of partitions of if for all is said to have, for each, for is said to be diameter bounded if there exists has diameter bound such that into regions of equal measure and small diameter p 5/2

6 Key properties of the RZ partition of The recursive zonal (RZ) partition of into regions is denoted as The set of partitions The RZ partition satisfies the following theorems Theorem 1 For dimension, let be the usual surface measure on inherited from the Lebesgue measure on via the usual embedding of in Then for, is an equal-measure partition for Theorem 2 For of Definition 5, is diameter-bounded in the sense into regions of equal measure and small diameter p 6/2

7 Precedents The RZ partition is based on Zhou s (1995) construction for modified by Ed Saff, and on Ian Sloan s sketch of a partition of (2003) Alexander (1972) uses the existence of a diameter-bounded set of equal-area partitions of to analyse the maximum sum of distances between points Alexander (1972) suggests a construction different from Zhou (1995) Equal-area partitions of used in the geosciences and astronomy do not have a proven bound on the diameter of regions as into regions of equal measure and small diameter p 7/2

8 Stolarsky s Conjecture Stolasky (1973) asserts the existence of a diameter-bounded set of equal-measure partitions of for all, but offers no construction or existence proof Beck and Chen (1987) quotes Stolarsky Bourgain and Lindenstrauss (1988) quotes Beck and Chen Wagner (1993) implies the existence of an RZ-like construction for Bourgain and Lindenstrauss (1993) gives a partial construction into regions of equal measure and small diameter p 8/2

9 Spherical zones, caps and collars For, a zone can be described by where If is a North polar cap and, is a collar is a South polar cap For, the measure of a spherical cap of spherical radius is where into regions of equal measure and small diameter p 9/2

10 Outline of the RZ algorithm The RZ algorithm is recursive in dimension Algorithm for : There is a single region which is the whole sphere; Divide the circle into equal segments; Divide the sphere into zones, each the same measure as an integer number of regions: North and South polar spherical caps and a number of spherical collars; Partition each spherical collar into regions of equal measure, using the RZ algorithm for dimension ; into regions of equal measure and small diameter p 10/2

11 RZ(3,99) Steps 1 to 2 RZ(3,99) Steps 3 to 5 θ F,1 θ c I y 1 = 148 θ F,2 V(θ c ) = V R = σ(s 3 )/99 I = V R 1/3 y 2 = 337 y 3 = 337 F F F F θ F,3 y 4 = 148 θ F,4 θ F,5 RZ(3,99) Steps 6 to 7 θ 1 RZ(2,15) RZ(2,34) m 1 = 15 θ 2 m 2 = θ 3 RZ(2,33) RZ(2,15) m 3 = m 4 = 15 θ 4 θ 5

12 Rounding the number of regions per collar Similarly to Zhou (1995), given the sequence for collars, with define the sequences, and for and by:, Then show that is the required number of regions in collar and, and we can into regions of equal measure and small diameter p 12/2

13 Geometry of regions is of the form of in collar Each region in spherical polar coordinates, where, with We can show that and where into regions of equal measure and small diameter p 13/2

14 The inductive step has diameter bound, define Assuming that Then we can show that into regions of equal measure and small diameter p 14/2

15 Continuous analogs, Define into regions of equal measure and small diameter p 15/2

16 RZ(3,99) Steps 1 to 2 RZ(3,99) Steps 3 to 5 θ F,1 θ c I y 1 = 148 θ F,2 V(θ c ) = V R = σ(s 3 )/99 I = V R 1/3 y 2 = 337 y 3 = 337 F F F F θ F,3 y 4 = 148 θ F,4 θ F,5 RZ(3,99) Steps 6 to 7 θ 1 RZ(2,15) RZ(2,34) m 1 = 15 θ 2 m 2 = θ 3 RZ(2,33) RZ(2,15) m 3 = m 4 = 15 θ 4 θ 5

17 Properties of continuous analogs, if we define, then we can show that For each collar into regions of equal measure and small diameter p 17/2

18 Feasible domains, where Define the feasible domain has diameter bound, then for of, we can show in collar Assuming that, for into regions of equal measure and small diameter p 18/2

19 Properties and estimates of is smooth on and is monotonic increasing in is positive and monotonic increasing in For and, For,, where and into regions of equal measure and small diameter p 19/2

20 Cap,, bounds We can use properties and estimates of There is a constant such that for diameter of each polar cap of For, if there are constants that for with to show that:, the is bounded by is diameter bounded, then, such, into regions of equal measure and small diameter p 20/2

21 Outline of proof of Theorem 2 Assume that Define and Then if, if, we have has diameter bound, and if, where The diameter of any region is bounded by 2 Therefore for,, where consists of equal segments, so diameter bound The result follows by induction has into regions of equal measure and small diameter p 21/2

22 Numerical results - constants Zhou obtains for his (1995) algorithm into regions of equal measure and small diameter p 22/2

23 Bounds on maximum diameter coefficient for RZ partition of S 2, Upper bound 45 Lower bound 4 35 Max diameter of region * N 1/ N=number of regions

24 Bounds on maximum diameter coefficient for RZ partition of S 3, Upper bound 45 Lower bound 4 35 Max diameter of region * N 1/ N=number of regions

25 Stereographic projection of to In Cartesian coordinates, the stereographic projection is if When restricted to, The north pole projects to The south polar cap projects to a ball Collars project to differences between balls Spheres project to generalized spheres into regions of equal measure and small diameter p 25/2

26 Illustration of RZ partition of into regions of equal measure and small diameter p 26/2

A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER

A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER PAUL LEOPARDI Abstract. The recursive zonal equal area (EQ) sphere partitioning algorithm is a practical algorithm for partitioning

More information

Applications of equal area partitions of the unit sphere

Applications of equal area partitions of the unit sphere Applications of equal area partitions of the unit sphere Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at Oak Ridge National Laboratory. Based on PhD thesis

More information

Approximate Fekete points and discrete Leja points based on equal area partitions of the unit sphere

Approximate Fekete points and discrete Leja points based on equal area partitions of the unit sphere Approximate Fekete points and discrete Leja points based on equal area partitions of the unit sphere Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at Computational

More information

Math 461 Homework 8. Paul Hacking. November 27, 2018

Math 461 Homework 8. Paul Hacking. November 27, 2018 Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let S 2 = {(x, y, z) x 2 + y 2 + z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F :

More information

Math 461 Homework 8 Paul Hacking November 27, 2018

Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let Math 461 Homework 8 Paul Hacking November 27, 2018 S 2 = {(x, y, z) x 2 +y 2 +z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F : S

More information

QMC designs and covering of spheres by spherical caps

QMC designs and covering of spheres by spherical caps QMC designs and covering of spheres by spherical caps Ian H. Sloan University of New South Wales, Sydney, Australia Joint work with Johann Brauchart, Josef Dick, Ed Saff (Vanderbilt), Rob Womersley and

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU 1. Introduction These are notes to that show

More information

PHYS 4390: GENERAL RELATIVITY LECTURE 4: FROM SPECIAL TO GENERAL RELATIVITY: GEOMETRY

PHYS 4390: GENERAL RELATIVITY LECTURE 4: FROM SPECIAL TO GENERAL RELATIVITY: GEOMETRY PHYS 439: GENERA REATIVITY ECTURE 4: FROM SPECIA TO GENERA REATIVITY: GEOMETRY 1. The path to GR To start our discussion of GR, we must make an assumption about particles interacting with gravity alone.

More information

Local radial basis function approximation on the sphere

Local radial basis function approximation on the sphere Local radial basis function approximation on the sphere Kerstin Hesse and Q. T. Le Gia School of Mathematics and Statistics, The University of New South Wales, Sydney NSW 05, Australia April 30, 007 Abstract

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry So far, all our calculus has been two-dimensional, involving only x and y. Nature is threedimensional,

More information

BMO Round 2 Problem 3 Generalisation and Bounds

BMO Round 2 Problem 3 Generalisation and Bounds BMO 2007 2008 Round 2 Problem 3 Generalisation and Bounds Joseph Myers February 2008 1 Introduction Problem 3 (by Paul Jefferys) is: 3. Adrian has drawn a circle in the xy-plane whose radius is a positive

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Solutions of homework 1. 2 a) Using the stereographic projection from the north pole N = (0, 0, 1) introduce stereographic coordinates

Solutions of homework 1. 2 a) Using the stereographic projection from the north pole N = (0, 0, 1) introduce stereographic coordinates Solutions of homework 1 1 a) Using the stereographic projection from the north pole N (0, 1) introduce stereographic coordinate for the part of the circle S 1 ( + 1) without the north pole. b) Do the same

More information

Compression on the digital unit sphere

Compression on the digital unit sphere 16th Conference on Applied Mathematics, Univ. of Central Oklahoma, Electronic Journal of Differential Equations, Conf. 07, 001, pp. 1 4. ISSN: 107-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

= ϕ r cos θ. 0 cos ξ sin ξ and sin ξ cos ξ. sin ξ 0 cos ξ

= ϕ r cos θ. 0 cos ξ sin ξ and sin ξ cos ξ. sin ξ 0 cos ξ 8. The Banach-Tarski paradox May, 2012 The Banach-Tarski paradox is that a unit ball in Euclidean -space can be decomposed into finitely many parts which can then be reassembled to form two unit balls

More information

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016 Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X, ρ), a topological space X along

More information

Spherical Venn Diagrams with Involutory Isometries

Spherical Venn Diagrams with Involutory Isometries Spherical Venn Diagrams with Involutory Isometries Frank Ruskey Mark Weston Department of Computer Science University of Victoria PO BOX 3055, Victoria, BC Canada V8W 3P6 {ruskey,mweston}@cs.uvic.ca Submitted:

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

Course 212: Academic Year Section 9: Winding Numbers

Course 212: Academic Year Section 9: Winding Numbers Course 212: Academic Year 1991-2 Section 9: Winding Numbers D. R. Wilkins Contents 9 Winding Numbers 71 9.1 Winding Numbers of Closed Curves in the Plane........ 71 9.2 Winding Numbers and Contour Integrals............

More information

13 Spherical geometry

13 Spherical geometry 13 Spherical geometry Let ABC be a triangle in the Euclidean plane. From now on, we indicate the interior angles A = CAB, B = ABC, C = BCA at the vertices merely by A, B, C. The sides of length a = BC

More information

Report 1 The Axiom of Choice

Report 1 The Axiom of Choice Report 1 The Axiom of Choice By Li Yu This report is a collection of the material I presented in the first round presentation of the course MATH 2002. The report focuses on the principle of recursive definition,

More information

1 z. = 2 w =. As a result, 1 + u 2. 2u 2. 2u u 2 ) = u is smooth as well., ϕ 2 ([z 1 : z 2 ]) = z 1

1 z. = 2 w =. As a result, 1 + u 2. 2u 2. 2u u 2 ) = u is smooth as well., ϕ 2 ([z 1 : z 2 ]) = z 1 KOÇ UNIVERSITY FALL 011 MATH 554 MANIFOLDS MIDTERM 1 OCTOBER 7 INSTRUCTOR: BURAK OZBAGCI 180 Minutes Solutions by Fatih Çelik PROBLEM 1 (0 points): Let N = (0 0 1) be the north pole in the sphere S R 3

More information

The Minimal Element Theorem

The Minimal Element Theorem The Minimal Element Theorem The CMC Dynamics Theorem deals with describing all of the periodic or repeated geometric behavior of a properly embedded CMC surface with bounded second fundamental form in

More information

Three hours THE UNIVERSITY OF MANCHESTER. 31st May :00 17:00

Three hours THE UNIVERSITY OF MANCHESTER. 31st May :00 17:00 Three hours MATH41112 THE UNIVERSITY OF MANCHESTER ERGODIC THEORY 31st May 2016 14:00 17:00 Answer FOUR of the FIVE questions. If more than four questions are attempted, then credit will be given for the

More information

Handlebody Decomposition of a Manifold

Handlebody Decomposition of a Manifold Handlebody Decomposition of a Manifold Mahuya Datta Statistics and Mathematics Unit Indian Statistical Institute, Kolkata mahuya@isical.ac.in January 12, 2012 contents Introduction What is a handlebody

More information

Approximating scalable frames

Approximating scalable frames Kasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. Wang Department of Mathematics & Norbert Wiener Center University of Maryland, College Park 5 th International Conference on Computational

More information

Chapter 6: The metric space M(G) and normal families

Chapter 6: The metric space M(G) and normal families Chapter 6: The metric space MG) and normal families Course 414, 003 04 March 9, 004 Remark 6.1 For G C open, we recall the notation MG) for the set algebra) of all meromorphic functions on G. We now consider

More information

Math Requirements for applicants by Innopolis University

Math Requirements for applicants by Innopolis University Math Requirements for applicants by Innopolis University Contents 1: Algebra... 2 1.1 Numbers, roots and exponents... 2 1.2 Basics of trigonometry... 2 1.3 Logarithms... 2 1.4 Transformations of expressions...

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Covering a sphere with caps: Rogers bound revisited

Covering a sphere with caps: Rogers bound revisited Covering a sphere with caps: Rogers bound revisited Ilya Dumer Abstract We consider coverings of a sphere S n r of radius r with the balls of radius one in an n-dimensional Euclidean space R n. Our goal

More information

COMPLEX ANALYSIS TOPIC XVI: SEQUENCES. 1. Topology of C

COMPLEX ANALYSIS TOPIC XVI: SEQUENCES. 1. Topology of C COMPLEX ANALYSIS TOPIC XVI: SEQUENCES PAUL L. BAILEY Abstract. We outline the development of sequences in C, starting with open and closed sets, and ending with the statement of the Bolzano-Weierstrauss

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Geometry 2: Manifolds and sheaves

Geometry 2: Manifolds and sheaves Rules:Exam problems would be similar to ones marked with! sign. It is recommended to solve all unmarked and!-problems or to find the solution online. It s better to do it in order starting from the beginning,

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

USA Mathematical Talent Search Round 4 Solutions Year 20 Academic Year

USA Mathematical Talent Search Round 4 Solutions Year 20 Academic Year 1/4/20. Consider a sequence {a n } with a 1 = 2 and a n = a2 n 1 a n 2 for all n 3. If we know that a 2 and a 5 are positive integers and a 5 2009, then what are the possible values of a 5? Since a 1 and

More information

The Banach-Tarski paradox

The Banach-Tarski paradox The Banach-Tarski paradox 1 Non-measurable sets In these notes I want to present a proof of the Banach-Tarski paradox, a consequence of the axiom of choice that shows us that a naive understanding of the

More information

Math 225A: Differential Topology, Final Exam

Math 225A: Differential Topology, Final Exam Math 225A: Differential Topology, Final Exam Ian Coley December 9, 2013 The goal is the following theorem. Theorem (Hopf). Let M be a compact n-manifold without boundary, and let f, g : M S n be two smooth

More information

Classwork. Opening Exercises 1 2. Note: Figures not drawn to scale. 1. Determine the volume for each figure below.

Classwork. Opening Exercises 1 2. Note: Figures not drawn to scale. 1. Determine the volume for each figure below. Classwork Opening Exercises 1 2 Note: Figures not drawn to scale. 1. Determine the volume for each figure below. a. Write an expression that shows volume in terms of the area of the base,, and the height

More information

Ramsey Theory. May 24, 2015

Ramsey Theory. May 24, 2015 Ramsey Theory May 24, 2015 1 König s Lemma König s Lemma is a basic tool to move between finite and infinite combinatorics. To be concise, we use the notation [k] = {1, 2,..., k}, and [X] r will denote

More information

Chapter 2 Metric Spaces

Chapter 2 Metric Spaces Chapter 2 Metric Spaces The purpose of this chapter is to present a summary of some basic properties of metric and topological spaces that play an important role in the main body of the book. 2.1 Metrics

More information

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43 INDEX Abel s identity, 131 Abel s test, 131 132 Abel s theorem, 463 464 absolute convergence, 113 114 implication of conditional convergence, 114 absolute value, 7 reverse triangle inequality, 9 triangle

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

S-adic sequences A bridge between dynamics, arithmetic, and geometry

S-adic sequences A bridge between dynamics, arithmetic, and geometry S-adic sequences A bridge between dynamics, arithmetic, and geometry J. M. Thuswaldner (joint work with P. Arnoux, V. Berthé, M. Minervino, and W. Steiner) Marseille, November 2017 PART 3 S-adic Rauzy

More information

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET DO FIVE OUT OF SIX ON EACH SET PROBLEM SET 1. THE AXIOM OF FOUNDATION Early on in the book (page 6) it is indicated that throughout the formal development set is going to mean pure set, or set whose elements,

More information

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM ANG LI Abstract. In this paper, we start with the definitions and properties of the fundamental group of a topological space, and then proceed to prove Van-

More information

b) Write the contrapositive of this given statement: If I finish ALEKS, then I get points.

b) Write the contrapositive of this given statement: If I finish ALEKS, then I get points. Math 141 Name: QUIZ 1A (CHAPTER 0: PRELIMINARY TOPICS) MATH 141 SPRING 2019 KUNIYUKI 90 POINTS TOTAL No notes or books allowed. A scientific calculator is allowed. Simplify as appropriate. Check one: Can

More information

Optimal compression of approximate Euclidean distances

Optimal compression of approximate Euclidean distances Optimal compression of approximate Euclidean distances Noga Alon 1 Bo az Klartag 2 Abstract Let X be a set of n points of norm at most 1 in the Euclidean space R k, and suppose ε > 0. An ε-distance sketch

More information

ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING

ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING ON A PROBLEM RELATED TO SPHERE AND CIRCLE PACKING THEMIS MITSIS ABSTRACT We prove that a set which contains spheres centered at all points of a set of Hausdorff dimension greater than must have positive

More information

Effectiveness for embedded spheres and balls

Effectiveness for embedded spheres and balls Electronic Notes in Theoretical Computer Science 66 No. 1 (2003) URL: http://www.elsevier.nl/locate/entcs/volume66.html 12 pages Effectiveness for embedded spheres and balls Joseph S. Miller 1 Department

More information

Vectors and Geometry

Vectors and Geometry Vectors and Geometry Vectors In the context of geometry, a vector is a triplet of real numbers. In applications to a generalized parameters space, such as the space of random variables in a reliability

More information

Doubling metric spaces and embeddings. Assaf Naor

Doubling metric spaces and embeddings. Assaf Naor Doubling metric spaces and embeddings Assaf Naor Our approach to general metric spaces bears the undeniable imprint of early exposure to Euclidean geometry. We just love spaces sharing a common feature

More information

The Volume of a Hypersphere

The Volume of a Hypersphere The hypersphere has the equation The Volume of a Hypersphere x 2 y 2 x 2 w 2 = 2 if centered at the origin (,,,) and has a radius of in four dimensional space. We approach the project of determining its

More information

Math 215B: Solutions 3

Math 215B: Solutions 3 Math 215B: Solutions 3 (1) For this problem you may assume the classification of smooth one-dimensional manifolds: Any compact smooth one-dimensional manifold is diffeomorphic to a finite disjoint union

More information

14 Equivalence Relations

14 Equivalence Relations 14 Equivalence Relations Tom Lewis Fall Term 2010 Tom Lewis () 14 Equivalence Relations Fall Term 2010 1 / 10 Outline 1 The definition 2 Congruence modulo n 3 Has-the-same-size-as 4 Equivalence classes

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31 Homework 1, due on Wednesday August 31 Problem 1. Let z = 2 i and z = 3 + 4i. Write the product zz and the quotient z z in the form a + ib, with a, b R. Problem 2. Let z C be a complex number, and let

More information

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. Notation 2 A set can be described using set-builder notation. That is, a set can be described

More information

The discrete Fourier restriction phenomenon: the non-lattice case

The discrete Fourier restriction phenomenon: the non-lattice case The discrete Fourier restriction phenomenon: the non-lattice case November 2, 2013 Let S n 1 be the sphere of radius 1 in R n and let P n 1 = {(x 1,...,x n 1,x 2 1 +...x2 n 1 ) : 1 x i 1} be the truncated

More information

1 Differentiable manifolds and smooth maps

1 Differentiable manifolds and smooth maps 1 Differentiable manifolds and smooth maps Last updated: April 14, 2011. 1.1 Examples and definitions Roughly, manifolds are sets where one can introduce coordinates. An n-dimensional manifold is a set

More information

Lecture 8: The Goemans-Williamson MAXCUT algorithm

Lecture 8: The Goemans-Williamson MAXCUT algorithm IU Summer School Lecture 8: The Goemans-Williamson MAXCUT algorithm Lecturer: Igor Gorodezky The Goemans-Williamson algorithm is an approximation algorithm for MAX-CUT based on semidefinite programming.

More information

Chapter-2 Relations and Functions. Miscellaneous

Chapter-2 Relations and Functions. Miscellaneous 1 Chapter-2 Relations and Functions Miscellaneous Question 1: The relation f is defined by The relation g is defined by Show that f is a function and g is not a function. The relation f is defined as It

More information

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B = CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

More information

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Manor Mendel, CMI, Caltech 1 Finite Metric Spaces Definition of (semi) metric. (M, ρ): M a (finite) set of points. ρ a distance function

More information

POLAR FORMS: [SST 6.3]

POLAR FORMS: [SST 6.3] POLAR FORMS: [SST 6.3] RECTANGULAR CARTESIAN COORDINATES: Form: x, y where x, y R Origin: x, y = 0, 0 Notice the origin has a unique rectangular coordinate Coordinate x, y is unique. POLAR COORDINATES:

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Asymptotic Behavior of Marginally Trapped Tubes

Asymptotic Behavior of Marginally Trapped Tubes Asymptotic Behavior of Marginally Trapped Tubes Catherine Williams January 29, 2009 Preliminaries general relativity General relativity says that spacetime is described by a Lorentzian 4-manifold (M, g)

More information

Peak Point Theorems for Uniform Algebras on Smooth Manifolds

Peak Point Theorems for Uniform Algebras on Smooth Manifolds Peak Point Theorems for Uniform Algebras on Smooth Manifolds John T. Anderson and Alexander J. Izzo Abstract: It was once conjectured that if A is a uniform algebra on its maximal ideal space X, and if

More information

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011 Student name: Student ID: Math 265 (Butler) Midterm III, November 2 This test is closed book and closed notes. No calculator is allowed for this test. For full credit show all of your work (legibly!).

More information

Geometry of Ricci Solitons

Geometry of Ricci Solitons Geometry of Ricci Solitons H.-D. Cao, Lehigh University LMU, Munich November 25, 2008 1 Ricci Solitons A complete Riemannian (M n, g ij ) is a Ricci soliton if there exists a smooth function f on M such

More information

Conformal Mapping Lecture 20 Conformal Mapping

Conformal Mapping Lecture 20 Conformal Mapping Let γ : [a, b] C be a smooth curve in a domain D. Let f (z) be a function defined at all points z on γ. Let C denotes the image of γ under the transformation w = f (z). The parametric equation of C is

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

An Algorithmist s Toolkit Nov. 10, Lecture 17

An Algorithmist s Toolkit Nov. 10, Lecture 17 8.409 An Algorithmist s Toolkit Nov. 0, 009 Lecturer: Jonathan Kelner Lecture 7 Johnson-Lindenstrauss Theorem. Recap We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from

More information

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

Minimum Separation of the Minimal Energy Points on Spheres in Euclidean Spaces

Minimum Separation of the Minimal Energy Points on Spheres in Euclidean Spaces Minimum Separation of the Minimal Energy Points on Spheres in Euclidean Spaces A. B. J. Kuijlaars, E. B. Saff, and X. Sun November 30, 004 Abstract Let S d denote the unit sphere in the Euclidean space

More information

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 23 COMPLEX ANALYSIS EXERCISES DOUGLAS ULMER 1. Meromorphic functions on the Riemann sphere It s often useful to allow functions to take the value. This exercise outlines one way to

More information

Analysis-3 lecture schemes

Analysis-3 lecture schemes Analysis-3 lecture schemes (with Homeworks) 1 Csörgő István November, 2015 1 A jegyzet az ELTE Informatikai Kar 2015. évi Jegyzetpályázatának támogatásával készült Contents 1. Lesson 1 4 1.1. The Space

More information

Recurrence Relations and Recursion: MATH 180

Recurrence Relations and Recursion: MATH 180 Recurrence Relations and Recursion: MATH 180 1: Recursively Defined Sequences Example 1: The sequence a 1,a 2,a 3,... can be defined recursively as follows: (1) For all integers k 2, a k = a k 1 + 1 (2)

More information

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation.

Notice that lemma 4 has nothing to do with 3-colorability. To obtain a better result for 3-colorable graphs, we need the following observation. COMPSCI 632: Approximation Algorithms November 1, 2017 Lecturer: Debmalya Panigrahi Lecture 18 Scribe: Feng Gui 1 Overview In this lecture, we examine graph coloring algorithms. We first briefly discuss

More information

Probability Density (1)

Probability Density (1) Probability Density (1) Let f(x 1, x 2... x n ) be a probability density for the variables {x 1, x 2... x n }. These variables can always be viewed as coordinates over an abstract space (a manifold ).

More information

SPECTRAL PROBLEMS IN SPACES OF CONSTANT CURVATURE

SPECTRAL PROBLEMS IN SPACES OF CONSTANT CURVATURE 131 SPECTRAL PROBLEMS IN SPACES OF CONSTANT CURVATURE RAFAEL D. BENGURIA Departamento de Física, P. Universidad Católica de Chile, Casilla 306, Santiago 22, CHILE E-mail: rbenguri@fis.puc.cl Here, recent

More information

DISCRETE MINIMAL ENERGY PROBLEMS

DISCRETE MINIMAL ENERGY PROBLEMS DISCRETE MINIMAL ENERGY PROBLEMS Lecture II E. B. Saff Center for Constructive Approximation Vanderbilt University University of Crete, Heraklion May, 2017 Recall Notation ω N = {x 1,..., x N } A, A compact,

More information

arxiv:math/ v3 [math.mg] 1 Mar 2006

arxiv:math/ v3 [math.mg] 1 Mar 2006 arxiv:math/0410324v3 [math.mg] 1 Mar 2006 THE KISSING PROBLEM IN THREE DIMENSIONS Oleg R. Musin Abstract The kissing number k(3) is the maximal number of equal size nonoverlapping spheres in three dimensions

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

The Borsuk-Ulam Theorem

The Borsuk-Ulam Theorem The Borsuk-Ulam Theorem Artur Bicalho Saturnino June 2018 Abstract I am going to present the Borsuk-Ulam theorem in its historical context. After that I will give a proof using differential topology and

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

H2 MATHS SET D PAPER 1

H2 MATHS SET D PAPER 1 H Maths Set D Paper H MATHS Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e b The curve y ax c x 3 points, and, H Maths Set D Paper has a stationary point at x 3. It also

More information

The Covering Index of Convex Bodies

The Covering Index of Convex Bodies The Covering Index of Convex Bodies Centre for Computational and Discrete Geometry Department of Mathematics & Statistics, University of Calgary uary 12, 2015 Covering by homothets and illumination Let

More information

Directed Algebraic Topology and Concurrency

Directed Algebraic Topology and Concurrency Directed Algebraic Topology and Concurrency Emmanuel Haucourt emmanuel.haucourt@polytechnique.edu MPRI : Concurrency (2.3) Wednesday, the 4 th of January 2017 1 / 43 Locally ordered spaces Partially ordered

More information

2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α.

2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α. Chapter 2. Basic Topology. 2.3 Compact Sets. 2.31 Definition By an open cover of a set E in a metric space X we mean a collection {G α } of open subsets of X such that E α G α. 2.32 Definition A subset

More information

Section 4.1. the k-th coordinate function of f. We call the system of equations . =.

Section 4.1. the k-th coordinate function of f. We call the system of equations . =. The Calculus of Functions of Several Variables Section 4. Geometry, Limits, and Continuity In this chapter we will treat the general case of a function mapping R m to R n. Since the cases m = and n = have

More information

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 The Bloch Sphere Ian Glendinning February 16, 2005 QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 Outline Introduction Definition of the Bloch sphere Derivation of the Bloch sphere Properties

More information

GEOMETRY FINAL CLAY SHONKWILER

GEOMETRY FINAL CLAY SHONKWILER GEOMETRY FINAL CLAY SHONKWILER 1 Let X be the space obtained by adding to a 2-dimensional sphere of radius one, a line on the z-axis going from north pole to south pole. Compute the fundamental group and

More information

PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS. 1. Introduction

PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS. 1. Introduction PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS HUNTER LEHMANN AND ANDREW PARK Abstract. A graph on n vertices is said to admit a prime labeling if we can label its vertices with the first n natural

More information

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold.

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold. Recollections from finite group theory. The notion of a group acting on a set is extremely useful. Indeed, the whole of group theory arose through this route. As an example of the abstract power of this

More information

Math 710 Homework 1. Austin Mohr September 2, 2010

Math 710 Homework 1. Austin Mohr September 2, 2010 Math 710 Homework 1 Austin Mohr September 2, 2010 1 For the following random experiments, describe the sample space Ω For each experiment, describe also two subsets (events) that might be of interest,

More information

If you must be wrong, how little wrong can you be?

If you must be wrong, how little wrong can you be? MATH 2411 - Harrell If you must be wrong, how little wrong can you be? Lecture 13 Copyright 2013 by Evans M. Harrell II. About the test Median was 35, range 25 to 40. As it is written: About the test Percentiles:

More information

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation CS 468 Differential Geometry for Computer Science Lecture 17 Surface Deformation Outline Fundamental theorem of surface geometry. Some terminology: embeddings, isometries, deformations. Curvature flows

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information