Simulation of Thermomechanical Couplings of Viscoelastic Materials

Size: px
Start display at page:

Download "Simulation of Thermomechanical Couplings of Viscoelastic Materials"

Transcription

1 Simulation of Thermomechanical Couplings of Viscoelastic Materials Frank Neff 1, Thomas Miquel 2, Michael Johlitz 1, Alexander Lion 1 1 Institute of Mechanics Faculty for Aerospace Engineering Universität der Bundeswehr München 2 École Polytechnique, Paris October, 14th 2016

2 Contents 1 Introduction 2 Modelling 3 Implementation in COMSOL Multiphysics 4 Results and Conclusions

3 Contents 1 Introduction 2 Modelling 3 Implementation in COMSOL Multiphysics 4 Results and Conclusions

4 Motivation Motivation Technical applications of elastomers, e.g. bearings tires sealings etc. CSR New Material Technologies GmbH

5 Motivation Motivation Technical applications of elastomers, e.g. bearings tires sealings etc. CSR New Material Technologies GmbH Properties of elastomers viscoelastic material behaviour glass transition aging (physical, chemical) Mullins-Effect Payne-Effect self-heating swelling

6 Motivation Self-heating dynamic mechanical loads and finite strains energy dissipation causes increase in temperature

7 Motivation Self-heating dynamic mechanical loads and finite strains energy dissipation causes increase in temperature Need to consider self-heating temperature influences the whole stress-strain relation dynamic mechanical loads cause change in temperature complex structures exhibit a complex temperature field

8 Motivation Challenges finite viscoelastic material behaviour (isothermal) coupling between dissipated energy and temperature temperature dependent change of material parameters time efficient computation Shear test 3d

9 Motivation Challenges finite viscoelastic material behaviour (isothermal) coupling between dissipated energy and temperature temperature dependent change of material parameters time efficient computation Our contributions model for non-linear viscoelastic materials model for heat transfer multiphysics coupling thermal expansion multiphysics coupling dissipation following: Johlitz 2015 Dippel 2015 Dippel and Johlitz 2014 Shear test 3d

10 Contents 1 Introduction 2 Modelling 3 Implementation in COMSOL Multiphysics 4 Results and Conclusions

11 Kinematics Deformation Gradient F F IVC ˆF ˆF i RC EIC CC ˆF e F (Johlitz, Dippel, and Lion 2015) Separate volumetric and isocoric deformation volumetric deformation F due to thermal expansion elastomers are considered as nearly incompressible referring to mechanical loads isochoric deformation ˆF due to mechanical loadings multiplicative split of the deformation gradient (Lee 1969) F = ˆF F

12 Kinematics Deformation Gradient F F IVC ˆF ˆF i RC EIC CC ˆF e F (Johlitz, Dippel, and Lion 2015) Separate volumetric and isocoric deformation volumetric deformation F due to thermal expansion elastomers are considered as nearly incompressible referring to mechanical loads isochoric deformation ˆF due to mechanical loadings multiplicative split of the deformation gradient (Lee 1969) F = ˆF F Volumetric deformation gradient F F = J 1 3 I det ( F) = α (θ θ0 ) coefficient of thermal expansion α

13 Kinematics Deformation Gradient F F IVC ˆF ˆF i RC EIC CC ˆF e F (Johlitz, Dippel, and Lion 2015) Separate volumetric and isocoric deformation volumetric deformation F due to thermal expansion elastomers are considered as nearly incompressible referring to mechanical loads isochoric deformation ˆF due to mechanical loadings multiplicative split of the deformation gradient (Lee 1969) F = ˆF F Volumetric deformation gradient F F = J 1 3 I det ( F) = α (θ θ0 ) coefficient of thermal expansion α Isochoric deformation gradient ˆF ˆF = J 1 3 F ) det(ˆf = 1

14 Kinematics Finite viscoelasticity η ε c 10 c e 10 Modelling finite viscoelasticity equilibrium spring: hyperelastic material model (e.g. Neo-Hooke) no time dependence ε ε in ε el 3-parameter-model σ σ neq Maxwell-element: spring is modelled as Neo-Hookean-spring time dependent behaviour of the damper σ eq t strain-time relation / stress-time relation of the 3-parameter-model t

15 Kinematics Finite viscoelasticity η ε c 10 c e 10 Modelling finite viscoelasticity equilibrium spring: hyperelastic material model (e.g. Neo-Hooke) no time dependence ε ε in ε el 3-parameter-model σ σ neq Maxwell-element: spring is modelled as Neo-Hookean-spring time dependent behaviour of the damper Elastic-inelastic split of ˆF σ eq t strain-time relation / stress-time relation of the 3-parameter-model t elastic part ˆF e inelastic part ˆF i multiplicative split of the isochoric deformation gradient ˆF = ˆF e ˆF i

16 Kinetics Entropy balance Clausius-Duhem-Inequality (CDI) (Haupt 2002) ρ 0 ψ + T : Ė ρ 0s θ q 0 θ Gradθ 0 ψ: Helmholtz free energy T: 2nd Piola-Kirchhoff stress tensor E: Green-Lagrangean strain tensor

17 Kinetics Entropy balance Clausius-Duhem-Inequality (CDI) (Haupt 2002) ρ 0 ψ + T : Ė ρ 0s θ q 0 θ Gradθ 0 ψ: Helmholtz free energy T: 2nd Piola-Kirchhoff stress tensor E: Green-Lagrangean strain tensor Additive formulation of the Helmholtz free energy ψ = ψ vol eq (J,θ) + ψiso eq (Ĉ) + ψ iso neq (Ĉe )

18 Kinetics Entropy balance Clausius-Duhem-Inequality (CDI) (Haupt 2002) ρ 0 ψ + T : Ė ρ 0s θ q 0 θ Gradθ 0 ψ: Helmholtz free energy T: 2nd Piola-Kirchhoff stress tensor E: Green-Lagrangean strain tensor Additive formulation of the Helmholtz free energy ψ = ψ vol eq (J,θ) + ψiso eq Helmholtz free energy and CDI ( ) ( ψeq vol p + ρ 0 J J ( 1 2 J ˆT ψ eq iso ρ 0 Ĉ ρ 0 ψeq vol ρ 0 s + ρ 0 θ ˆF 1 i ψiso neq T Ĉe ˆF i (Ĉ) + ψ iso neq ) θ q 0 θ Gradθ + ) (Ĉe ) : Ĉ ψ neq iso + ρ 0 Ĉe : (Ĉe ˆL i + ˆL ) i Ĉe 0

19 Material modelling Material modelling Approach for Helmholtz free energy density ρ 0 ψ vol eq = 1 [(J 2 K 1) 2 + (lnj) 2] K α (J 1)(θ θ 0 ) ρ 0 c(θ) ρ 0 ψ iso ( ) eq = c 10 IĈ 3 ρ 0 ψ iso ( ) neq = ce 10 IĈe 3

20 Material modelling Material modelling Approach for Helmholtz free energy density ρ 0 ψ vol eq = 1 [(J 2 K 1) 2 + (lnj) 2] K α (J 1)(θ θ 0 ) ρ 0 c(θ) ρ 0 ψ iso ( ) eq = c 10 IĈ 3 ρ 0 ψ iso ( ) neq = ce 10 IĈe 3 Evaluation of the constitutive equations p = K [ (J 1) + lnj J ] + K α (θ θ 0 ) s = 1 ( c(θ) K α (J 1) + ρ 0 ρ 0 θ ) ˆT = 2J 1 c 10 I + 2J 1 c e 10 Ĉ 1 i 2 ( 3 J 1 c 10 trĉ + ce 10 trĉe )Ĉ 1

21 Material modelling Final equations 2nd Piola-Kirchhoff stress tensor T = pj C 1 + 2J 2 3 c 10 ( I 1 3 tr(ĉ)ĉ 1) + 2J 2 3 c e 10 (Ĉ 1 i 1 3 tr (Ĉ 1 )Ĉ 1 ) i Ĉ

22 Material modelling Final equations 2nd Piola-Kirchhoff stress tensor T = pj C 1 + 2J 2 3 c 10 ( I 1 3 tr(ĉ)ĉ 1) + 2J 2 3 c e 10 Evolution equation Ĉ i = 2ce 10 (Ĉ η(θ) 1 3 tr (Ĉ Ĉ 1 ) i )Ĉi (Ĉ 1 i 1 3 tr (Ĉ 1 )Ĉ 1 ) i Ĉ

23 Material modelling Final equations 2nd Piola-Kirchhoff stress tensor T = pj C 1 + 2J 2 3 c 10 ( I 1 3 tr(ĉ)ĉ 1) + 2J 2 3 c e 10 Evolution equation Ĉ i = 2ce 10 (Ĉ η(θ) 1 3 tr (Ĉ Ĉ 1 ) i )Ĉi Heat transfer equation K αθj + ρ 0 (A + B θ) θ λ θ Div(Grad(θ)) c e 10 Ĉ 1 i Ĉ Ĉ 1 i (Ĉ 1 i 1 3 : Ĉ i = 0 tr (Ĉ 1 )Ĉ 1 ) i Ĉ

24 Material modelling Final equations 2nd Piola-Kirchhoff stress tensor T = pj C 1 + 2J 2 3 c 10 ( I 1 3 tr(ĉ)ĉ 1) + 2J 2 3 c e 10 Evolution equation Ĉ i = 2ce 10 (Ĉ η(θ) 1 3 tr (Ĉ Ĉ 1 ) i )Ĉi Heat transfer equation K αθj + ρ 0 (A + B θ) θ λ θ Div(Grad(θ)) c e 10 Ĉ 1 i Ĉ Ĉ 1 i (Ĉ 1 i 1 3 : Ĉ i = 0 tr (Ĉ 1 )Ĉ 1 ) i Ĉ Williams-Landel-Ferry equation (WLF) ( ) η(θ) = η 0 exp C 1(θ θ G ) C 2 +θ θ G

25 Contents 1 Introduction 2 Modelling 3 Implementation in COMSOL Multiphysics 4 Results and Conclusions

26 Physics interfaces Mechanical behaviour Physics interface: Finite Viscoelasticity Domain feature Boundary conditions: Fixed Constraint Predescribed Displacement Predescribed Load

27 Physics interfaces Mechanical behaviour Physics interface: Finite Viscoelasticity Domain feature Boundary conditions: Fixed Constraint Predescribed Displacement Predescribed Load Domain feature: Finite Viscoelasticity 1 equilibrium part: Neo-Hooke incompressibility: Penalty-Formulation Lagrange-Formulation number of Maxwell-Elements (0-5)

28 Physics interfaces Thermal behaviour Physics interface: Heat Transfer Domain feature Boundary conditions: Temperature Adiabat

29 Physics interfaces Thermal behaviour Physics interface: Heat Transfer Domain feature Boundary conditions: Temperature Adiabat Domain feature: Heat Transfer 1 Fourier heat transfer

30 Multiphysics coupling Couplings Multiphysics coupling: Thermal Expansion coupling of: Finite Viscoelasticity Heat-Transfer thermal expansion coefficient

31 Multiphysics coupling Couplings Multiphysics coupling: Thermal Expansion coupling of: Finite Viscoelasticity Heat-Transfer thermal expansion coefficient Multiphysics coupling: Dissipation self-heating WLF-Parameters for each Maxwell-Element could be combined with thermal expansion

32 Contents 1 Introduction 2 Modelling 3 Implementation in COMSOL Multiphysics 4 Results and Conclusions

33 Results Temperature influence of viscoelasticity Static shear test shear angle 20 temperature 293K and 363K chosen academic material parameters

34 Results Temperature influence of viscoelasticity Static shear test shear angle 20 temperature 293K and 363K chosen academic material parameters Dynamic shear test shear angle 20 and 40 (amplitude) sinus cycle with 4 Hz frequency temperature 363 K chosen academic material parameters

35 Results Cyclic deformation of an hourglass sample Cyclic test of an hourglass sample tension 6mm sinus cycle with 4 Hz frequency (tension only) temperature 333 K chosen academic material parameters material parameters could be identified by DMA experiment

36 Conclusions Conclusions a model for finite viscoelastic material behaviour is proposed and implemented temperature dependence of mechanical behaviour is guaranteed by WLF-approach for the relaxation times coupling of dissipated mechanical energy and temperature field coupling temperature and volumetric expansion modular setup leads to flexibility in application

37 Conclusions Literature Dippel, B. (2015). Experimentelle Charakterisierung, Modellierung und FE-Berechnung thermomechanischer Kopplung. Ph. D. thesis, Universität der Bundeswehr München. Dippel, B. and M. Johlitz (2014). Thermo-mechanical couplings in elastomers - experiments and modelling. ZAM Zeitschrift für Angewandte Mathematik und Mechanik. Haupt, P. (2002). Continuum Mechanics and Theory of Materials. Springer Verlag. Johlitz, M., B. Dippel, and A. Lion (2015). Dissipative heating of elastomers: a new modelling approach based on finite and coupled thermomechanics. Continuum Mechanics and Thermodynamics, Lee, E. (1969). Elastic-plastic deformatin at finite strain. Jounal of Applied Mechanics 36, 1 6.

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Comparison of the multiplicative decompositions F = F θ F M and F = F M F θ in finite strain thermoelasticity

Comparison of the multiplicative decompositions F = F θ F M and F = F M F θ in finite strain thermoelasticity Comparison of the multiplicative decompositions F = F θ F and F = F F θ in finite strain thermoelasticity Stefan Hartmann Technical Report Series Fac3-12-01 Impressum Publisher: Fakultät für athematik/informatik

More information

4 Constitutive Theory

4 Constitutive Theory ME338A CONTINUUM MECHANICS lecture notes 13 Tuesday, May 13, 2008 4.1 Closure Problem In the preceding chapter, we derived the fundamental balance equations: Balance of Spatial Material Mass ρ t + ρ t

More information

VISCOELASTIC PROPERTIES OF FILLED RUBBER. EXPERIMENTAL OBSERVATIONS AND MATERIAL MODELLING

VISCOELASTIC PROPERTIES OF FILLED RUBBER. EXPERIMENTAL OBSERVATIONS AND MATERIAL MODELLING Engineering MECHANICS, Vol. 14, 2007, No. 1/2, p. 81 89 81 VISCOELASTIC PROPERTIES OF FILLED RUBBER. EXPERIMENTAL OBSERVATIONS AND MATERIAL MODELLING Bohdana Marvalova* The paper presents an application

More information

Predeformation and frequency-dependence : Experiment and FE analysis

Predeformation and frequency-dependence : Experiment and FE analysis Predeformation and frequency-dependence : Experiment and FE analysis Nidhal Jridi 1,2,*, Michelle Salvia 2, Adel Hamdi 1, Olivier Bareille 2, Makrem Arfaoui 1, Mohammed Ichchou 2, Jalel Ben Abdallah 1

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS ABSTRACT : P Mata1, AH Barbat1, S Oller1, R Boroschek2 1 Technical University of Catalonia, Civil Engineering

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

In this section, thermoelasticity is considered. By definition, the constitutive relations for Gradθ. This general case

In this section, thermoelasticity is considered. By definition, the constitutive relations for Gradθ. This general case Section.. Thermoelasticity In this section, thermoelasticity is considered. By definition, the constitutive relations for F, θ, Gradθ. This general case such a material depend only on the set of field

More information

The Finite Element Method II

The Finite Element Method II [ 1 The Finite Element Method II Non-Linear finite element Use of Constitutive Relations Xinghong LIU Phd student 02.11.2007 [ 2 Finite element equilibrium equations: kinematic variables Displacement Strain-displacement

More information

θ = θ (s,υ). (1.4) θ (s,υ) υ υ

θ = θ (s,υ). (1.4) θ (s,υ) υ υ 1.1 Thermodynamics of Fluids 1 Specific Heats of Fluids Elastic Solids Using the free energy per unit mass ψ as a thermodynamic potential we have the caloric equation of state ψ = ψ ˆ (θυ) (1.1.1) the

More information

in this web service Cambridge University Press

in this web service Cambridge University Press CONTINUUM MECHANICS This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behavior of continuous materials.

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 1 June 2006 1.30 to 4.30 PAPER 76 NONLINEAR CONTINUUM MECHANICS Attempt FOUR questions. There are SIX questions in total. The questions carry equal weight. STATIONERY

More information

Level Set Tumor Growth Model

Level Set Tumor Growth Model Level Set Tumor Growth Model Andrew Nordquist and Rakesh Ranjan, PhD University of Texas, San Antonio July 29, 2013 Andrew Nordquist and Rakesh Ranjan, PhD (University Level Set of Texas, TumorSan Growth

More information

Advanced Simulation of Sealings CADFEM GmbH Rainer Rauch

Advanced Simulation of Sealings CADFEM GmbH Rainer Rauch Advanced Simulation of Sealings CADFEM GmbH Rainer Rauch Recent developments in ANSYS V12 for the simulation of sealings Element technology Material models Contact Robust design and optimization -1- New

More information

International Journal of Pure and Applied Mathematics Volume 58 No ,

International Journal of Pure and Applied Mathematics Volume 58 No , International Journal of Pure and Applied Mathematics Volume 58 No. 2 2010, 195-208 A NOTE ON THE LINEARIZED FINITE THEORY OF ELASTICITY Maria Luisa Tonon Department of Mathematics University of Turin

More information

On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity

On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity 63 Advances in 63 On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity I. Karsaj, C. Sansour and J. Soric Summary A constitutive model for orthotropic yield function at large strain

More information

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess Nonlinear Theory of Elasticity Dr.-Ing. Martin Ruess geometry description Cartesian global coordinate system with base vectors of the Euclidian space orthonormal basis origin O point P domain of a deformable

More information

1 Useful Definitions or Concepts

1 Useful Definitions or Concepts 1 Useful Definitions or Concepts 1.1 Elastic constitutive laws One general type of elastic material model is the one called Cauchy elastic material, which depend on only the current local deformation of

More information

Functional Grading of Rubber-Elastic Materials: From Chemistry to Mechanics

Functional Grading of Rubber-Elastic Materials: From Chemistry to Mechanics Functional Grading of Rubber-Elastic Materials: From Chemistry to Mechanics Barry Bernstein Hamid Arastoopour Ecevit Bilgili Department of Chemical and Environmental Engineering llinois nstitute of Technology

More information

CONTINUUM MECHANICS - Nonlinear Elasticity and Its Role in Continuum Theories - Alan Wineman NONLINEAR ELASTICITY AND ITS ROLE IN CONTINUUM THEORIES

CONTINUUM MECHANICS - Nonlinear Elasticity and Its Role in Continuum Theories - Alan Wineman NONLINEAR ELASTICITY AND ITS ROLE IN CONTINUUM THEORIES CONINUUM MECHANICS - Nonlinear Elasticity and Its Role in Continuum heories - Alan Wineman NONLINEAR ELASICIY AND IS ROLE IN CONINUUM HEORIES Alan Wineman Department of Mechanical Engineering, University

More information

Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu

Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu 2011. 11. 25 Contents: 1. Introduction 1.1 Basic Concepts of Continuum Mechanics 1.2 The Need

More information

Comparison of Models for Finite Plasticity

Comparison of Models for Finite Plasticity Comparison of Models for Finite Plasticity A numerical study Patrizio Neff and Christian Wieners California Institute of Technology (Universität Darmstadt) Universität Augsburg (Universität Heidelberg)

More information

Linear Constitutive Relations in Isotropic Finite Viscoelasticity

Linear Constitutive Relations in Isotropic Finite Viscoelasticity Journal of Elasticity 55: 73 77, 1999. 1999 Kluwer Academic Publishers. Printed in the Netherlands. 73 Linear Constitutive Relations in Isotropic Finite Viscoelasticity R.C. BATRA and JANG-HORNG YU Department

More information

thermo-viscoelasticity using

thermo-viscoelasticity using thermo-viscoelasticity Chair of Computational Mechanics University of Siegen Chair of Applied Mechanics and Dynamics Chemnitz University of Technology ECCOMAS, 13.9.1 1 Thermoviscoelastic continuum framework

More information

Development and numerical implementation of an anisotropic continuum damage model for concrete

Development and numerical implementation of an anisotropic continuum damage model for concrete Development and numerical implementation of an anisotropic continuum damage model for concrete Juha Hartikainen 1, Kari Kolari 2, Reijo Kouhia 3 1 Tampere University of Technology, Department of Civil

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015 The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015 Institute of Structural Engineering Method of Finite Elements II 1 Constitutive

More information

Nonlinear elasticity and gels

Nonlinear elasticity and gels Nonlinear elasticity and gels M. Carme Calderer School of Mathematics University of Minnesota New Mexico Analysis Seminar New Mexico State University April 4-6, 2008 1 / 23 Outline Balance laws for gels

More information

Continuum Mechanics and the Finite Element Method

Continuum Mechanics and the Finite Element Method Continuum Mechanics and the Finite Element Method 1 Assignment 2 Due on March 2 nd @ midnight 2 Suppose you want to simulate this The familiar mass-spring system l 0 l y i X y i x Spring length before/after

More information

An anisotropic continuum damage model for concrete

An anisotropic continuum damage model for concrete An anisotropic continuum damage model for concrete Saba Tahaei Yaghoubi 1, Juha Hartikainen 1, Kari Kolari 2, Reijo Kouhia 3 1 Aalto University, Department of Civil and Structural Engineering 2 VTT 3 Tampere

More information

Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros

Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros Computational Design Forward design: direct manipulation of design parameters Level of abstraction Exploration

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Dr. Andri Andriyana Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of field

More information

Computational modelling of isotropic multiplicative growth

Computational modelling of isotropic multiplicative growth Copyright c 0000 Tech Science Press CMES, vol.0, no.0, pp.1-14, 0000 Computational modelling of isotropic multiplicative growth G. Himpel, E. Kuhl, A. Menzel, P. Steinmann 1 Abstract: The changing mass

More information

Other state variables include the temperature, θ, and the entropy, S, which are defined below.

Other state variables include the temperature, θ, and the entropy, S, which are defined below. Chapter 3 Thermodynamics In order to complete the formulation we need to express the stress tensor T and the heat-flux vector q in terms of other variables. These expressions are known as constitutive

More information

Forced Response of Plate with Viscoelastic Auxetic Dampers

Forced Response of Plate with Viscoelastic Auxetic Dampers Vibrations in Physical Systems 2018, 29, 2018003 (1 of 9) Abstract Forced Response of Plate with Viscoelastic Auxetic Dampers Tomasz STREK Poznan University of Technology, Institute of Applied Mechanics

More information

arxiv: v1 [cs.na] 21 Jul 2010

arxiv: v1 [cs.na] 21 Jul 2010 DEVELOPMENT OF THREE DIMENSIONAL CONSTITUTIVE THEORIES BASED ON LOWER DIMENSIONAL EXPERIMENTAL DATA Satish Karra, K. R. Rajagopal, College Station arxiv:1007.3760v1 [cs.na] 1 Jul 010 Abstract. Most three

More information

Configurational Forces as Basic Concepts of Continuum Physics

Configurational Forces as Basic Concepts of Continuum Physics Morton E. Gurtin Configurational Forces as Basic Concepts of Continuum Physics Springer Contents 1. Introduction 1 a. Background 1 b. Variational definition of configurational forces 2 с Interfacial energy.

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Andri Andriyana, Ph.D. Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of

More information

The Class of Simo & Pister-type Hyperelasticity Relations

The Class of Simo & Pister-type Hyperelasticity Relations The Class of Simo & Pister-type Hyperelasticity Relations Stefan Hartmann Technical Report Series Fac3-0-0 Impressum Publisher: Fakultät für Mathematik/Informatik und Maschinenbau, Technische Universität

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

A MECHANICAL MODEL FOR THE DYNAMICAL CONTACT OF ELASTIC ROUGH BODIES WITH VISCOELASTIC PROPERTIES

A MECHANICAL MODEL FOR THE DYNAMICAL CONTACT OF ELASTIC ROUGH BODIES WITH VISCOELASTIC PROPERTIES 11 th International Conference on Engineering Vibration Ljubljana, Slovenia, 7 10 September 2015 A MECHANICAL MODEL FOR THE DYNAMICAL CONTACT OF ELASTIC ROUGH BODIES WITH VISCOELASTIC PROPERTIES Frank

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Dynamic Finite Element Modeling of Elastomers

Dynamic Finite Element Modeling of Elastomers Dynamic Finite Element Modeling of Elastomers Jörgen S. Bergström, Ph.D. Veryst Engineering, LLC, 47A Kearney Rd, Needham, MA 02494 Abstract: In many applications, elastomers are used as a load-carrying

More information

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Lectures on. Constitutive Modelling of Arteries. Ray Ogden Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

More information

Viscoelastic Structures Mechanics of Growth and Aging

Viscoelastic Structures Mechanics of Growth and Aging Viscoelastic Structures Mechanics of Growth and Aging Aleksey D. Drozdov Institute for Industrial Mathematics Ben-Gurion University of the Negev Be'ersheba, Israel ACADEMIC PRESS San Diego London Boston

More information

Analysis and numerics of the mechanics of gels

Analysis and numerics of the mechanics of gels Analysis and numerics of the mechanics of gels A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Brandon Michael Chabaud IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Hooke s law and its consequences 1

Hooke s law and its consequences 1 AOE 354 Hooke s law and its consequences Historically, the notion of elasticity was first announced in 676 by Robert Hooke (635 73) in the form of an anagram, ceiinosssttuv. He explained it in 678 as Ut

More information

Modelling Rubber Bushings Using the Parallel Rheological Framework

Modelling Rubber Bushings Using the Parallel Rheological Framework Modelling Rubber Bushings Using the Parallel Rheological Framework Javier Rodríguez 1, Francisco Riera 1, and Jon Plaza 2 1 Principia, Spain; 2 Cikatek, Spain Abstract: Bushings are anti vibration components

More information

On the Development of Volumetric Strain Energy Functions

On the Development of Volumetric Strain Energy Functions Institut für Mechanik On the Development of Volumetric Strain Energy Functions S. Doll, K. Schweizerhof Universität Karlsruhe, Institut für Mechanik 1999 Institut für Mechanik Kaiserstr. 12, Geb. 20.30

More information

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading Mechanics and Mechanical Engineering Vol. 21, No. 1 (2017) 157 170 c Lodz University of Technology The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials

More information

Wrinkling Analysis of Thermo Elastic Membranes

Wrinkling Analysis of Thermo Elastic Membranes TECHNISCHE MECHANIK, Band 26, Heft 1, (2006), 33 43 Manuskripteingang: 31. Januar 2006 Wrinkling Analysis of Thermo Elastic Membranes Jörg Hornig, Heinrich Schoop, Uwe Herbrich In order to analyze the

More information

Nanoindentation of Soft Polymers: Modeling, Experiments and Parameter Identification

Nanoindentation of Soft Polymers: Modeling, Experiments and Parameter Identification TECHNISCHE MECHANIK, 34, 3-4, (214), 166 189 submitted: October 15, 213 Nanoindentation of Soft Polymers: Modeling, Experiments and Parameter Identification Z. Chen, S. Diebels Since the nanoindentation

More information

Constitutive models: Incremental (Hypoelastic) Stress- Strain relations. and

Constitutive models: Incremental (Hypoelastic) Stress- Strain relations. and Constitutive models: Incremental (Hypoelastic) Stress- Strain relations Example 5: an incremental relation based on hyperelasticity strain energy density function and 14.11.2007 1 Constitutive models:

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Testing Elastomers and Plastics for Marc Material Models

Testing Elastomers and Plastics for Marc Material Models Testing Elastomers and Plastics for Marc Material Models Presented by: Kurt Miller Axel Products, Inc. axelproducts.com We Measure Structural Properties Stress Strain Time-Temperature Test Combinations

More information

Course Syllabus: Continuum Mechanics - ME 212A

Course Syllabus: Continuum Mechanics - ME 212A Course Syllabus: Continuum Mechanics - ME 212A Division Course Number Course Title Academic Semester Physical Science and Engineering Division ME 212A Continuum Mechanics Fall Academic Year 2017/2018 Semester

More information

On pore fluid pressure and effective solid stress in the mixture theory of porous media

On pore fluid pressure and effective solid stress in the mixture theory of porous media On pore fluid pressure and effective solid stress in the mixture theory of porous media I-Shih Liu Abstract In this paper we briefly review a typical example of a mixture of elastic materials, in particular,

More information

Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure

Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure Finite Element Modeling of a Thermoplastic Seal at High Temperature and Pressure Jorgen Bergstrom 1, Ph.D. Brun Hilbert 2, Ph.D., P.E. Email: jorgen@polymerfem.com 1 Veryst Engineering, LLC Needham, MA

More information

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials IOSR Journal of Engineering (IOSRJEN) ISSN (e): 50-301, ISSN (p): 78-8719 PP 06-10 www.iosrjen.org A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

More information

A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo chemo-mechanical aging of rubbers

A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo chemo-mechanical aging of rubbers A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo chemo-mechanical aging of rubbers Stéphane Lejeunes, Dominique Eyheramendy, Adnane Boukamel,

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York

More information

The Effect of Evolving Damage on the Finite Strain Response of Inelastic and Viscoelastic Composites

The Effect of Evolving Damage on the Finite Strain Response of Inelastic and Viscoelastic Composites Materials 2009, 2, 858-894; doi:0.3390/ma204858 Article OPEN ACCESS materials ISSN 996-944 www.mdpi.com/journal/materials The Effect of Evolving Damage on the Finite Strain Response of Inelastic and Viscoelastic

More information

INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS

INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS SHEN R. WU and LEI GU WILEY A JOHN WILEY & SONS, INC., PUBLICATION ! PREFACE xv PARTI FUNDAMENTALS 1 1 INTRODUCTION 3

More information

The Non-Linear Field Theories of Mechanics

The Non-Linear Field Theories of Mechanics С. Truesdell-W.Noll The Non-Linear Field Theories of Mechanics Second Edition with 28 Figures Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Contents. The Non-Linear

More information

Constitutive models. Constitutive model: determines P in terms of deformation

Constitutive models. Constitutive model: determines P in terms of deformation Constitutive models Constitutive model: determines P in terms of deformation Elastic material: P depends only on current F Hyperelastic material: work is independent of path strain energy density function

More information

CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS IN LAGRANGIAN DESCRIPTION USING GIBBS POTENTIAL YUSSHY MENDOZA

CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS IN LAGRANGIAN DESCRIPTION USING GIBBS POTENTIAL YUSSHY MENDOZA CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS IN LAGRANGIAN DESCRIPTION USING GIBBS POTENTIAL BY YUSSHY MENDOZA B.S. in Mechanical Engineering, Saint Louis University, 2008 Submitted to the graduate degree

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

ELASTOPLASTICITY THEORY by V. A. Lubarda

ELASTOPLASTICITY THEORY by V. A. Lubarda ELASTOPLASTICITY THEORY by V. A. Lubarda Contents Preface xiii Part 1. ELEMENTS OF CONTINUUM MECHANICS 1 Chapter 1. TENSOR PRELIMINARIES 3 1.1. Vectors 3 1.2. Second-Order Tensors 4 1.3. Eigenvalues and

More information

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO MASTER DEGREE THESIS IN MECHANICAL ENGINEERING EXPERIMENTAL INDENTIFICATION OF MATERIAL PROPERTIES OF GELS Thesis supervisor: Prof. Giorgio Previati Name: Xinhao Lu Student ID number:

More information

Formulation and implementation of three-dimensional viscoelasticity at small and finite strains

Formulation and implementation of three-dimensional viscoelasticity at small and finite strains Formulation and implementation of three-dimensional viscoelasticity at small and finite strains M. Kaliske, H. Rothert Computational Mechanics 1 (17) 22 2 Springer-Verlag 17 22 Abstract Purely elastic

More information

Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii)

Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii) Asphalt Pavement Aging and Temperature Dependent Properties through a Functionally Graded Viscoelastic Model I: Development, Implementation and Verification Eshan V. Dave, Secretary of M&FGM2006 (Hawaii)

More information

06 - kinematic equations kinematic equations

06 - kinematic equations kinematic equations 06 - - 06-1 continuum mechancis continuum mechanics is a branch of physics (specifically mechanics) that deals with continuous matter. the fact that matter is made of atoms and that it commonly has some

More information

MSC Elastomers Seminar Some Things About Elastomers

MSC Elastomers Seminar Some Things About Elastomers MSC Elastomers Seminar Some Things About Elastomers Kurt Miller, Axel Products, Inc. www.axelproducts.com Visit us at: axelproducts.com 2 Your Presenter Kurt Miller Founded Axel Products 1994 Instron Corporation,

More information

Vít Průša (joint work with K.R. Rajagopal) 30 October Mathematical Institute, Charles University

Vít Průša (joint work with K.R. Rajagopal) 30 October Mathematical Institute, Charles University On models for viscoelastic fluid-like materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck Boussinesq type approximations Vít Průša (joint work with

More information

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report. Appendix I. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report. Appendix I. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein NCHRP 12-68 FY 2004 Rotational Limits for Elastomeric Bearings Final Report Appendix I John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein Department of Civil and Environmental Engineering University

More information

MODELING FRICTION PHENOMENA AND ELASTOMERIC DAMPERS IN MULTIBODY DYNAMICS ANALYSIS

MODELING FRICTION PHENOMENA AND ELASTOMERIC DAMPERS IN MULTIBODY DYNAMICS ANALYSIS MODELING FRICTION PHENOMENA AND ELASTOMERIC DAMPERS IN MULTIBODY DYNAMICS ANALYSIS A Thesis Presented to The Academic Faculty by Changkuan Ju In Partial Fulfillment of the Requirements for the Degree Doctor

More information

Lecture 6 mechanical system modeling equivalent mass gears

Lecture 6 mechanical system modeling equivalent mass gears M2794.25 Mechanical System Analysis 기계시스템해석 lecture 6,7,8 Dongjun Lee ( 이동준 ) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee Lecture 6 mechanical system modeling

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

PART II: The legacy of isotropic ice

PART II: The legacy of isotropic ice PART II: The legacy of isotropic ice 1. A flow law for ice: experimental evidence 2. A flow law for ice: continuum mechanical modeling 3. Microscale processes beyond secondary 1. A flow law for ice: experimental

More information

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature

More information

Experimental tests and analytical model of high damping rubber dissipating devices

Experimental tests and analytical model of high damping rubber dissipating devices Engineering Structures 28 (2006) 1874 1884 www.elsevier.com/locate/engstruct Experimental tests and analytical model of high damping rubber dissipating devices A. Dall Asta a,, L. Ragni b a Dipartimento

More information

Nonlinear Structural Materials Module

Nonlinear Structural Materials Module Nonlinear Structural Materials Module User s Guide VERSION 4.4 Nonlinear Structural Materials Module User s Guide 998 203 COMSOL Protected by U.S. Patents 7,59,58; 7,596,474; 7,623,99; and 8,457,932. Patents

More information

Simple shear is not so simple

Simple shear is not so simple Simple shear is not so simple Michel Destrade ab, Jerry G. Murphy c, Giuseppe Saccomandi d, a School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, University

More information

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February. Engineering Sciences 241 Advanced Elasticity, Spring 2001 J. R. Rice Homework Problems / Class Notes Mechanics of finite deformation (list of references at end) Distributed Thursday 8 February. Problems

More information

On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations

On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations J Elasticity (2007) 86:235 243 DOI 10.1007/s10659-006-9091-z On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations Albrecht Bertram Thomas Böhlke Miroslav Šilhavý

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics What is a Fluid? Pressure and Pascal s Law Constitutive Equations in Fluids Fluid Models

More information

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, 83-90

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, 83-90 Bulletin of the Transilvania University of Braşov Vol 10(59), No. 1-2017 Series III: Mathematics, Informatics, Physics, 83-90 GENERALIZED MICROPOLAR THERMOELASTICITY WITH FRACTIONAL ORDER STRAIN Adina

More information

Biomechanics. Soft Tissue Biomechanics

Biomechanics. Soft Tissue Biomechanics Biomechanics cross-bridges 3-D myocardium ventricles circulation Image Research Machines plc R* off k n k b Ca 2+ 0 R off Ca 2+ * k on R* on g f Ca 2+ R0 on Ca 2+ g Ca 2+ A* 1 A0 1 Ca 2+ Myofilament kinetic

More information

Chapter 2. Rubber Elasticity:

Chapter 2. Rubber Elasticity: Chapter. Rubber Elasticity: The mechanical behavior of a rubber band, at first glance, might appear to be Hookean in that strain is close to 100% recoverable. However, the stress strain curve for a rubber

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 17, 2017, Lesson 5 1 Politecnico di Milano, February 17, 2017, Lesson 5 2 Outline

More information

An Atomistic-based Cohesive Zone Model for Quasi-continua

An Atomistic-based Cohesive Zone Model for Quasi-continua An Atomistic-based Cohesive Zone Model for Quasi-continua By Xiaowei Zeng and Shaofan Li Department of Civil and Environmental Engineering, University of California, Berkeley, CA94720, USA Extended Abstract

More information

Computational Modelling of Isotropic Multiplicative Growth

Computational Modelling of Isotropic Multiplicative Growth Copyright c 2005 Tech Science Press CMES, vol.8, no.2, pp.119-134, 2005 Computational Modelling of Isotropic Multiplicative Growth G.Himpel,E.Kuhl,A.Menzel,P.Steinmann 1 Abstract: The changing mass of

More information

NET v1.0: A Framework to Simulate Permanent Damage in Elastomers under Quasi-static Deformations

NET v1.0: A Framework to Simulate Permanent Damage in Elastomers under Quasi-static Deformations NET v1.0: A Framework to Simulate Permanent Damage in Elastomers under Quasi-static Deformations Vahid Morovati, Roozbeh Dargazany morovati@msu.edu, roozbeh@msu.edu Michigan State University Department

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING Computational Solid Mechanics- Xavier Oliver-UPC 1.1 Dissipation approach for constitutive modelling Ch.1. Thermodynamical foundations of constitutive

More information